| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
This matches the naming scheme used by LLVM.
Differential revision: https://reviews.llvm.org/D71380
|
|
|
|
|
| |
Dwo files don't have a DW_AT_loclists_base -- set one explicitly. Also,
make sure we use the correct location list flavour for v5.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Not once have I looked at these numbers in a log and considered them useful. Also this should not have been implemented via an unguarded list of globals.
Reviewers: martong, shafik
Reviewed By: shafik
Subscribers: rnkovacs, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71336
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I don't think this test case can be handled correctly on AAPCS64.
The ABI says that the caller passes the address of the return object
in x8. x8 is a caller-spilled (aka "volatile") register, and the
function is not required to preserve x8 or to copy the address back
into x8 on function exit like the SysV x86_64 ABI does with rax.
(from aapcs64: "there is no requirement for the callee to preserve the
value stored in x8")
From my quick reading of ABISysV_arm64, I worry that it may actually be
using the value in x8 at function exit, assuming it still has the
address of the return object -
if (is_return_value) {
// We are assuming we are decoding this immediately after returning from
// a function call and that the address of the structure is in x8
reg_info = reg_ctx->GetRegisterInfoByName("x8", 0);
This will work on trivial test programs / examples, but if the function
does another function call, or overwrites x8 as a scratch register, lldb
will provide incorrect values to the user.
ABIMacOSX_arm64 doesn't do this, but it also doesn't flag the value
as unavailable so we're providing incorrect values to the user all
the time. I expect my fix will be to make ABIMacOSX_arm64 flag
the return value as unretrievable, unless I've misread the ABI.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This adds support for DWARF5 location lists which are specified
indirectly, via an index into the debug_loclists offset table. This
includes parsing the DW_AT_loclists_base attribute which determines the
location of this offset table, and support for new form DW_FORM_loclistx
which is used in conjuction with DW_AT_location to refer to the location
lists in this way.
The code uses the llvm class to parse the offset information, and I've
also tried to structure it similarly to how the relevant llvm
functionality works.
Reviewers: JDevlieghere, aprantl, clayborg
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71268
|
|
|
|
|
|
|
|
|
| |
multiple GDB remotes"
On multiple retry this issue won't duplicate - will revisit with author if
duplication works again.
This reverts commit c9e0b354e2749ce7ab553974692cb35c8651a869.
|
|
|
|
|
|
|
|
|
| |
remotes
This was causing a crash in opt+assert builds on linux and a follow-up
message was posted.
This reverts commit e81268d03e73aef4f9c7bd8ece8ad02f5b017dcf
|
|
|
|
|
|
|
|
|
|
|
| |
As suggested by Pavel in a code review:
> Can we replace this (and maybe python too, while at it) with a
> Host/Config.h entry? A global definition means that one has to
> recompile everything when these change in any way, whereas in
> practice only a handful of files need this..
Differential revision: https://reviews.llvm.org/D71280
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When running the test suite with always capture on, a handful of tests
are failing because they have multiple targets and therefore multiple
GDB remote connections. The current reproducer infrastructure is capable
of dealing with that.
This patch reworks the GDB remote provider to support multiple GDB
remote connections, similar to how the reproducers support shadowing
multiple command interpreter inputs. The provider now keeps a list of
packet recorders which deal with a single GDB remote connection. During
replay we rely on the order of creation to match the number of packets
to the GDB remote connection.
Differential revision: https://reviews.llvm.org/D71105
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
parsing headers
If not set, the address byte size was implied to be the one of the
host process.
This allows reverting the functional change from 31087b2ae9154, since
now PECOFF does the same as ELF and MachO wrt setting both byte order
and address size on m_data within ParseHeader.
Differential Revision: https://reviews.llvm.org/D71108
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Lldb support base address selection entries in location lists was broken
for a long time. This wasn't noticed until llvm started producing these
kinds of entries more frequently with r374600.
In r374769, I made a quick patch which added sufficient support for them
to get the test suite to pass. However, I did not fully understand how
this code operates, and so the fix was not complete. Specifically, what
was lacking was the ability to handle modules which were not loaded at
their preferred load address (for instance, due to ASLR).
Now that I better understand how this code works, I've come to the
conclusion that the current setup does not provide enough information
to correctly process these entries. In the current setup the location
lists were parameterized by two addresses:
- the distance of the function start from the start of the compile unit.
The purpose of this was to make the location ranges relative to the
start of the function.
- the actual address where the function was loaded at. With this the
function-start-relative ranges can be translated to actual memory
locations.
The reason for the two values, instead of just one (the load bias) is (I
think) MachO, where the debug info in the object files will appear to be
relative to the address zero, but the actual code it refers to
can be moved and reordered by the linker. This means that the location
lists need to be "linked" to reflect the locations in the actual linked
file.
These two bits of information were enough to correctly process location
lists which do not contain base address selection entries (and so all
entries are relative to the CU base). However, they don't work with
them because, in theory two base address can be completely unrelated (as
can happen for instace with hot/cold function splitting, where the
linker can reorder the two pars arbitrarily).
To fix that, I split the first parameter into two:
- the compile unit base address
- the function start address, as is known in the object file
The new algorithm becomes:
- the location lists are processed as they were meant to be processed.
The CU base address is used as the initial base address value. Base
address selection entries can set a new base.
- the difference between the "file" and "load" function start addresses
is used to compute the load bias. This value is added to the final
ranges to get the actual memory location.
This algorithm is correct for non-MachO debug info, as there the
location lists correctly describe the code in the final executable, and
the dynamic linker can just move the entire module, not pieces of it. It
will also be correct for MachO if the static linker preserves relative
positions of the various parts of the location lists -- I don't know
whether it actually does that, but judging by the lack of base address
selection support in dsymutil and lldb, this isn't something that has
come up in the past.
I add a test case which simulates the ASLR scenario and demonstrates
that base address selection entries now work correctly here.
Reviewers: JDevlieghere, aprantl, clayborg
Subscribers: dblaikie, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70532
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch adds support for atomic types (DW_TAG_atomic_type) to LLDB. It's mostly just filling out all the switch-statements that didn't implement Atomic case with the usual boilerplate.
Thanks Pavel for writing the test case.
Reviewers: labath, aprantl, shafik
Reviewed By: labath
Subscribers: jfb, abidh, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71183
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch simplifies register accesses in NativeRegisterContextLinux_arm64
and also adds some bare minimum caching to avoid multiple calls to ptrace
during a stop.
Linux ptrace returns data in the form of structures containing GPR/FPR data.
This means that one single call is enough to read all GPRs or FPRs. We do
that once per stop and keep reading from or writing to the buffer that we
have in NativeRegisterContextLinux_arm64 class. Before a resume or detach we
write all buffers back.
This is tested on aarch64 thunder x1 with Ubuntu 18.04. Also tested
regressions on x86_64.
Reviewers: labath, clayborg
Reviewed By: labath
Subscribers: kristof.beyls, lldb-commits
Differential Revision: https://reviews.llvm.org/D69371
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In DWARF5 DW_AT_low_pc (and DW_AT_entry_pc, and possibly others) can use
DW_FORM_addrx to refer to the address indirectly. This means we need to
have processed the DW_AT_addr_base attribute before we can do anything
with these.
Since we were processing the unit attributes serially, this created a
problem in cases where the DW_AT_addr_base comes after DW_AT_low_pc --
we would end up computing the wrong unit base address, which also
corrupted any values which later depended on that (for instance range
lists). Clang currently always emits DW_AT_addr_base last.
The fix is simple -- process DW_AT_addr_base first, regardless of its
position in the attribute list.
|
|
|
|
|
|
|
|
|
|
| |
the value of DW_AT_rnglists_base of the skeleton unit is for that unit
alone (e.g. used in DW_AT_ranges of the unit DIE) and should not apply
to the split unit.
The split unit has a hardcoded range list base value -- we should
initialize range list code whenever we detect a nonempty
debug_rnglists.dwo section.
|
|
|
|
|
| |
now that we use llvm to parse debug_rnglists, this abstraction is not
useful.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
them take raw_ostream
Summary:
Yet another step on the long road towards getting rid of lldb's Stream class.
We probably should just make this some kind of member of Address/AddressRange, but it seems quite often we just push
in random integers in there and this is just about getting rid of Stream and not improving arbitrary APIs.
I had to rename another `DumpAddress` function in FormatEntity that is dumping the content of an address to make Clang happy.
Reviewers: labath
Reviewed By: labath
Subscribers: JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71052
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Our rnglist support was working only for the trivial cases (one CU),
because we only ever parsed one contribution out of the debug_rnglists
section. This means we were never able to resolve range lists for the
second and subsequent units (DW_FORM_sec_offset references came out
blang, and DW_FORM_rnglistx references always used the ranges lists from
the first unit).
Since both llvm and lldb rnglist parsers are sufficiently
self-contained, and operate similarly, we can fix this problem by
switching to the llvm parser instead. Besides the changes which are due
to variations in the interface, the main thing is that now the range
list object is a member of the DWARFUnit, instead of the entire symbol
file. This ensures that each unit can get it's own private set of range
list indices, and is consistent with how llvm's DWARFUnit does it
(overall, I've tried to structure the code the same way as the llvm
version).
I've also added a test case for the two unit scenario.
Reviewers: JDevlieghere, aprantl, clayborg
Subscribers: dblaikie, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71021
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch adds code which will substitute references to the full object
constructors/destructors with their base object versions.
Like all substitutions in this category, this operation is not really
sound, but doing this in a more precise way allows us to get rid of a
much larger hack -- matching function according to their demangled
names, which effectively does the same thing, but also much more.
This is a (very late) follow-up to D54074.
Background: clang has an optimization which can eliminate full object
structors completely, if they are found to be equivalent to their base
object versions. It does this because it assumes they can be regenerated
on demand in the compile unit that needs them (e.g., because they are
declared inline). However, this doesn't work for the debugging scenario,
where we don't have the structor bodies available -- we pretend all
constructors are defined out-of-line as far as clang is concerned. This
causes clang to emit references to the (nonexisting) full object
structors during expression evaluation.
Fun fact: This is not a problem on darwin, because the relevant
optimization is disabled to work around a linker bug.
Reviewers: teemperor, JDevlieghere
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70721
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
DWARF5 line tables
Summary:
Lldb's "format-independent" debug info made use of the fact that DWARF
(<=4) did not use the file index zero, and reused the support file index
zero for storing the compile unit name.
While this provided some convenience for DWARF<=4, it meant that the PDB
plugin needed to artificially remap file indices in order to free up
index 0. Furthermore, DWARF v5 make file index 0 legal, which meant that
similar remapping would be needed in the dwarf plugin too.
What this patch does instead is remove the requirement of having the
compile unit name in the index 0. It is not that useful since the name
can always be fetched from the CompileUnit object. Remapping code in the
pdb plugin(s) has been removed or simplified.
DWARF plugin has started inserting an empty FileSpec at index 0 to
ensure the indices keep matching up (in case of DWARF<=4). For DWARF5,
we insert the file 0 from the line table.
I add a test to ensure we can correctly lookup line table entries
referencing file 0, and in particular the case where the file 0 is also
duplicated in another file entry, as this is how clang produces line
tables in some circumstances (see pr44170). Though this is probably a
bug in clang, this is not forbidden by DWARF, and lldb already has
support for that in some (but not all) cases -- this adds a test for the
code path which was not fixed in this patch.
Reviewers: clayborg, JDevlieghere, jdoerfert
Subscribers: aprantl, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70954
|
|
|
|
| |
warnings.
|
|
|
|
|
| |
This constructor was the cause of some pretty weird behavior. Remove it,
and update all code to properly dereference the argument instead.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The FileSpec class is often used as a sort of a pattern -- one specifies
a bare file name to search, and we check if in matches the full file
name of an existing module (for example).
These comparisons used FileSpec::Equal, which had some support for it
(via the full=false argument), but it was not a good fit for this job.
For one, it did a symmetric comparison, which makes sense for a function
called "equal", but not for typical searches (when searching for
"/foo/bar.so", we don't want to find a module whose name is just
"bar.so"). This resulted in patterns like:
if (FileSpec::Equal(pattern, file, pattern.GetDirectory()))
which would request a "full" match only if the pattern really contained
a directory. This worked, but the intended behavior was very unobvious.
On top of that, a lot of the code wanted to handle the case of an
"empty" pattern, and treat it as matching everything. This resulted in
conditions like:
if (pattern && !FileSpec::Equal(pattern, file, pattern.GetDirectory())
which are nearly impossible to decipher.
This patch introduces a FileSpec::Match function, which does exactly
what most of FileSpec::Equal callers want, an asymmetric match between a
"pattern" FileSpec and a an actual FileSpec. Empty paterns match
everything, filename-only patterns match only the filename component.
I've tried to update all callers of FileSpec::Equal to use a simpler
interface. Those that hardcoded full=true have been changed to use
operator==. Those passing full=pattern.GetDirectory() have been changed
to use FileSpec::Match.
There was also a handful of places which hardcoded full=false. I've
changed these to use FileSpec::Match too. This is a slight change in
semantics, but it does not look like that was ever intended, and it was
more likely a result of a misunderstanding of the "proper" way to use
FileSpec::Equal.
[In an ideal world a "FileSpec" and a "FileSpec pattern" would be two
different types, but given how widespread FileSpec is, it is unlikely
we'll get there in one go. This at least provides a good starting point
by centralizing all matching behavior.]
Reviewers: teemperor, JDevlieghere, jdoerfert
Subscribers: emaste, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70851
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
DWARFASTParserClang::ParseChildMembers
ParseChildMembers does a few things, only one part is actually parsing a single
member. This extracts the member parsing logic into its own function.
This commit just moves the code as-is into its own function and forwards the parameters/
local variables to it, which means it should be NFC.
The only actual changes to the code are replacing 'break's (and one very curious 'continue'
that behaves like a 'break') with 'return's.
|
| |
|
|
|
|
|
|
| |
'LLDBSwigPythonBreakpointCallbackFunction' has C-linkage specified, but returns UDT 'llvm::Expected<bool>' which is incompatible with C
Differential Revision: https://reviews.llvm.org/D70830
|
|
|
|
|
|
|
|
|
|
| |
ClangExpressionDeclMap::LookupFunction
This code was just creating a new SymbolContextList with any found functions
in the front and orders them by how close they are to the current frame.
This refactors this code into its own function to make this more obvious.
Doesn't do any other changes to the code, so this is NFC.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously the ABI plugin exposed some "register infos" and the
gdb-remote code used those to fill in the missing bits. Now, the
"filling in" code is in the ABI plugin itself, and the gdb-remote code
just invokes that.
The motivation for this is two-fold:
a) the "augmentation" logic is useful outside of process gdb-remote. For
instance, it would allow us to avoid repeating the register number
definitions in minidump code.
b) It gives more implementation freedom to the ABI classes. Now that
these "register infos" are essentially implementation details, classes
can use other methods to obtain dwarf/eh_frame register numbers -- for
instance they can consult llvm MC layer.
Since the augmentation code was not currently tested anywhere, I took
the opportunity to create a simple test for it.
Reviewers: jasonmolenda, clayborg, tatyana-krasnukha
Subscribers: aprantl, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70906
|
|
|
|
|
|
| |
DWARFASTParserClang::ParseChildMembers
We keep counting members and then don't do anything with the computed result.
|
|
|
|
|
|
|
| |
Extend EmulateMOVRdRm to identify "mov r11, sp" in thumb mode as
setting the frame pointer, if r11 is the frame pointer register.
Differential Revision: https://reviews.llvm.org/D70797
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
ClangASTSource currently takes a clang::ASTContext and keeps that
around, but a lot of LLDB's functionality for doing operations
on a clang::ASTContext is in its ClangASTContext twin class. We
currently constantly recompute the respective ClangASTContext
from the clang::ASTContext while we instead could just pass and
store a ClangASTContext in the ClangASTSource. This also allows
us to get rid of a bunch of unreachable error checking for cases
where recomputation fails for some reason.
|
|
|
|
|
|
|
|
|
| |
DWARFASTParserClang::CompleteRecordType
This code is behind a `if (log)` that is always a nullptr as the initializer
was commented out. One could uncomment the initializer code, but then this logging
code just leads to a deadlock as it tries to aquire the module lock.
This removes the logging code until I get this working again.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
CompileUnit is a complicated class. Having it be implicitly convertible
to a FileSpec makes reasoning about it even harder.
This patch replaces the inheritance by a simple member and an accessor
function. This avoid the need for casting in places where one needed to
force a CompileUnit to be treated as a FileSpec, and does not add much
verbosity elsewhere.
It also fixes a bug where we were wrongly comparing CompileUnit& and a
CompileUnit*, which compiled due to a combination of this inheritance
and the FileSpec*->FileSpec implicit constructor.
Reviewers: teemperor, JDevlieghere, jdoerfert
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70827
|
|
|
|
|
| |
Now that CompilerDeclContext is a trivial class, Clang started warning
that this unused variable is in fact unused. Let's remove it.
|
| |
|
|
|
|
|
| |
Moving the different parts into their own functions without any additional
cleanup/refactoring, so this is NFC.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
COFF section names can either be stored truncated to 8 chars, in the
section header, or as a longer section name, stored separately in the
string table.
libunwind locates the .eh_frame section by runtime introspection,
which only works for section names stored in the section header (as
the string table isn't mapped at runtime). To support this behaviour,
lld always truncates the section names for sections that will be
mapped, like .eh_frame.
Differential Revision: https://reviews.llvm.org/D70745
|
|
|
|
|
|
|
|
|
| |
NFCI.
Keep the existing special cases based on combinations of section name,
flags and sizes/offsets.
Differential Revision: https://reviews.llvm.org/D70778
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: labath, clayborg, shafik
Reviewed By: labath
Subscribers: JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70802
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
InitializeContext is useful for allocating a (potentially variable
size) CONTEXT struct in an unaligned byte buffer. In this case, we
already have a fixed size CONTEXT we want to initialize, and we only
used this as a very roundabout way of zero initializing it.
Instead just memset the CONTEXT we have, and set the ContextFlags field
manually.
This matches how it is done in NativeRegisterContextWindows_*.cpp.
This also makes LLDB run successfully in Wine (for a trivial tested
case at least), as Wine hasn't implemented the InitializeContext
function.
Differential Revision: https://reviews.llvm.org/D70742
|
| |
|
|
|
|
| |
This quashes a -Wformat-truncation warning.
|
| |
|
|
|
|
| |
Crushing a "sprintf" buffer is null warning.
|
| |
|
|
|
|
| |
Include the fancier DWARF5 sections too.
|