| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
| |
categories are not enabled at startup, but can be manually activated if desired.
Adding new API calls to SBValue to be able to retrieve the associated formatters
Some refactoring to FormatNavigator::Get() in order to shrink its size down to more manageable terms (a future, massive, refactoring effort will still be needed)
Test cases added for the above
llvm-svn: 150784
|
|
|
|
|
|
| |
std::list and std::map where not doing their job properly
llvm-svn: 149700
|
|
|
|
|
|
|
|
|
|
| |
When used in conjunction with --inline-children, this option will cause the names of the values to be omitted from the output. This can be beneficial in cases such as vFloat, where it will compact the representation from
([0]=1,[1]=2,[2]=3,[3]=4) to (1, 2, 3, 4).
Added a test case to check that the new option works correctly.
Also took some time to revisit SummaryFormat and related classes and tweak them for added readability and maintainability.
Finally, added a new class name to which the std::string summary should be applied.
llvm-svn: 149644
|
|
|
|
| |
llvm-svn: 149519
|
|
|
|
| |
llvm-svn: 149461
|
|
|
|
|
|
| |
failure)
llvm-svn: 149421
|
|
|
|
|
|
| |
failure)
llvm-svn: 149420
|
|
|
|
| |
llvm-svn: 149419
|
|
|
|
|
|
| |
testing the synthetic children feature itself. More test cases will be commited for individual STL containers
llvm-svn: 149393
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to find Objective-C class types by looking in the
symbol tables for the individual object files.
I did this as follows:
- I added code to SymbolFileSymtab that vends
Clang types for symbols matching the pattern
"_OBJC_CLASS_$_NSMyClassName," making them
appear as Objective-C classes. This only occurs
in modules that do not have debug information,
since otherwise SymbolFileDWARF would be in
charge of looking up types.
- I made a new SymbolVendor subclass for the
Apple Objective-C runtime that is in charge of
making global lookups of Objective-C types. It
currently just sends out type lookup requests to
the appropriate SymbolFiles, but in the future we
will probably extend it to query the runtime more
completely.
I also modified a testcase whose behavior is changed
by the fact that we now actually return an Objective-C
type for __NSCFString.
llvm-svn: 145526
|
|
|
|
|
|
|
| |
concatenating a string with "None" in python. Using a python format string
gets us around this by handling it gracefully.
llvm-svn: 145225
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
in the same hashed format as the ".apple_names", but they map objective C
class names to all of the methods and class functions. We need to do this
because in the DWARF the methods for Objective C are never contained in the
class definition, they are scattered about at the translation unit level and
they don't even have attributes that say the are contained within the class
itself.
Added 3 new formats which can be used to display data:
eFormatAddressInfo
eFormatHexFloat
eFormatInstruction
eFormatAddressInfo describes an address such as function+offset and file+line,
or symbol + offset, or constant data (c string, 2, 4, 8, or 16 byte constants).
The format character for this is "A", the long format is "address".
eFormatHexFloat will print out the hex float format that compilers tend to use.
The format character for this is "X", the long format is "hex float".
eFormatInstruction will print out disassembly with bytes and it will use the
current target's architecture. The format character for this is "i" (which
used to be being used for the integer format, but the integer format also has
"d", so we gave the "i" format to disassembly), the long format is
"instruction".
Mate the lldb::FormatterChoiceCriterion enumeration private as it should have
been from the start. It is very specialized and doesn't belong in the public
API.
llvm-svn: 143114
|
|
|
|
|
|
| |
rdar://problem/10334911
llvm-svn: 142839
|
|
|
|
|
|
|
|
|
|
|
|
| |
it to generate result variables that were not bound
to their underlying data. This allowed the SBValue
class to use the interpreter (if possible).
Also made sure that any result variables that point
to stack allocations in the stack frame of the
interpreted expressions do not get live data.
llvm-svn: 140285
|
|
|
|
|
|
| |
r139772 check-in.
llvm-svn: 140150
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
|
|
|
|
|
|
|
|
| |
./dotest.py -v -f DataFormatterTestCase.test_with_dsym_and_run_command
will not end up running 14 tests.
llvm-svn: 138399
|
|
|
|
|
|
|
|
|
|
|
|
| |
certain areas
Renamed format "signed decimal" to be "decimal". "unsigned decimal" remains unchanged:
- the name "signed decimal" was interfering with symbol %S (use summary) in summary strings.
because of the way summary strings are implemented, this did not really lead to a bug, but
simply to performing more steps than necessary to display a summary. this is fixed.
Documentation improvements (more on synthetic children, some information on filters). This is still a WIP.
llvm-svn: 138384
|
|
|
|
|
|
| |
might be a breaking change for those who have summaries defined.
llvm-svn: 138331
|
|
|
|
|
|
| |
summary add moved from -s to -o (this is a preliminary step in moving the short option for --summary-string from -f to -s) ; Accordingly updated the test suite
llvm-svn: 138315
|
|
|
|
|
|
| |
SBCommandInterpreter.cpp ; Making NSString test case work on Snow Leopard ; Removing an unused variable warning
llvm-svn: 138105
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
"name-of-type @ object-location" instead of giving an error
e.g. you may get "foo_class @ 0x123456" when typing "type summary add -f ${var} foo_class"
- Added a new special formatting token %T for summaries. This shows the type of the object.
Using it, the new "type @ location" summary could be manually generated by writing ${var%T} @ ${var%L}
- Bits and pieces required to support "frame variable array[n-m]"
The feature is not enabled yet because some additional design and support code is required, but the basics
are getting there
- Fixed a potential issue where a ValueObjectSyntheticFilter was not holding on to its SyntheticChildrenSP
Because of the way VOSF are being built now, this has never been an actual issue, but it is still sensible for
a VOSF to hold on to the SyntheticChildrenSP as well as to its FrontEnd
llvm-svn: 138080
|
|
|
|
| |
llvm-svn: 138026
|
|
|
|
|
|
|
|
|
|
|
| |
- reorganizing the PTS (Partial Template Specializations) in FormatManager.h
- applied a patch by Filipe Cabecinhas to make LLDB compile with GCC
Functional changes:
- fixed an issue where command type summary add for type "struct Foo" would not match any types.
currently, "struct" will be stripped off and type "Foo" will be matched.
similar behavior occurs for class, enum and union specifiers.
llvm-svn: 138020
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- reorganizing classes layout to have public part first
Typedefs that we want to keep private, but must be defined for some public code to work correctly are an exception
- avoiding methods in the form T foo() { code; } all on one-line
- moving method implementations from .h to .cpp whenever feasible
Templatized code is an exception and so are very small methods
- generally, adhering to coding conventions followed project-wide
Functional changes:
- fixed an issue where using ${var} in a summary for an aggregate, and then displaying a pointer-to-aggregate would lead to no summary being displayed
The issue was not a major one because all ${var} was meant to do in that context was display an error for invalid use of pointer
Accordingly fixed test cases and added a new test case
llvm-svn: 137944
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- all instances of "vobj" have been renamed to "valobj"
- class Debugger::Formatting has been renamed to DataVisualization (defined in FormatManager.h/cpp)
The interface to this class has not changed
- FormatCategory now uses ConstString's as keys to the navigators instead of repeatedly casting
from ConstString to const char* and back all the time
Next step is making the same happen for categories themselves
- category gnu-libstdc++ is defined in the constructor for a FormatManager
The source code for it is defined in gnu_libstdcpp.py, drawn from examples/synthetic at compile time
All references to previous 'osxcpp' name have been removed from both code and file names
Functional changes:
- the name of the option to use a summary string for 'type summary add' has changed from the previous --format-string
to the new --summary-string. It is expected that the short option will change from -f to -s, and -s for --python-script
will become -o
llvm-svn: 137886
|
|
|
|
|
|
|
|
|
|
| |
children for types std::map, std::list and std::vector
The category is enabled by default. If you run into issues with it, disable it and the previous behavior of LLDB is restored
** This is a temporary solution. The general solution to having formatters pulled in at startup should involve going through the Platform.
Fixed an issue in type synthetic list where a category with synthetic providers in it was not shown if all the providers were regex-based
llvm-svn: 137850
|
|
|
|
|
|
|
|
| |
provider for the same type is already defined in the same category
The converse is also true: an error is shown when the user tries to add a synthetic provider to a category that already has a filter for the same type
llvm-svn: 137493
|
|
|
|
|
|
|
|
|
|
|
|
| |
*New setting target.max-children-count gives an upper-bound to the number of child objects that will be displayed at each depth-level
This might be a breaking change in some scenarios. To override the new limit you can use the --show-all-children (-A) option
to frame variable or increase the limit in your lldbinit file
*Command "type synthetic" has been split in two:
- "type synthetic" now only handles Python synthetic children providers
- the new command "type filter" handles filters
Because filters and synthetic providers are both ways to replace the children of a ValueObject, only one can be effective at any given time.
llvm-svn: 137416
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Access to synthetic children by name:
if your object has a synthetic child named foo you can now type
frame variable object.foo (or ->foo if you have a pointer)
and that will print the value of the synthetic child
(if your object has an actual child named foo, the actual child prevails!)
this behavior should also work in summaries, and you should be able to use
${var.foo} and ${svar.foo} interchangeably
(but using svar.foo will mask an actual child named foo)
llvm-svn: 137314
|
|
|
|
|
|
|
|
|
|
| |
@"Hello" instead of "Hello")
new --raw-output (-R) option to frame variable prevents using summaries and synthetic children
other future formatting enhancements will be excluded by using the -R option
test case enhanced to check that -R works correctly
llvm-svn: 137185
|
|
|
|
|
|
|
|
|
|
|
| |
if your datatype provides synthetic children, "frame variable object[index]" should now do the right thing
in cases where the above syntax would have been rejected before, i.e.
object is not a pointer nor an array (frame variable ignores potential overload of [])
object is a pointer to an Objective-C class (which cannot be dereferenced)
expression will still run operator[] if available and complain if it cannot do so
synthetic children by name do not work yet
llvm-svn: 137097
|
|
|
|
|
|
|
| |
- Added a test case in python-synth
Minor code improvements in categories, making them ready for adding new element types
llvm-svn: 136957
|
|
|
|
| |
llvm-svn: 136887
|
|
|
|
|
|
|
|
|
|
|
|
| |
children" of a variable
- accordingly, the test cases for the synthetic providers for the std:: containers have been edited to use
${svar%#} instead of ${svar.len} to print out the count of elements ; the .len synthetic child has been
removed from the synthetic providers
The synthetic children providers for the std:: containers now return None when asked for children indexes >= num_children()
Basic code to support filter names based on regular expressions (WIP)
llvm-svn: 136862
|
|
|
|
|
|
|
|
|
| |
parameter to give more info about any problem
The synthetic children providers now use the new (safer) APIs to get the values of objects
As a side effect, fixed an issue in ValueObject where ResolveValue() was not always updating the value before reading it
llvm-svn: 136861
|
|
|
|
|
|
| |
in all cases ; removed an unused local variable
llvm-svn: 136785
|
|
|
|
|
|
|
|
|
|
| |
type instead of the actual user-level type
- see the test case in lang/objc/objc-dynamic-value for an example
Objective-C dynamic type lookup now works for every Objective-C type
- previously, true dynamic lookup was only performed for type id
llvm-svn: 136763
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
datatype already had a custom format
Fixed a bug where Objective-C variables coming out of the expression parser could crash the Python synthetic providers:
- expression parser output has a "frozen data" component, which is a byte-exact copy of the value (in host memory),
if trying to read into memory based on the host address, LLDB would crash. we are now passing the correct (target)
pointer to the Python code
Objective-C "id" variables are now formatted according to their dynamic type, if the -d option to frame variable is used:
- Code based on the Objective-C 2.0 runtime is used to obtain this information without running code on the target
llvm-svn: 136695
|
|
|
|
|
|
| |
work to be done.
llvm-svn: 136579
|
|
|
|
| |
llvm-svn: 136578
|
|
|
|
|
|
|
| |
we have a nil NSString *. Also added blank lines between functions in the
CFString.py files.
llvm-svn: 136554
|
|
|
|
|
|
| |
CFStringSynthProvider object ; made a CFString_SummaryProvider function you can use if all you care about is the summary string for your NSString objects
llvm-svn: 136544
|
|
|
|
|
|
| |
for it
llvm-svn: 136525
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Completely new implementation of SBType
- Various enhancements in several other classes
Python synthetic children providers for std::vector<T>, std::list<T> and std::map<K,V>:
- these return the actual elements into the container as the children of the container
- basic template name parsing that works (hopefully) on both Clang and GCC
- find them in examples/synthetic and in the test suite in functionalities/data-formatter/data-formatter-python-synth
New summary string token ${svar :
- the syntax is just the same as in ${var but this new token lets you read the values
coming from the synthetic children provider instead of the actual children
- Python providers above provide a synthetic child len that returns the number of elements
into the container
Full bug fix for the issue in which getting byte size for a non-complete type would crash LLDB
Several other fixes, including:
- inverted the order of arguments in the ClangASTType constructor
- EvaluationPoint now only returns SharedPointer's to Target and Process
- the help text for several type subcommands now correctly indicates argument-less options as such
llvm-svn: 136504
|
|
|
|
|
|
|
|
| |
added a final newline to fooSynthProvider.py
new option to automatically save user input in InputReaderEZ
checking for NULL pointers in several new places
llvm-svn: 135916
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- you can now define a Python class as a synthetic children producer for a type
the class must adhere to this "interface":
def __init__(self, valobj, dict):
def get_child_at_index(self, index):
def get_child_index(self, name):
then using type synth add -l className typeName
(e.g. type synth add -l fooSynthProvider foo)
(This is still WIP with lots to be added)
A small test case is available also as reference
llvm-svn: 135865
|
|
|
|
|
|
|
| |
debugging printfs() for data visualization turned into a meaningful log:
- introduced a new log category `types' in channel `lldb'
llvm-svn: 135773
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
indicate that you want the summary to be used to print the target object
(e.g. ${var%S}). this might already be the default if your variable is of an aggregate type
new feature: synthetic filters. you can restrict the number of children for your variables to only a meaningful subset
- the restricted list of children obeys the typical rules (e.g. summaries prevail over children)
- one-line summaries show only the filtered (synthetic) children, if you type an expanded summary string, or you use Python scripts, all the real children are accessible
- to provide a synthetic children list use the "type synth add" command, as in:
type synth add foo_type --child varA --child varB[0] --child varC->packet->flags[1-4]
(you can use ., ->, single-item array operator [N] and bitfield operator [N-M]; array slice access is not supported, giving simplified names to expression paths is not supported)
- a new -S option to frame variable and target variable lets you override synthetic children and instead show real ones
llvm-svn: 135731
|
|
|
|
|
|
|
|
| |
known version
of Apple gcc build which produces wrong namespace for std::string in debug info.
llvm-svn: 135597
|