| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
| |
This reverts commits r338390 and r338398, they were causing LSan
failures on the ASan bot.
llvm-svn: 338408
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are two forms for label debug information in DWARF format.
1. Labels in a non-inlined function:
DW_TAG_label
DW_AT_name
DW_AT_decl_file
DW_AT_decl_line
DW_AT_low_pc
2. Labels in an inlined function:
DW_TAG_label
DW_AT_abstract_origin
DW_AT_low_pc
We will collect label information from DBG_LABEL. Before every DBG_LABEL,
we will generate a temporary symbol to denote the location of the label.
The symbol could be used to get DW_AT_low_pc afterwards. So, we create a
mapping between 'inlined label' and DBG_LABEL MachineInstr in DebugHandlerBase.
The DBG_LABEL in the mapping is used to query the symbol before it.
The AbstractLabels in DwarfCompileUnit is used to process labels in inlined
functions.
We also keep a mapping between scope and labels in DwarfFile to help to
generate correct tree structure of DIEs.
It also generates label debug information under global isel.
Differential Revision: https://reviews.llvm.org/D45556
llvm-svn: 338390
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D49900
llvm-svn: 338335
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch adds support for the atomicrmw instructions and the strong
cmpxchg instruction to the IRTranslator.
I've left out weak cmpxchg because LangRef.rst isn't entirely clear on what
difference it makes to the backend. As far as I can tell from the code, it
only matters to AtomicExpandPass which is run at the LLVM-IR level.
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar, volkan, javed.absar
Reviewed By: qcolombet
Subscribers: kristof.beyls, javed.absar, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D40092
llvm-svn: 336589
|
|
|
|
|
|
|
|
|
| |
widenScalar, NFC
The commit was a suspect for clang-cmake-aarch64-global-isel and
clang-cmake-aarch64-quick bot failures, proved to be innocent.
llvm-svn: 331898
|
|
|
|
|
|
|
| |
Reverting this to see if the clang-cmake-aarch64-global-isel and
clang-cmake-aarch64-quick bots are failing because of this commit
llvm-svn: 331839
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Refactoring LegalizerHelper::widenScalar member function reducing its
size by approximately a factor of 2 and (hopefuly) making it more
straightforward and regular by introducing widenScalarSrc and
widenScalarDst helper methods.
The new widenScalar* methods mutate the instructions in place instead
of recreating them from scratch and removing the originals. The
compile time implications of this were measured on sqlite3
amalgamation, targeting AArch64 in -O0:
LegalizerHelper::widenScalar: > 25% faster
Legalizer::runOnMachineFunction: ~ 4.0 - 4.5% faster
Also adding MachineOperand::setCImm and refactoring out
MachineIRBuilder::recordInsertion methods to make the change possible.
Reviewers: aditya_nandakumar, bogner, javed.absar, t.p.northover, ab, dsanders, arsenm
Reviewed By: aditya_nandakumar
Subscribers: wdng, rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D46414
llvm-svn: 331819
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
lowerings for them
Summary:
Previously, a extending load was represented at (G_*EXT (G_LOAD x)).
This had a few drawbacks:
* G_LOAD had to be legal for all sizes you could extend from, even if
registers didn't naturally hold those sizes.
* All sizes you could extend from had to be allocatable just in case the
extend went missing (e.g. by optimization).
* At minimum, G_*EXT and G_TRUNC had to be legal for these sizes. As we
improve optimization of extends and truncates, this legality requirement
would spread without considerable care w.r.t when certain combines were
permitted.
* The SelectionDAG importer required some ugly and fragile pattern
rewriting to translate patterns into this style.
This patch begins changing the representation to:
* (G_[SZ]EXTLOAD x)
* (G_LOAD x) any-extends when MMO.getSize() * 8 < ResultTy.getSizeInBits()
which resolves these issues by allowing targets to work entirely in their
native register sizes, and by having a more direct translation from
SelectionDAG patterns.
This patch introduces the new generic instructions and new variation on
G_LOAD and adds lowering for them to convert back to the existing
representations.
Depends on D45466
Reviewers: ab, aditya_nandakumar, bogner, rtereshin, volkan, rovka, aemerson, javed.absar
Reviewed By: aemerson
Subscribers: aemerson, kristof.beyls, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D45540
llvm-svn: 331115
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
building.
https://reviews.llvm.org/D45067
This change attempts to do two things:
1) It separates out the state that is stored in the
MachineIRBuilder(InsertionPt, MF, MRI, InsertFunction etc) into a
separate object called MachineIRBuilderState.
2) Add the ability to constant fold operations while building instructions
(optionally). MachineIRBuilder is now refactored into a MachineIRBuilderBase
which contains lots of non foldable build methods and their implementation.
Instructions which can be constant folded/transformed are now in a class
called FoldableInstructionBuilder which uses CRTP to use the implementation
of the derived class for buildBinaryOps. Additionally buildInstr in the derived
class can be used to implement other kinds of transformations.
Also because of separation of state, given a MachineIRBuilder in an API,
if one wishes to use another MachineIRBuilder, a new one can be
constructed from the state locally. For eg,
void doFoo(MachineIRBuilder &B) {
MyCustomBuilder CustomB(B.getState());
// Use CustomB for building.
}
reviewed by : aemerson
llvm-svn: 329596
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Added helpers to build G_FCONSTANT, along with matching ConstantFP and
unit tests for the same.
Sample usage.
auto MIB = Builder.buildFConstant(s32, 0.5); // Build IEEESingle
For Matching the above
const ConstantFP* Tmp;
mi_match(DstReg, MRI, m_GFCst(Tmp));
https://reviews.llvm.org/D44128
reviewed by: volkan
llvm-svn: 327152
|
|
|
|
|
|
| |
The Function can never be nullptr so we can return a reference.
llvm-svn: 320884
|
|
|
|
|
|
|
|
| |
opcode and enable for AArch64.
Some concerns were raised with the direction. Revert while we discuss it and look into an alternative
llvm-svn: 319739
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
enable for AArch64.
This patch splits atomics out of the generic G_LOAD/G_STORE and into their own
G_ATOMIC_LOAD/G_ATOMIC_STORE. This is a pragmatic decision rather than a
necessary one. Atomic load/store has little in implementation in common with
non-atomic load/store. They tend to be handled very differently throughout the
backend. It also has the nice side-effect of slightly improving the common-case
performance at ISel since there's no longer a need for an atomicity check in the
matcher table.
All targets have been updated to remove the atomic load/store check from the
G_LOAD/G_STORE path. AArch64 has also been updated to mark
G_ATOMIC_LOAD/G_ATOMIC_STORE legal.
There is one issue with this patch though which also affects the extending loads
and truncating stores. The rules only match when an appropriate G_ANYEXT is
present in the MIR. For example,
(G_ATOMIC_STORE (G_TRUNC:s16 (G_ANYEXT:s32 (G_ATOMIC_LOAD:s16 X))))
will match but:
(G_ATOMIC_STORE (G_ATOMIC_LOAD:s16 X))
will not. This shouldn't be a problem at the moment, but as we get better at
eliminating extends/truncates we'll likely start failing to match in some
cases. The current plan is to fix this in a patch that changes the
representation of extending-load/truncating-store to allow the MMO to describe
a different type to the operation.
llvm-svn: 319691
|
|
|
|
|
|
|
|
|
|
|
| |
G_ATOMICRMW_* is generally legal on AArch64. The exception is G_ATOMICRMW_NAND.
G_ATOMIC_CMPXCHG_WITH_SUCCESS needs to be lowered to G_ATOMIC_CMPXCHG with an
external comparison.
Note that IRTranslator doesn't generate these instructions yet.
llvm-svn: 319466
|
|
|
|
|
|
|
|
| |
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
|
|
|
|
|
|
|
|
| |
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
|
|
|
|
|
|
| |
https://reviews.llvm.org/D37018
llvm-svn: 311763
|
|
|
|
|
|
| |
rdar://problem/33580047
llvm-svn: 309757
|
|
|
|
|
|
|
| |
Followup to r309426.
rdar://problem/33580047
llvm-svn: 309449
|
|
|
|
| |
llvm-svn: 307144
|
|
|
|
|
|
| |
This isn't used anywhere yet, but I need it for a future commit.
llvm-svn: 307141
|
|
|
|
|
|
|
| |
Add a helper for building simple binary ops like add, mul, sub, and.
This can be used in the future for quickly adding support for or, xor.
llvm-svn: 307139
|
|
|
|
|
|
|
|
|
| |
It looks like there are two target-independent but not GISel instructions that
need legalization, IMPLICIT_DEF and PHI. These are already anomalies since
their operands have important LLTs attached, so to make things more uniform it
seems like a good idea to add generic variants. Starting with G_IMPLICIT_DEF.
llvm-svn: 306875
|
|
|
|
| |
llvm-svn: 306481
|
|
|
|
|
|
|
|
|
|
|
|
| |
Without this check, COPY instructions can actually be one of the generic casts
in disguise. That's confusing and bad.
At some point during ISel this restriction has to be relaxed since the fully
selected instructions will usually use COPY for those purposes. Right now I
think it's possible that relaxation occurs during RegBankSelect (hence the
change there). I'm not convinced that's where it belongs long-term though.
llvm-svn: 306470
|
|
|
|
|
|
|
| |
This is the dual problem to legalizing G_INSERTs so most of the code and
testing was cribbed from there.
llvm-svn: 306328
|
|
|
|
|
|
|
|
| |
G_SEQUENCE is going away soon so as a first step the MachineIRBuilder needs to
be taught how to emulate it with alternatives. We use G_MERGE_VALUES where
possible, and a sequence of G_INSERTs if not.
llvm-svn: 306119
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
When legalizing G_LOAD/G_STORE using NarrowScalar, we should avoid emitting
%0 = G_CONSTANT ty 0
%1 = G_GEP %x, %0
since it's cheaper to not emit the redundant instructions than it is to fold them
away later.
Reviewers: qcolombet, t.p.northover, ab, rovka, aditya_nandakumar, kristof.beyls
Reviewed By: qcolombet
Subscribers: javed.absar, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D32746
llvm-svn: 305340
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes PR32471.
As comment 10 on that bug report highlights
(https://bugs.llvm.org//show_bug.cgi?id=32471#c10), there are quite a
few different defendable design tradeoffs that could be made, including
not representing pointers at all in LLT.
I decided to go for representing vector-of-pointer as a concept in LLT,
while keeping the size of the LLT type 64 bits (this is an increase from
48 bits before). My rationale for keeping pointers explicit is that on
some targets probably it's very handy to have the distinction between
pointer and non-pointer (e.g. 68K has a different register bank for
pointers IIRC). If we keep a scalar pointer, it probably is easiest to
also have a vector-of-pointers to keep LLT relatively conceptually clean
and orthogonal, while we don't have a very strong reason to break that
orthogonality. Once we gain more experience on the use of LLT, we can
of course reconsider this direction.
Rejecting vector-of-pointer types in the IRTranslator is also an option
to avoid the crash reported in PR32471, but that is only a very
short-term solution; also needs quite a bit of code tweaks in places,
and is probably fragile. Therefore I didn't consider this the best
option.
llvm-svn: 300664
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts r300535 and r300537.
The newly added tests in test/CodeGen/AArch64/GlobalISel/arm64-fallback.ll
produces slightly different code between LLVM versions being built with different compilers.
E.g., dependent on the compiler LLVM is built with, either one of the following
can be produced:
remark: <unknown>:0:0: unable to legalize instruction: %vreg0<def>(p0) = G_EXTRACT_VECTOR_ELT %vreg1, %vreg2; (in function: vector_of_pointers_extractelement)
remark: <unknown>:0:0: unable to legalize instruction: %vreg2<def>(p0) = G_EXTRACT_VECTOR_ELT %vreg1, %vreg0; (in function: vector_of_pointers_extractelement)
Non-determinism like this is clearly a bad thing, so reverting this until
I can find and fix the root cause of the non-determinism.
llvm-svn: 300538
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes PR32471.
As comment 10 on that bug report highlights
(https://bugs.llvm.org//show_bug.cgi?id=32471#c10), there are quite a
few different defendable design tradeoffs that could be made, including
not representing pointers at all in LLT.
I decided to go for representing vector-of-pointer as a concept in LLT,
while keeping the size of the LLT type 64 bits (this is an increase from
48 bits before). My rationale for keeping pointers explicit is that on
some targets probably it's very handy to have the distinction between
pointer and non-pointer (e.g. 68K has a different register bank for
pointers IIRC). If we keep a scalar pointer, it probably is easiest to
also have a vector-of-pointers to keep LLT relatively conceptually clean
and orthogonal, while we don't have a very strong reason to break that
orthogonality. Once we gain more experience on the use of LLT, we can
of course reconsider this direction.
Rejecting vector-of-pointer types in the IRTranslator is also an option
to avoid the crash reported in PR32471, but that is only a very
short-term solution; also needs quite a bit of code tweaks in places,
and is probably fragile. Therefore I didn't consider this the best
option.
llvm-svn: 300535
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: qcolombet, aditya_nandakumar, dsanders, ab, t.p.northover, javed.absar
Reviewed By: qcolombet
Subscribers: dberris, rovka, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30761
llvm-svn: 297495
|
|
|
|
|
|
|
|
|
|
|
| |
For vector operands, the `select` instruction supports both vector and
non-vector conditions. The MIR builder had an overly restrictive
assertion, that only accepted vector conditions for vector selects
(in effect implementing ISD::VSELECT).
Make it possible to express the full range of G_SELECTs.
llvm-svn: 297207
|
|
|
|
|
|
|
| |
I messed up my rebases leading to r297200, and ended up with stale (but
working) code. Fix it.
llvm-svn: 297205
|
|
|
|
|
|
|
|
| |
When a dbg_value has a constant operand that isn't representable in MI,
there isn't much we can do. Use %noreg (0) for those situations.
This matches the SelectionDAG behavior.
llvm-svn: 297200
|
|
|
|
|
|
|
| |
A bit more painful than G_INSERT because it was more widely used, but this
should simplify the handling of extract operations in most locations.
llvm-svn: 297100
|
|
|
|
|
|
|
|
|
|
|
| |
Before, we were producing G_INSERT instructions that were actually closer to a
cast or even a COPY when both input and output sizes are the same. This doesn't
really make sense and means that everything interpreting a G_INSERT also has to
handle all these kinds of casts.
So now we detect these degenerate cases and emit real casts instead.
llvm-svn: 297051
|
|
|
|
| |
llvm-svn: 297044
|
|
|
|
|
|
|
| |
It's much easier to reason about single-value inserts and no-one was actually
using the variadic variants before.
llvm-svn: 296923
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These are simplified variants of the current G_SEQUENCE and G_EXTRACT, which
assume the individual parts will be contiguous, homogeneous, and occupy the
entirity of the larger register. This makes reasoning about them much easer
since you only have to look at the first register being merged and the result
to know what the instruction is doing.
I intend to gradually replace all uses of the more complicated sequence/extract
with these (or single-element insert/extracts), and then remove the older
variants. For now we start with legalization.
llvm-svn: 296921
|
|
|
|
|
|
|
|
|
| |
This instruction clears the low bits of a pointer without requiring (possibly
dodgy if pointers aren't ints) conversions to and from an integer. Since (as
far as I'm aware) all masks are statically known, the instruction takes an
immediate operand rather than a register to specify the mask.
llvm-svn: 295103
|
|
|
|
| |
llvm-svn: 294022
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D28079
llvm-svn: 293470
|
|
|
|
|
|
|
|
| |
The translation scheme is mostly cribbed from FastISel, and it's not entirely
convincing semantically. But it does seem to work in the common cases and allow
variables to be printed so it can't be all wrong.
llvm-svn: 293228
|
|
|
|
|
|
|
| |
With some minor manual fixes for using function_ref instead of
std::function. No functional change intended.
llvm-svn: 291904
|
|
|
|
|
|
|
|
|
|
|
|
| |
MachineIRBuilder had weird before/after and beginning/end flags for the insert
point. Unfortunately the non-default means that instructions will be inserted
in reverse order which is almost never what anyone wants.
Really, I think we just want (like IRBuilder has) the ability to insert at any
C++ iterator-style point (i.e. before any instruction or before MBB.end()). So
this fixes MIRBuilders to behave like IRBuilders in this respect.
llvm-svn: 288980
|
|
|
|
| |
llvm-svn: 288835
|
|
|
|
|
|
|
|
|
|
| |
Summary: Add missing parens in assert, which warn in GCC.
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27448
llvm-svn: 288792
|
|
|
|
|
|
|
|
| |
This makes it more similar to the floating-point constant, and also allows for
larger constants to be translated later. There's no real functional change in
this patch though, just syntax updates.
llvm-svn: 288712
|
|
|
|
| |
llvm-svn: 282153
|