| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
| |
This should likely be adjusted to limit this transform
further, but these diffs should be clear wins.
If we have blendv/conditional move, then we should assume
those are cheap ops. The loads become independent of the
compare, so those can be speculated before we need to use
the values in the blend/mov.
llvm-svn: 347526
|
|
|
|
|
|
|
|
| |
rL347502 moved the null sibling, so we should group all of these
together. I'm not sure why these aren't methods of the SDValue
class itself, but that's another patch if that's possible.
llvm-svn: 347523
|
|
|
|
|
|
|
|
|
|
| |
...and use them to avoid creating obviously undef values as
discussed in the post-commit thread for r347478.
The diffs in vector div/rem show that we were missing real
optimizations by creating bogus shift nodes.
llvm-svn: 347502
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We fail to canonicalize IR this way (prefer 'not' ops to arbitrary 'xor'),
but that would not matter without this patch because DAGCombiner was
reversing that transform. I think we need this transform in the backend
regardless of what happens in IR to catch cases where the shift-xor
is formed late from GEP or other ops.
https://rise4fun.com/Alive/NC1
Name: shl
Pre: (-1 << C2) == C1
%shl = shl i8 %x, C2
%r = xor i8 %shl, C1
=>
%not = xor i8 %x, -1
%r = shl i8 %not, C2
Name: shr
Pre: (-1 u>> C2) == C1
%sh = lshr i8 %x, C2
%r = xor i8 %sh, C1
=>
%not = xor i8 %x, -1
%r = lshr i8 %not, C2
https://bugs.llvm.org/show_bug.cgi?id=39657
llvm-svn: 347478
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This transform needs to be limited.
We are converting to a constant pool load very early, and we
are turning loads that are independent of the select condition
(and therefore speculatable) into a dependent non-speculatable
load.
We may also be transferring a condition code from an FP register
to integer to create that dependent load.
llvm-svn: 347424
|
|
|
|
| |
llvm-svn: 347410
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is another step in vector narrowing - a follow-up to D53784
(and hoping to eventually squash potential regressions seen in
D51553).
The x86 test diffs are wins, but the AArch64 diff is probably not.
That problem already exists independent of this patch (see PR39722), but it
went unnoticed in the previous patch because there were no regression tests
that showed the possibility.
The x86 diff in i64-mem-copy.ll is close. Given the frequency throttling
concerns with using wider vector ops, an extra extract to reduce vector
width is the right trade-off at this level of codegen.
Differential Revision: https://reviews.llvm.org/D54392
llvm-svn: 347356
|
|
|
|
|
|
|
|
| |
visitINSERT_SUBVECTOR (PR37989)
This uncovered an off-by-one typo in SimplifyDemandedVectorElts's INSERT_SUBVECTOR handling as its bounds check was bailing on safe indices.
llvm-svn: 347313
|
|
|
|
| |
llvm-svn: 347278
|
|
|
|
|
|
|
|
|
|
| |
operands (PR21207)
Consistently use (!LegalOperations || isOperationLegalOrCustom) for all node pairs.
Differential Revision: https://reviews.llvm.org/D53478
llvm-svn: 347255
|
|
|
|
| |
llvm-svn: 347227
|
|
|
|
|
|
| |
This should be extended to handle FP and vectors in follow-up patches.
llvm-svn: 347210
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Sadly, this duplicates (twice) the logic from InstSimplify. There
might be some way to at least share the DAG versions of the code,
but copying the folds seems to be the standard method to ensure
that we don't miss these folds.
Unlike in IR, we don't run DAGCombiner to fixpoint, so there's no
way to ensure that we do these kinds of simplifications unless the
code is repeated at node creation time and during combines.
There were other tests that would become worthless with this
improvement that I changed as pre-commits:
rL347161
rL347164
rL347165
rL347166
rL347167
I'm not sure how to salvage the remaining tests (diffs in this patch).
So the x86 tests verify that the new code is working as intended.
The AMDGPU test is actually similar to my motivating case: we have
some undef value that has survived to machine IR in an x86 test, and
then it gets folded in some weird way, or we crash if we don't transfer
the undef flag. But we would have been better off never getting to that
point by doing these simplifications.
This will lead back to PR32023 someday...
https://bugs.llvm.org/show_bug.cgi?id=32023
llvm-svn: 347170
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D54646
llvm-svn: 347110
|
|
|
|
|
|
|
|
|
|
|
| |
PR37970 reported non-deterministic debug output, this was caused by
iterating through a set and not a a vector.
bugzilla: https://bugs.llvm.org/show_bug.cgi?id=37970
Differential Revision: https://reviews.llvm.org/D54570
llvm-svn: 347037
|
|
|
|
|
|
|
|
|
|
| |
It should be ok to create a new build_vector after legal operations so long as it doesn't cause an infinite loop in DAG combiner.
Unfortunately, X86's custom constant folding in combineVSZext is hiding any test changes from this. But I'm trying to get to a point where that X86 specific code isn't necessary at all.
Differential Revision: https://reviews.llvm.org/D54285
llvm-svn: 346728
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Handle extra output from index loads in cases where we wish to
forward a load value directly from a preceeding store.
Fixes PR39571.
Reviewers: peter.smith, rengolin
Subscribers: javed.absar, hiraditya, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D54265
llvm-svn: 346654
|
|
|
|
|
|
|
|
| |
SDNode*. NFC
Removes the need to call getNode internally and to recreate an SDValue after the call.
llvm-svn: 346600
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a long-awaited follow-up suggested in D33578. Since then, we've picked up even more
opportunities for vector narrowing from changes like D53784, so there are a lot of test diffs.
Apart from 2-3 strange cases, these are all wins.
I've structured this to be no-functional-change-intended for any target except for x86
because I couldn't tell if AArch64, ARM, and AMDGPU would improve or not. All of those
targets have existing regression tests (4, 4, 10 files respectively) that would be
affected. Also, Hexagon overrides the shouldReduceLoadWidth() hook, but doesn't show
any regression test diffs. The trade-off is deciding if an extra vector load is better
than a single wide load + extract_subvector.
For x86, this is almost always better (on paper at least) because we often can fold
loads into subsequent ops and not increase the official instruction count. There's also
some unknown -- but potentially large -- benefit from using narrower vector ops if wide
ops are implemented with multiple uops and/or frequency throttling is avoided.
Differential Revision: https://reviews.llvm.org/D54073
llvm-svn: 346595
|
|
|
|
|
|
|
|
|
|
|
|
| |
vector op legalization and DAG legalization. Fix bad one use check in combineShuffleOfScalars
It's possible for vector op legalization to generate a shuffle. If that happens we should give a chance for DAG combine to combine that with a build_vector input.
I also fixed a bug in combineShuffleOfScalars that was considering the number of uses on a undef input to a shuffle. We don't care how many times undef is used.
Differential Revision: https://reviews.llvm.org/D54283
llvm-svn: 346530
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The DAGCombiner tries to SimplifySelectCC as follows:
select_cc(x, y, 16, 0, cc) -> shl(zext(set_cc(x, y, cc)), 4)
It can't cope with the situation of reordered operands:
select_cc(x, y, 0, 16, cc)
In that case we just need to swap the operands and invert the Condition Code:
select_cc(x, y, 16, 0, ~cc)
Differential Revision: https://reviews.llvm.org/D53236
llvm-svn: 346484
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
FindBetterNeighborChains simulateanously improves the chain
dependencies of a chain of related stores avoiding the generation of
extra token factors. For chains longer than the GatherAllAliasDepths,
stores further down in the chain will necessarily fail, a potentially
significant waste and preventing otherwise trivial parallelization.
This patch directly parallelize the chains of stores before improving
each store. This generally improves DAG-level parallelism.
Reviewers: courbet, spatel, RKSimon, bogner, efriedma, craig.topper, rnk
Subscribers: sdardis, javed.absar, hiraditya, jrtc27, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D53552
llvm-svn: 346432
|
|
|
|
|
|
|
|
| |
correctly between LegalTypes and LegalOperations.
The original code avoided creating a zero vector after type legalization, but if we're after type legalization the type we have is legal. The real hazard we need to avoid is creating a build vector after op legalization. tryFoldToZero takes care of checking for this.
llvm-svn: 346119
|
|
|
|
| |
llvm-svn: 346118
|
|
|
|
|
|
| |
This makes this code consistent with the nearly identical code in visitZERO_EXTEND.
llvm-svn: 346090
|
|
|
|
|
|
|
|
|
|
| |
nodes. Move asserts into getNode.
These methods were just wrappers around getNode with additional asserts (identical and repeated 3 times). But getNode already has a switch that can be used to hold these asserts that allows them to be shared for all 3 opcodes. This also enables checking on the places that create these nodes without using the wrappers.
The rest of the patch is just changing all callers to use getNode directly.
llvm-svn: 346087
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
types are legal with AVX1
We already have custom lowering for the AVX case in LegalizeVectorOps. So its better to keep the regular extend op around as long as possible.
I had to qualify one place in DAG combine that created illegal vector extending load operations. This change by itself had no effect on any tests which is why its included here.
I've made a few cleanups to the custom lowering. The sign extend code no longer creates an identity shuffle with undef elements. The zero extend code now emits a zero_extend_vector_inreg instead of an unpckl with a zero vector.
For the high half of the custom lowering of zero_extend/any_extend, we're now using an unpckh with a zero vector or undef. Previously we used used a pshufd to move the upper 64-bits to the lower 64-bits and then used a zero_extend_vector_inreg. I think the zero vector should require less execution resources and be smaller code size.
Differential Revision: https://reviews.llvm.org/D54024
llvm-svn: 346043
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
vectorizers instead (PR35732)
reduceBuildVecConvertToConvertBuildVec vectorizes int2float in the DAGCombiner, which means that even if the LV/SLP has decided to keep scalar code using the cost models, this will override this.
While there are cases where vectorization is necessary in the DAG (mainly due to legalization artefacts), I don't think this is the case here, we should assume that the vectorizers know what they are doing.
Differential Revision: https://reviews.llvm.org/D53712
llvm-svn: 345964
|
|
|
|
|
|
|
|
| |
vectors. Remove FIXME.
I'm having trouble creating a test case for the ISD::TRUNCATE part of this that shows any codegen differences. But I was able to test the setcc path which is what the test changes here cover.
llvm-svn: 345908
|
|
|
|
|
|
|
|
|
|
|
|
| |
narrow a vector op (PR39511)
The test causes a crash because we were trying to extract v4f32 to v3f32, and the
narrowing factor was then 4/3 = 1 producing a bogus narrow type.
This should fix:
https://bugs.llvm.org/show_bug.cgi?id=39511
llvm-svn: 345842
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: RKSimon, spatel, javed.absar, craig.topper, t.p.northover
Reviewed By: RKSimon
Subscribers: craig.topper, llvm-commits
Differential Revision: https://reviews.llvm.org/D52504
llvm-svn: 345721
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Normalize the offset for endianess before checking
if the store cover the load in ForwardStoreValueToDirectLoad.
Without this we missed out on some optimizations for big
endian targets. If for example having a 4 bytes store followed
by a 1 byte load, loading the least significant byte from the
store, the STCoversLD check would fail (see @test4 in
test/CodeGen/AArch64/load-store-forwarding.ll).
This patch also fixes a problem seen in an out-of-tree target.
The target has i40 as a legal type, it is big endian,
and the StoreSize for i40 is 48 bits. So when normalizing
the offset for endianess we need to take the StoreSize into
account (assuming that padding added when storing into
a larger StoreSize always is added at the most significant
end).
Reviewers: niravd
Reviewed By: niravd
Subscribers: javed.absar, kristof.beyls, llvm-commits, uabelho
Differential Revision: https://reviews.llvm.org/D53776
llvm-svn: 345636
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Narrowing vector binops came up in the demanded bits discussion in D52912.
I don't think we're going to be able to do this transform in IR as a canonicalization
because of the risk of creating unsupported widths for vector ops, but we already have
a DAG TLI hook to allow what I was hoping for: isExtractSubvectorCheap(). This is
currently enabled for x86, ARM, and AArch64 (although only x86 has existing regression
test diffs).
This is artificially limited to not look through bitcasts because there are so many
test diffs already, but that's marked with a TODO and is a small follow-up.
Differential Revision: https://reviews.llvm.org/D53784
llvm-svn: 345602
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Tests by @spatel, thanks
Reviewers: spatel, RKSimon
Reviewed By: spatel
Subscribers: sdardis, atanasyan, llvm-commits, spatel
Differential Revision: https://reviews.llvm.org/D52668
llvm-svn: 345575
|
|
|
|
|
|
|
|
| |
Enable constant folding when both operands are vectors of constants.
Turn into FNEG/FABS when the RHS is a splat constant vector.
llvm-svn: 345469
|
|
|
|
|
|
|
| |
We can extend this code to handle many more cases
if an extract is cheap, so prepping for that change.
llvm-svn: 345430
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Changes all uses of minnan/maxnan to minimum/maximum
globally. These names emphasize that the semantic difference between
these operations is more than just NaN-propagation.
Reviewers: arsenm, aheejin, dschuff, javed.absar
Subscribers: jholewinski, sdardis, wdng, sbc100, jgravelle-google, jrtc27, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D53112
llvm-svn: 345218
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Depends on D52765.
Reviewers: aheejin, dschuff
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52768
llvm-svn: 345210
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Until now, we've only checked whether merging stores would cause a cycle via
the value argument, but the address and indexed offset arguments are also
capable of creating cycles in some situations.
The addresses are all base+offset with notionally the same base, but the base
SDNode may still be different (e.g. via an indexed load in one case, and an
ISD::ADD elsewhere). This allows cycles to creep in if one of these sources
depends on another.
The indexed offset is usually undef (representing a non-indexed store), but on
some architectures (e.g. 32-bit ARM-mode ARM) it can be an arbitrary value,
again allowing dependency cycles to creep in.
llvm-svn: 345200
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When implementing memset's today we often see this pattern:
$x0 = MOV 0xXYXYXYXYXYXYXYXY
store $x0, ...
$w1 = MOV 0xXYXYXYXY
store $w1, ...
We first create a 64bit constant in a 64bit register with all bytes the
same and then create a 32bit constant with all bytes the same in a 32bit
register. In many targets we could just access the lower byte of the
64bit register instead.
- Ideally this would be handled by the ConstantHoist pass but it runs
too early when memset isn't expanded yet.
- The memset expansion code already had this optimization implemented,
however SelectionDAG constantfolding would constantfold the
"trunc(bigconstnat)" pattern to "smallconstant".
- This patch makes the memset expansion mark the constant as Opaque and
stop DAGCombiner from constant folding in this situation. (Similar to
how ConstantHoisting marks things as Opaque to avoid folding
ADD/SUB/etc.)
Differential Revision: https://reviews.llvm.org/D53181
llvm-svn: 345102
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I've included a fix to DAGCombiner::ForwardStoreValueToDirectLoad that I believe will prevent the previous miscompile.
Original commit message:
Theoretically this was done to simplify the amount of isel patterns that were needed. But it also meant a substantial number of our isel patterns have to match an explicit bitcast. By making the vXi32/vXi16/vXi8 types legal for loads, DAG combiner should be able to change the load type to rem
I had to add some additional plain load instruction patterns and a few other special cases, but overall the isel table has reduced in size by ~12000 bytes. So it looks like this promotion was hurting us more than helping.
I still have one crash in vector-trunc.ll that I'm hoping @RKSimon can help with. It seems to relate to using getTargetConstantFromNode on a load that was shrunk due to an extract_subvector combine after the constant pool entry was created. So we end up decoding more mask elements than the lo
I'm hoping this patch will simplify the number of patterns needed to remove the and/or/xor promotion.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits, RKSimon
Differential Revision: https://reviews.llvm.org/D53306
llvm-svn: 344965
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce new versions that follow the IEEE semantics
to help with legalization that may need quieted inputs.
There are some regressions from inserting unnecessary
canonicalizes when these are matched from fast math
fcmp + select which should be fixed in a future commit.
llvm-svn: 344914
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a late backend subset of the IR transform added with:
D52439
We can confirm that the conversion to a 'trunc' is correct by running:
$ opt -instcombine -data-layout="e"
(assuming the IR transforms are correct; change "e" to "E" for big-endian)
As discussed in PR39016:
https://bugs.llvm.org/show_bug.cgi?id=39016
...the pattern may emerge during legalization, so that's we are waiting for an
insertelement to become a scalar_to_vector in the pattern matching here.
The DAG allows for fun variations that are not possible in IR. Result types for
extracts and scalar_to_vector don't necessarily match input types, so that means
we have to be a bit more careful in the transform (see code comments).
The tests show that we don't handle cases that require a shift (as we did in the
IR version). I've left that as a potential follow-up because I'm not sure if
that's a real concern at this late stage.
Differential Revision: https://reviews.llvm.org/D53201
llvm-svn: 344872
|
|
|
|
| |
llvm-svn: 344534
|
|
|
|
|
|
| |
The transform doesn't work if the vector constant has undef elements.
llvm-svn: 344532
|
|
|
|
| |
llvm-svn: 344528
|
|
|
|
| |
llvm-svn: 344525
|
|
|
|
|
|
|
|
|
|
| |
I want to add another pattern here that includes scalar_to_vector,
so this makes that patch smaller. I was hoping to remove the
hasOneUse() check because it shouldn't be necessary for common
codegen, but an AMDGPU test has a comment suggesting that the
extra check makes things better on one of those targets.
llvm-svn: 344320
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Correct offset calculation in load-store forwarding for big-endian
targets.
Reviewers: rnk, RKSimon, waltl
Subscribers: sdardis, nemanjai, hiraditya, jrtc27, atanasyan, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D53147
llvm-svn: 344272
|
|
|
|
| |
llvm-svn: 344255
|