| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
|
|
|
|
|
|
|
|
|
| |
When we calculate a product of 2 AddRecs, we end up making quite massive
computations to deduce the operands of resulting AddRec. This process can
be optimized by computing all args of intermediate sum and then calling
`getAddExpr` once rather than calling `getAddExpr` with intermediate
result every time a new argument is computed.
Differential Revision: https://reviews.llvm.org/D53189
Reviewed By: rtereshin
llvm-svn: 345813
|
| |
|
|
|
|
|
| |
This can miscompile as shown in PR39510:
https://bugs.llvm.org/show_bug.cgi?id=39510
llvm-svn: 345780
|
| |
|
|
|
|
| |
This is the inverted case for the transform added with D53874 / rL345725.
llvm-svn: 345728
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
This re-raises some of the open questions about how to apply and use fast-math-flags in IR from PR38086:
https://bugs.llvm.org/show_bug.cgi?id=38086
...but given the current implementation (no FMF on casts), this is likely the only way to predicate the
transform.
This is part of solving PR39475:
https://bugs.llvm.org/show_bug.cgi?id=39475
Differential Revision: https://reviews.llvm.org/D53874
llvm-svn: 345725
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a fix for PR39475:
https://bugs.llvm.org/show_bug.cgi?id=39475
We managed to get some of these patterns using computeKnownBits in D47041, but that
can't be used for nabs(). Instead, put in some range-based logic, so we can fold
both abs/nabs with icmp with a constant value.
Alive proofs:
https://rise4fun.com/Alive/21r
Name: abs_nsw_is_positive
%cmp = icmp slt i32 %x, 0
%negx = sub nsw i32 0, %x
%abs = select i1 %cmp, i32 %negx, i32 %x
%r = icmp sgt i32 %abs, -1
=>
%r = i1 true
Name: abs_nsw_is_not_negative
%cmp = icmp slt i32 %x, 0
%negx = sub nsw i32 0, %x
%abs = select i1 %cmp, i32 %negx, i32 %x
%r = icmp slt i32 %abs, 0
=>
%r = i1 false
Name: nabs_is_negative_or_0
%cmp = icmp slt i32 %x, 0
%negx = sub i32 0, %x
%nabs = select i1 %cmp, i32 %x, i32 %negx
%r = icmp slt i32 %nabs, 1
=>
%r = i1 true
Name: nabs_is_not_over_0
%cmp = icmp slt i32 %x, 0
%negx = sub i32 0, %x
%nabs = select i1 %cmp, i32 %x, i32 %negx
%r = icmp sgt i32 %nabs, 0
=>
%r = i1 false
Differential Revision: https://reviews.llvm.org/D53844
llvm-svn: 345717
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
optsize using masked wide loads
Under Opt for Size, the vectorizer does not vectorize interleave-groups that
have gaps at the end of the group (such as a loop that reads only the even
elements: a[2*i]) because that implies that we'll require a scalar epilogue
(which is not allowed under Opt for Size). This patch extends the support for
masked-interleave-groups (introduced by D53011 for conditional accesses) to
also cover the case of gaps in a group of loads; Targets that enable the
masked-interleave-group feature don't have to invalidate interleave-groups of
loads with gaps; they could now use masked wide-loads and shuffles (if that's
what the cost model selects).
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53668
llvm-svn: 345705
|
| |
|
|
|
|
|
|
| |
This is modeled after C++17 std::empty().
Differential Revision: https://reviews.llvm.org/D53909
llvm-svn: 345679
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Attempting to simplify the addPointer interface.
Currently there's code decomposing a MemoryLocation into (Ptr, Size, AAMDNodes) only to recreate the MemoryLocation inside the call.
Reviewers: reames, mkazantsev
Subscribers: sanjoy, jlebar, llvm-commits
Differential Revision: https://reviews.llvm.org/D53836
llvm-svn: 345548
|
| |
|
|
|
|
|
|
| |
This patch has caused fast-math issues in the reduction pattern.
Will re-work and land again.
llvm-svn: 345465
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The motivating case is from PR37549:
https://bugs.llvm.org/show_bug.cgi?id=37549
The analysis improvement allows us to form a vector 'select' out of
bitwise logic (the use of ComputeNumSignBits was added at rL345149).
The smaller test shows another InstCombine improvement - we use
ComputeNumSignBits to add 'nsw' to shift-left. But the negative
test shows an example where we must not add 'nsw' - when the shuffle
mask contains undef elements.
Differential Revision: https://reviews.llvm.org/D53659
llvm-svn: 345429
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
optimizing for size
LV is careful to respect -Os and not to create a scalar epilog in all cases
(runtime tests, trip-counts that require a remainder loop) except for peeling
due to gaps in interleave-groups. This patch fixes that; -Os will now have us
invalidate such interleave-groups and vectorize without an epilog.
The patch also removes a related FIXME comment that is now obsolete, and was
also inaccurate:
"FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a smaller
MaxVF that does not require a scalar epilog."
(requiresScalarEpilog() has nothing to do with VF).
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53420
llvm-svn: 344883
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary: Depends on D52766.
Reviewers: aheejin, dschuff
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52767
llvm-svn: 344816
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary: Depends on D52765
Reviewers: aheejin, dschuff
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52766
llvm-svn: 344799
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary: Depends on D52764
Reviewers: aheejin, dschuff
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52765
llvm-svn: 344796
|
| |
|
|
|
|
| |
directly.
llvm-svn: 344768
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is patch 2 of the new DivergenceAnalysis (https://reviews.llvm.org/D50433).
This patch contains a generic divergence analysis implementation for
unstructured, reducible Control-Flow Graphs. It contains two new classes.
The `SyncDependenceAnalysis` class lazily computes sync dependences, which
relate divergent branches to points of joining divergent control. The
`DivergenceAnalysis` class contains the generic divergence analysis
implementation.
Reviewers: nhaehnle
Reviewed By: nhaehnle
Subscribers: sameerds, kristina, nhaehnle, xbolva00, tschuett, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D51491
llvm-svn: 344734
|
| |
|
|
| |
llvm-svn: 344713
|
| |
|
|
| |
llvm-svn: 344687
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Teach vectorizer about vectorizing variant value stores to uniform
address. Similar to rL343028, we do not allow vectorization if we have
multiple stores to the same uniform address.
Cost model already has the change for considering the extract
instruction cost for a variant value store. See added test cases for how
vectorization is done.
The patch also contains changes to the ORE messages.
Reviewers: Ayal, mkuper, anemet, hsaito
Subscribers: rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D52656
llvm-svn: 344613
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is an alternative implementation of LoopSafetyInfo that uses the implicit
control flow tracking to give precise answers on queries "whether or not this
block contains throwing instructions". This rules out false-positive answers on
LoopSafetyInfo's queries.
This patch only introduces the new implementation. It is not currently used in
any pass. The enabling patches will go separately, through review.
The plan is to completely replace all uses of LoopSafetyInfo with
ICFLoopSafetyInfo in the future, but to avoid introducing functional problems,
we will do it pass by pass.
llvm-svn: 344601
|
| |
|
|
| |
llvm-svn: 344596
|
| |
|
|
| |
llvm-svn: 344592
|
| |
|
|
| |
llvm-svn: 344590
|
| |
|
|
| |
llvm-svn: 344588
|
| |
|
|
| |
llvm-svn: 344587
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SCEV's transform that turns `{A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>` into
a single AddRec of size `2n+1` with complex combinatorial coefficients can easily
trigger exponential growth of the SCEV (in case if nothing gets folded and simplified).
We tried to restrain this transform using the option `scalar-evolution-max-add-rec-size`,
but its default value seems to be insufficiently small: the test attached to this patch
with default value of this option `16` has a SCEV of >3M symbols (when printed out).
This patch reduces the simplification limit. It is not a cure to combinatorial
explosions, but at least it reduces this corner case to something more or less
reasonable.
Differential Revision: https://reviews.llvm.org/D53282
Reviewed By: sanjoy
llvm-svn: 344584
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
by `getTerminator()` calls instead be declared as `Instruction`.
This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).
llvm-svn: 344502
|
| |
|
|
|
|
|
|
|
| |
LLVM APIs. There weren't very many.
We still have the instruction visitor, and APIs with TerminatorInst as
a return type or an output parameter.
llvm-svn: 344494
|
| |
|
|
| |
llvm-svn: 344475
|
| |
|
|
| |
llvm-svn: 344473
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
interleave-group
The vectorizer currently does not attempt to create interleave-groups that
contain predicated loads/stores; predicated strided accesses can currently be
vectorized only using masked gather/scatter or scalarization. This patch makes
predicated loads/stores candidates for forming interleave-groups during the
Loop-Vectorizer's analysis, and adds the proper support for masked-interleave-
groups to the Loop-Vectorizer's planning and transformation stages. The patch
also extends the TTI API to allow querying the cost of masked interleave groups
(which each target can control); Targets that support masked vector loads/
stores may choose to enable this feature and allow vectorizing predicated
strided loads/stores using masked wide loads/stores and shuffles.
Reviewers: Ayal, hsaito, dcaballe, fhahn, javed.absar
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53011
llvm-svn: 344472
|
| |
|
|
|
|
| |
Differential revision: https://reviews.llvm.org/D53139
llvm-svn: 344325
|
| |
|
|
| |
llvm-svn: 344227
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Moving away from UnknownSize is part of the effort to migrate us to
LocationSizes (e.g. the cleanup promised in D44748).
This doesn't entirely remove all of the uses of UnknownSize; some uses
require tweaks to assume that UnknownSize isn't just some kind of int.
This patch is intended to just be a trivial replacement for all places
where LocationSize::unknown() will Just Work.
llvm-svn: 344186
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adding a new reduction pattern match for vectorizing code similar to TSVC s3111:
for (int i = 0; i < N; i++)
if (a[i] > b)
sum += a[i];
This patch adds support for fadd, fsub and fmull, as well as multiple
branches and different (but compatible) instructions (ex. add+sub) in
different branches.
I have forwarded to trunk, added fsub and fmul functionality and
additional tests, but the credit goes to Takahiro, who did most of the
actual work.
Differential Revision: https://reviews.llvm.org/D49168
Patch by Takahiro Miyoshi <takahiro.miyoshi@linaro.org>.
llvm-svn: 344172
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are places where we need to merge multiple LocationSizes of
different sizes into one, and get a sensible result.
There are other places where we want to optimize aggressively based on
the value of a LocationSizes (e.g. how can a store of four bytes be to
an area of storage that's only two bytes large?)
This patch makes LocationSize hold an 'imprecise' bit to note whether
the LocationSize can be treated as an upper-bound and lower-bound for
the size of a location, or just an upper-bound.
This concludes the series of patches leading up to this. The most recent
of which is r344108.
Fixes PR36228.
Differential Revision: https://reviews.llvm.org/D44748
llvm-svn: 344114
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This is the third patch in a series intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context. The second being r344013.
The intent is to make the output of printing a LocationSize more
precise. The main motivation for this is that we plan to add a bit to
distinguish whether a given LocationSize is an upper-bound or is
precise; making that information available in pretty-printing is nice.
llvm-svn: 344108
|
| |
|
|
|
|
| |
https://reviews.llvm.org/D52934
llvm-svn: 344084
|
| |
|
|
|
|
|
|
|
|
| |
prefix.
Use this to direct these files to a specific location in the test suite
so that we don't write files out to random directories (or fail if the
working directory isn't writable).
llvm-svn: 344014
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the second in a series of changes intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context. The first change being r344012.
Since I was requested to do all of this with post-commit review, this is
about as small as I can make this patch.
This patch makes LocationSize into an actual type that wraps a uint64_t;
users are required to call getValue() in order to get the size now. If
the LocationSize has an Unknown size (e.g. if LocSize ==
MemoryLocation::UnknownSize), getValue() will assert.
This also adds DenseMap specializations for LocationInfo, which required
taking two more values from the set of values LocationInfo can
represent. Hence, heavy users of multi-exabyte arrays or structs may
observe slightly lower-quality code as a result of this change.
The intent is for getValue()s to be very close to a corresponding
hasValue() (which is often spelled `!= MemoryLocation::UnknownSize`).
Sadly, small diff context appears to crop that out sometimes, and the
last change in DSE does require a bit of nonlocal reasoning about
control-flow. :/
This also removes an assert, since it's now redundant with the assert in
getValue().
llvm-svn: 344013
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is one of a series of changes intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context.
Since I was requested to do all of this with post-commit review, this is
about as small as I can make it (beyond committing changes to these few
files separately, but they're incredibly similar in spirit, so...)
On its own, this change doesn't make a great deal of sense. I plan on
having a follow-up Real Soon Now(TM) to make the bits here make more
sense. :)
In particular, the next change in this series is meant to make
LocationSize an actual type, which you have to call .getValue() on in
order to get at the uint64_t inside. Hence, this change refactors code
so that:
- we only need to call the soon-to-come getValue() once in most cases,
and
- said call to getValue() happens very closely to a piece of code that
checks if the LocationSize has a value (e.g. if it's != UnknownSize).
llvm-svn: 344012
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes PR39099.
When strided loads are predicated, each of them will form an interleaved-group
(with gaps). However, subsequent stages of vectorization (planning and
transformation) assume that if a load is part of an Interleave-Group it is not
predicated, resulting in wrong code - unmasked wide loads are created.
The Interleaving Analysis does take care not to have conditional interleave
groups of size > 1, but until we extend the planning and transformation stages
to support masked-interleave-groups we should also avoid having them for
size == 1.
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D52682
llvm-svn: 343931
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Call getOperandInfo() instead of using (near) duplicated code in
LoopVectorizationCostModel::getInstructionCost().
This gets the OperandValueKind and OperandValueProperties values for a Value
passed as operand to an arithmetic instruction.
getOperandInfo() used to be a static method in TargetTransformInfo.cpp, but
is now instead a public member.
Review: Florian Hahn
https://reviews.llvm.org/D52883
llvm-svn: 343852
|
| |
|
|
| |
llvm-svn: 343369
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This CL allows constant vectors of floats to be recognized as non-NaN
and non-zero in select patterns. This change makes
`matchSelectPattern` more powerful generally, but was motivated
specifically because I wanted fminnan and fmaxnan to be created for
vector versions of the scalar patterns they are created for.
Tested with check-all on all targets. A testcase in the WebAssembly
backend that tests the non-nan codepath is in an upcoming CL.
Reviewers: aheejin, dschuff
Subscribers: sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D52324
llvm-svn: 343364
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Add a dominance check to ensure that the possible devirtualizable
call is actually dominated by the type test/checked load intrinsic being
analyzed. With PGO, after indirect call promotion is performed during
the compile step, followed by inlining, we may have a type test in the
promoted and inlined sequence that allows an indirect call in that
sequence to be devirtualized. That indirect call (inserted by inlining
after promotion) will share the same vtable pointer as the fallback
indirect call that cannot be devirtualized.
Before this patch the code was incorrectly devirtualizing the fallback
indirect call.
See the new test and the example described there for more details.
Reviewers: pcc, vitalybuka
Subscribers: mehdi_amini, Prazek, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D52514
llvm-svn: 343226
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary: The convenience wrapper in STLExtras is available since rL342102.
Reviewers: dblaikie, javed.absar, JDevlieghere, andreadb
Subscribers: MatzeB, sanjoy, arsenm, dschuff, mehdi_amini, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, javed.absar, gbedwell, jrtc27, mgrang, atanasyan, steven_wu, george.burgess.iv, dexonsmith, kristina, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D52573
llvm-svn: 343163
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
We are overly conservative in loop vectorizer with respect to stores to loop
invariant addresses.
More details in https://bugs.llvm.org/show_bug.cgi?id=38546
This is the first part of the fix where we start with vectorizing loop invariant
values to loop invariant addresses.
This also includes changes to ORE for stores to invariant address.
Reviewers: anemet, Ayal, mkuper, mssimpso
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50665
llvm-svn: 343028
|
| |
|
|
| |
llvm-svn: 342906
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implementing -print-before-all/-print-after-all/-filter-print-func support
through PassInstrumentation callbacks.
- PrintIR routines implement printing callbacks.
- StandardInstrumentations class provides a central place to manage all
the "standard" in-tree pass instrumentations. Currently it registers
PrintIR callbacks.
Reviewers: chandlerc, paquette, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D50923
llvm-svn: 342896
|