| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
| |
llvm-svn: 344596
|
| |
|
|
| |
llvm-svn: 344592
|
| |
|
|
| |
llvm-svn: 344590
|
| |
|
|
| |
llvm-svn: 344588
|
| |
|
|
| |
llvm-svn: 344587
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SCEV's transform that turns `{A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>` into
a single AddRec of size `2n+1` with complex combinatorial coefficients can easily
trigger exponential growth of the SCEV (in case if nothing gets folded and simplified).
We tried to restrain this transform using the option `scalar-evolution-max-add-rec-size`,
but its default value seems to be insufficiently small: the test attached to this patch
with default value of this option `16` has a SCEV of >3M symbols (when printed out).
This patch reduces the simplification limit. It is not a cure to combinatorial
explosions, but at least it reduces this corner case to something more or less
reasonable.
Differential Revision: https://reviews.llvm.org/D53282
Reviewed By: sanjoy
llvm-svn: 344584
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
by `getTerminator()` calls instead be declared as `Instruction`.
This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).
llvm-svn: 344502
|
| |
|
|
|
|
|
|
|
| |
LLVM APIs. There weren't very many.
We still have the instruction visitor, and APIs with TerminatorInst as
a return type or an output parameter.
llvm-svn: 344494
|
| |
|
|
| |
llvm-svn: 344475
|
| |
|
|
| |
llvm-svn: 344473
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
interleave-group
The vectorizer currently does not attempt to create interleave-groups that
contain predicated loads/stores; predicated strided accesses can currently be
vectorized only using masked gather/scatter or scalarization. This patch makes
predicated loads/stores candidates for forming interleave-groups during the
Loop-Vectorizer's analysis, and adds the proper support for masked-interleave-
groups to the Loop-Vectorizer's planning and transformation stages. The patch
also extends the TTI API to allow querying the cost of masked interleave groups
(which each target can control); Targets that support masked vector loads/
stores may choose to enable this feature and allow vectorizing predicated
strided loads/stores using masked wide loads/stores and shuffles.
Reviewers: Ayal, hsaito, dcaballe, fhahn, javed.absar
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53011
llvm-svn: 344472
|
| |
|
|
|
|
| |
Differential revision: https://reviews.llvm.org/D53139
llvm-svn: 344325
|
| |
|
|
| |
llvm-svn: 344227
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Moving away from UnknownSize is part of the effort to migrate us to
LocationSizes (e.g. the cleanup promised in D44748).
This doesn't entirely remove all of the uses of UnknownSize; some uses
require tweaks to assume that UnknownSize isn't just some kind of int.
This patch is intended to just be a trivial replacement for all places
where LocationSize::unknown() will Just Work.
llvm-svn: 344186
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adding a new reduction pattern match for vectorizing code similar to TSVC s3111:
for (int i = 0; i < N; i++)
if (a[i] > b)
sum += a[i];
This patch adds support for fadd, fsub and fmull, as well as multiple
branches and different (but compatible) instructions (ex. add+sub) in
different branches.
I have forwarded to trunk, added fsub and fmul functionality and
additional tests, but the credit goes to Takahiro, who did most of the
actual work.
Differential Revision: https://reviews.llvm.org/D49168
Patch by Takahiro Miyoshi <takahiro.miyoshi@linaro.org>.
llvm-svn: 344172
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are places where we need to merge multiple LocationSizes of
different sizes into one, and get a sensible result.
There are other places where we want to optimize aggressively based on
the value of a LocationSizes (e.g. how can a store of four bytes be to
an area of storage that's only two bytes large?)
This patch makes LocationSize hold an 'imprecise' bit to note whether
the LocationSize can be treated as an upper-bound and lower-bound for
the size of a location, or just an upper-bound.
This concludes the series of patches leading up to this. The most recent
of which is r344108.
Fixes PR36228.
Differential Revision: https://reviews.llvm.org/D44748
llvm-svn: 344114
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This is the third patch in a series intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context. The second being r344013.
The intent is to make the output of printing a LocationSize more
precise. The main motivation for this is that we plan to add a bit to
distinguish whether a given LocationSize is an upper-bound or is
precise; making that information available in pretty-printing is nice.
llvm-svn: 344108
|
| |
|
|
|
|
| |
https://reviews.llvm.org/D52934
llvm-svn: 344084
|
| |
|
|
|
|
|
|
|
|
| |
prefix.
Use this to direct these files to a specific location in the test suite
so that we don't write files out to random directories (or fail if the
working directory isn't writable).
llvm-svn: 344014
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the second in a series of changes intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context. The first change being r344012.
Since I was requested to do all of this with post-commit review, this is
about as small as I can make this patch.
This patch makes LocationSize into an actual type that wraps a uint64_t;
users are required to call getValue() in order to get the size now. If
the LocationSize has an Unknown size (e.g. if LocSize ==
MemoryLocation::UnknownSize), getValue() will assert.
This also adds DenseMap specializations for LocationInfo, which required
taking two more values from the set of values LocationInfo can
represent. Hence, heavy users of multi-exabyte arrays or structs may
observe slightly lower-quality code as a result of this change.
The intent is for getValue()s to be very close to a corresponding
hasValue() (which is often spelled `!= MemoryLocation::UnknownSize`).
Sadly, small diff context appears to crop that out sometimes, and the
last change in DSE does require a bit of nonlocal reasoning about
control-flow. :/
This also removes an assert, since it's now redundant with the assert in
getValue().
llvm-svn: 344013
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is one of a series of changes intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context.
Since I was requested to do all of this with post-commit review, this is
about as small as I can make it (beyond committing changes to these few
files separately, but they're incredibly similar in spirit, so...)
On its own, this change doesn't make a great deal of sense. I plan on
having a follow-up Real Soon Now(TM) to make the bits here make more
sense. :)
In particular, the next change in this series is meant to make
LocationSize an actual type, which you have to call .getValue() on in
order to get at the uint64_t inside. Hence, this change refactors code
so that:
- we only need to call the soon-to-come getValue() once in most cases,
and
- said call to getValue() happens very closely to a piece of code that
checks if the LocationSize has a value (e.g. if it's != UnknownSize).
llvm-svn: 344012
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes PR39099.
When strided loads are predicated, each of them will form an interleaved-group
(with gaps). However, subsequent stages of vectorization (planning and
transformation) assume that if a load is part of an Interleave-Group it is not
predicated, resulting in wrong code - unmasked wide loads are created.
The Interleaving Analysis does take care not to have conditional interleave
groups of size > 1, but until we extend the planning and transformation stages
to support masked-interleave-groups we should also avoid having them for
size == 1.
Reviewers: Ayal, hsaito, dcaballe, fhahn
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D52682
llvm-svn: 343931
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Call getOperandInfo() instead of using (near) duplicated code in
LoopVectorizationCostModel::getInstructionCost().
This gets the OperandValueKind and OperandValueProperties values for a Value
passed as operand to an arithmetic instruction.
getOperandInfo() used to be a static method in TargetTransformInfo.cpp, but
is now instead a public member.
Review: Florian Hahn
https://reviews.llvm.org/D52883
llvm-svn: 343852
|
| |
|
|
| |
llvm-svn: 343369
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This CL allows constant vectors of floats to be recognized as non-NaN
and non-zero in select patterns. This change makes
`matchSelectPattern` more powerful generally, but was motivated
specifically because I wanted fminnan and fmaxnan to be created for
vector versions of the scalar patterns they are created for.
Tested with check-all on all targets. A testcase in the WebAssembly
backend that tests the non-nan codepath is in an upcoming CL.
Reviewers: aheejin, dschuff
Subscribers: sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D52324
llvm-svn: 343364
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Add a dominance check to ensure that the possible devirtualizable
call is actually dominated by the type test/checked load intrinsic being
analyzed. With PGO, after indirect call promotion is performed during
the compile step, followed by inlining, we may have a type test in the
promoted and inlined sequence that allows an indirect call in that
sequence to be devirtualized. That indirect call (inserted by inlining
after promotion) will share the same vtable pointer as the fallback
indirect call that cannot be devirtualized.
Before this patch the code was incorrectly devirtualizing the fallback
indirect call.
See the new test and the example described there for more details.
Reviewers: pcc, vitalybuka
Subscribers: mehdi_amini, Prazek, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D52514
llvm-svn: 343226
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary: The convenience wrapper in STLExtras is available since rL342102.
Reviewers: dblaikie, javed.absar, JDevlieghere, andreadb
Subscribers: MatzeB, sanjoy, arsenm, dschuff, mehdi_amini, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, javed.absar, gbedwell, jrtc27, mgrang, atanasyan, steven_wu, george.burgess.iv, dexonsmith, kristina, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D52573
llvm-svn: 343163
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
We are overly conservative in loop vectorizer with respect to stores to loop
invariant addresses.
More details in https://bugs.llvm.org/show_bug.cgi?id=38546
This is the first part of the fix where we start with vectorizing loop invariant
values to loop invariant addresses.
This also includes changes to ORE for stores to invariant address.
Reviewers: anemet, Ayal, mkuper, mssimpso
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50665
llvm-svn: 343028
|
| |
|
|
| |
llvm-svn: 342906
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implementing -print-before-all/-print-after-all/-filter-print-func support
through PassInstrumentation callbacks.
- PrintIR routines implement printing callbacks.
- StandardInstrumentations class provides a central place to manage all
the "standard" in-tree pass instrumentations. Currently it registers
PrintIR callbacks.
Reviewers: chandlerc, paquette, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D50923
llvm-svn: 342896
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
his code was in CGDecl.cpp and really belongs in LLVM's isBytewiseValue. Teach isBytewiseValue the tricks clang's isRepeatedBytePattern had, including merging undef properly, and recursing on more types.
clang part of this patch: D51752
Subscribers: dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51751
llvm-svn: 342709
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
rL323619 marks functions that are calling va_end as not viable for
inlining. This patch reverses that since this va_end doesn't need
access to the vriadic arguments list that are saved on the stack, only
va_start does.
Reviewers: efriedma, fhahn
Reviewed By: fhahn
Subscribers: eraman, haicheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D52067
llvm-svn: 342675
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Made getName helper to return std::string (instead of StringRef initially) to fix
asan builtbot failures on CGSCC tests.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342664
|
| |
|
|
|
|
|
|
| |
as it was causing failures in the asan buildbot.
This reverts commit r342597.
llvm-svn: 342616
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342597
|
| |
|
|
|
|
| |
A bunch of bots fail to compile unittests. Reverting.
llvm-svn: 342552
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342544
|
| |
|
|
|
|
|
|
|
|
|
|
| |
getLoopID has different control flow for two cases: If there is a
single loop latch and for any other number of loop latches (0 and more
than one). The latter case should return the same result if there is
only a single latch. We can save the preceding redundant search for a
latch by handling both cases with the same code.
Differential Revision: https://reviews.llvm.org/D52118
llvm-svn: 342406
|
| |
|
|
| |
llvm-svn: 342390
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Move the 2 classes out of LoopVectorize.cpp to make it easier to re-use
them for VPlan outside LoopVectorize.cpp
Reviewers: Ayal, mssimpso, rengolin, dcaballe, mkuper, hsaito, hfinkel, xbolva00
Reviewed By: rengolin, xbolva00
Differential Revision: https://reviews.llvm.org/D49488
llvm-svn: 342027
|
| |
|
|
|
|
|
|
|
| |
This fixes a layering violation:
Analysis/IVDescrtors.cpp can't include Transforms/Utils/BasicBlockUtils.h,
since TransformUtils depends on Analysis.
llvm-svn: 342024
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The InductionDescriptor and RecurrenceDescriptor classes basically analyze the IR to identify the respective IVs. So, it is better to have them in the "Analysis" directory instead of the "Transforms" directory.
The rationale for this is to make the Induction and Recurrence descriptor classes available for analysis passes. Currently including them in an analysis pass produces link error (http://lists.llvm.org/pipermail/llvm-dev/2018-July/124456.html).
Induction and Recurrence descriptors are moved from Transforms/Utils/LoopUtils.h|cpp to Analysis/IVDescriptors.h|cpp.
Reviewers: dmgreen, llvm-commits, hfinkel
Reviewed By: dmgreen
Subscribers: mgorny
Differential Revision: https://reviews.llvm.org/D51153
llvm-svn: 342016
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix for https://bugs.llvm.org/show_bug.cgi?id=38807, which occurred
while compiling SemaTemplateInstantiate.cpp with clang and GVNHoist
enabled. In the following example:
1=def(entry)
/ \
2=def(1) 4=def(1)
3=def(2) 5=def(4)
When removing the MemoryDef 2=def(1) from its basic block, and just
before adding it to the end of the parent basic block, we first
replace all its uses with the defining memory access:
3=def(2) -> 3=def(1)
Then we call insertDef for adding 2=def(1) to the parent basic block,
where we replace the uses of 1=def(entry) with 2=def(1). Doing so we
create a self reference:
2=def(1) -> 2=def(2) (bad)
3=def(1) -> 3=def(2) (ok)
4=def(1) -> 4=def(2) (ok)
Differential Revision: https://reviews.llvm.org/D51801
llvm-svn: 341947
|
| |
|
|
|
|
|
|
| |
The previous implementation traversed all loop blocks and bailed if one
was not a latch block. Since we are only interested in latch blocks, we
should only traverse those.
llvm-svn: 341926
|
| |
|
|
| |
llvm-svn: 341917
|
| |
|
|
| |
llvm-svn: 341901
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch does the following things:
1. update SymbolicallyEvaluateGEP so that it bails out if it cannot preserve inrange arribute;
2. update llvm/test/Analysis/ConstantFolding/gep.ll to remove UB in it;
3. remove inaccurate comment above ConstantFoldInstOperandsImpl in llvm/lib/Analysis/ConstantFolding.cpp;
4. add a new regression test that makes sure that no optimizations change an inrange GEP in an unexpected way.
Patch by Zhaomo Yang!
Differential Revision: https://reviews.llvm.org/D51698
llvm-svn: 341888
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
End goal is to update MemorySSA in all loop passes. LoopUnswitch clones all blocks in a loop. SimpleLoopUnswitch clones some blocks. LoopRotate clones some instructions.
Some of these loop passes also make CFG changes.
This is an API based on what I found needed in LoopUnswitch, SimpleLoopUnswitch, LoopRotate, LoopInstSimplify, LoopSimplifyCFG.
Adding dependent patches using this API for context.
Reviewers: george.burgess.iv, dberlin
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D45299
llvm-svn: 341855
|
| |
|
|
|
|
|
|
|
|
| |
The only point to this change is the test diffs. When I remove this code entirely (in favor of the recently added generic handling), I don't want there to be any confusion due to spurious test diffs.
As an aside, the fact out tests are AST construction order dependent is not great. I thought about fixing that, but the reasonable schemes I might want (e.g. sort by name) need the test diffs anyways.
Philip
llvm-svn: 341841
|
| |
|
|
| |
llvm-svn: 341733
|