| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before a Debugger gets a Target, target settings are routed to a global set
of settings. Even without this, some part of the LLDB which exist independently
of the Debugger object (the Module cache, the Symbol vendors, ...) access
directly the global default store for those settings.
Of course, if you modify one of those global settings while they are being read,
bad things happen. We see this quite a bit with FileSpecList settings. In
particular, we see many cases where one debug session changes
target.exec-search-paths while another session starts up and it crashes when
one of those accesses invalid FileSpecs.
This patch addresses the specific FileSpecList issue by adding locking to
OptionValueFileSpecList and never returning by reference.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D60468
llvm-svn: 359028
|
|
|
|
|
|
|
|
| |
SymbolFileDWARF::FindGlobalVariables
Differential Revision: https://reviews.llvm.org/D60737
llvm-svn: 358629
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A lot of comments in LLDB are surrounded by an ASCII line to delimit the
begging and end of the comment.
Its use is not really consistent across the code base, sometimes the
lines are longer, sometimes they are shorter and sometimes they are
omitted. Furthermore, it looks kind of weird with the 80 column limit,
where the comment actually extends past the line, but not by much.
Furthermore, when /// is used for Doxygen comments, it looks
particularly odd. And when // is used, it incorrectly gives the
impression that it's actually a Doxygen comment.
I assume these lines were added to improve distinguishing between
comments and code. However, given that todays editors and IDEs do a
great job at highlighting comments, I think it's worth to drop this for
the sake of consistency. The alternative is fixing all the
inconsistencies, which would create a lot more churn.
Differential revision: https://reviews.llvm.org/D60508
llvm-svn: 358135
|
|
|
|
|
|
|
|
| |
D47253 dropped this assertion.
Differential Revision: https://reviews.llvm.org/D60254
llvm-svn: 357678
|
|
|
|
|
|
|
|
| |
This is diagnosed by gcc-8. The ValueType struct already has a default
constructor which performs zero-initialization, so we can just call that
instead of using memset.
llvm-svn: 357056
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit r356682 because it breaks the DWO flavours of some
tests:
lldb-Suite :: lang/c/const_variables/TestConstVariables.py
lldb-Suite :: lang/c/local_variables/TestLocalVariables.py
lldb-Suite :: lang/c/vla/TestVLA.py
llvm-svn: 356773
|
|
|
|
|
|
|
|
|
| |
This is mostly mechanical, and just moves the remaining non-DWO
related sections over to DWARFContext.
Differential Revision: https://reviews.llvm.org/D59611
llvm-svn: 356682
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
LLVM's DWARF parsing library has a class called DWARFContext which holds
all of the various DWARF data sections and lots of other information.
LLDB's on the other hand stores all of this directly in SymbolFileDWARF
/ SymbolFileDWARFDwo and passes this interface around through the
parsing library. Obviously this is incompatible with a world where the
low level interface does not depend on the high level interface, so we
need to move towards a model similar to LLVM's - i.e. all of the context
needed for low level parsing should be in a single class, and that class
gets passed around.
This patch is a small incremental step towards achieving this. The
interface and internals deviate from LLVM's for technical reasons, but
the high level idea is the same. The goal is, eventually, to remove all
occurrences of SymbolFileDWARF from the low level parsing code.
For now I've chosen a very simple section - the .debug_aranges section
to move into DWARFContext while leaving everything else unchanged. In
the short term this is a bit confusing because now the information you
need might come from either of 2 different locations. But it's a huge
refactor to do this all at once and runs a much higher risk of breaking
things. So I think it would be wise to do this in very small pieces.
TL;DR - No functional change
Differential Revision: https://reviews.llvm.org/D59562
llvm-svn: 356612
|
|
|
|
|
|
|
|
| |
All of this is code that is unreferenced. Removing as much of
this as possible makes it more easy to determine what functionality
is missing and/or shared between LLVM and LLDB's DWARF interfaces.
llvm-svn: 356509
|
|
|
|
| |
llvm-svn: 356495
|
|
|
|
|
|
|
|
|
|
| |
Most of these are Dump functions that are never called, but there
is one instance of entire unused classes (DWARFDebugMacinfo and
DWARFDebugMacinfoEntry) which are also unreferenced in the codebase).
Differential Revision: https://reviews.llvm.org/D59276
llvm-svn: 356490
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These log statements have questionable value, and hinder the effort
of separating the high and low level DWARF parsing interfaces inside
of LLDB. Removing them for now, and if/when we need such log statements
again in the future, we can add them back (if possible) or introduce a
mechanism for logging from the low-level interface in such a way that it
isn't coupled to the high level interface.
Differential Revision: https://reviews.llvm.org/D59498
llvm-svn: 356469
|
|
|
|
|
|
| |
Treat a null tag as an error.
llvm-svn: 356284
|
|
|
|
|
|
|
|
|
|
| |
This continues the work of introducing Error and Expected into
the DWARF parsing interfaces, this time for the DWARFCompileUnit
and DWARFDebugAranges classes.
Differential Revision: https://reviews.llvm.org/D59381
llvm-svn: 356278
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The goal here is to improve our error handling and error recovery while
parsing DWARF, while at the same time getting us closer to being able to
merge LLDB's DWARF parser with LLVM's. To this end, I've udpated several
of the low-level parsing functions in LLDB to return llvm::Error and
llvm::Expected.
For now, this only updates LLDB parsing functions and not LLVM. In some
ways, this actually gets us *farther* from parity with the two
interfaces, because prior to this patch, at least the parsing interfaces
were the same (i.e. they all just returned bools, and now with this
patch they're diverging). But, I chose to do this for two primary
reasons.
LLDB has error logging code engrained deep within some of its parsing
functions. We don't want to lose this logging information, but obviously
LLVM has no logging mechanism at all. So if we're to merge the
interfaces, we have to find a way to still allow LLDB to properly report
parsing errors while not having the reporting code be inside of LLVM.
LLDB (and indeed, LLVM) overload the meaning of the false return value
from all of these extraction functions to mean both "We reached the null
entry at the end of a list of items, therefore everything was
successful" as well as "something bad and unrecoverable happened during
parsing". So you would have a lot code that would do something like:
while (foo.extract(...)) {
...
}
But when the loop stops, why did it stop? Did it stop because it
finished parsing, or because there was an error? Because of this, in
some cases we don't always know whether it is ok to proceed, or how to
proceed, but we were doing it anyway.
In this patch, I solve the second problem by introducing an
enumeration called DWARFEnumState which has two values MoreItems and
Complete. Both of these indicate success, but the latter indicates
that we reached the null entry. Then, I return this value instead of
bool, and convey parsing failure separately.
To solve the first problem (and convey parsing failure) these
functions now return either llvm::Error or llvm::Expected<DWARFEnumState>.
Having this extra bit of information allows us to properly convey all 3 of
"error, bail out", "success, call this function again", and "success,
don't call this function again".
In subsequent patches I plan to extend this pattern to the rest of the
parsing interfaces, which will ultimately get all of the log statements
and error reporting out of the low level parsing code and into the high
level parsing code (e.g. SymbolFileDWARF, DWARFASTParserClang, etc).
Eventually, these same changes will have to be backported to LLVM's
DWARF parser, but diverging in the short term is the easiest way to
converge in the long term.
Differential Revision: https://reviews.llvm.org/D59370
llvm-svn: 356190
|
|
|
|
|
|
|
|
|
|
|
| |
LLVM doesn't produce DWARF64, and neither does GCC. LLDB's support
for DWARF64 is only partial, and if enabled appears to also not work.
Finally, it's untested. Removing this makes merging LLVM and
LLDB's DWARF parsing implementations simpler.
Differential Revision: https://reviews.llvm.org/D59235
llvm-svn: 355975
|
|
|
|
|
|
|
|
|
|
| |
This is a very thin wrapper over a std::vector<DWARFDIE> and does
not seem to provide any real value over just using a container
directly.
Differential Revision: https://reviews.llvm.org/D59165
llvm-svn: 355974
|
|
|
|
|
|
|
|
|
|
| |
This is not used outside of the private implementation of the class,
so hiding in the implementation file is a nice way of simplifying
the external interface.
Differential Revision: https://reviews.llvm.org/D59164
llvm-svn: 355973
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch marks the inline namespaces from DWARF as inline and also ensures that looking
up declarations now follows the lookup rules for inline namespaces.
Reviewers: aprantl, shafik, serge-sans-paille
Reviewed By: aprantl
Subscribers: eraman, jdoerfert, lldb-commits
Tags: #c_modules_in_lldb, #lldb
Differential Revision: https://reviews.llvm.org/D59198
llvm-svn: 355897
|
|
|
|
|
|
| |
This changes '@' prefix to '\'.
llvm-svn: 355841
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: DW_OP_GNU_addr_index has been renamed as DW_OP_addrx in the standard. clang produces DW_OP_addrx tags and with this change lldb starts to process them.
Reviewers: aprantl, jingham, davide, clayborg, serge-sans-paille
Reviewed By: aprantl
Subscribers: jdoerfert, dblaikie, labath, shafik, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D59004
llvm-svn: 355629
|
|
|
|
| |
llvm-svn: 355569
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
My apologies for the large patch. With the exception of ConstString.h
itself it was entirely produced by sed.
ConstString has exactly one const char * data member, so passing a
ConstString by reference is not any more efficient than copying it by
value. In both cases a single pointer is passed. But passing it by
value makes it harder to accidentally return the address of a local
object.
(This fixes rdar://problem/48640859 for the Apple folks)
Differential Revision: https://reviews.llvm.org/D59030
llvm-svn: 355553
|
|
|
|
|
|
|
|
| |
This was reverted because it breaks the GreenDragon bot, but
the reason for the breakage is lost, so I'm resubmitting this
now so we can find out what the problem is.
llvm-svn: 355528
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This file implements some general purpose data structures, and so it
belongs to the Utility module.
Reviewers: zturner, jingham, JDevlieghere, clayborg, espindola
Subscribers: emaste, mgorny, javed.absar, arichardson, MaskRay, lldb-commits
Differential Revision: https://reviews.llvm.org/D58970
llvm-svn: 355509
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Given that we have a target named Symbols, one wonders why a
file named Symbols.cpp is not in this target. To be clear,
the functions exposed from this file are really focused on
*locating* a symbol file on a given host, which is where the
ambiguity comes in. However, it makes more sense conceptually
to be in the Symbols target. While some of the specific places
to search for symbol files might change depending on the Host,
this is not inherently true in the same way that, for example,
"accessing the file system" or "starting threads" is
fundamentally dependent on the Host.
PDBs, for example, recently became a reality on non-Windows platforms,
and it's theoretically possible that DSYMs could become a thing on non
MacOSX platforms (maybe in a remote debugging scenario). Other types of
symbol files, such as DWO, DWP, etc have never been tied to any Host
platform anyway.
After this patch, there is only one remaining dependency from
Host to Target.
Differential Revision: https://reviews.llvm.org/D58730
llvm-svn: 355032
|
|
|
|
| |
llvm-svn: 354225
|
|
|
|
|
|
| |
It broke the modules green dragon buildbot.
llvm-svn: 354177
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Host had a function to get the UnixSignals instance corresponding
to the current host architecture. This means that Host had to
include a file from Target. To break this dependency, just make
this a static function directly in UnixSignals. We already have
the function UnixSignals::Create(ArchSpec) anyway, so we just
need to have UnixSignals::CreateForHost() which determines which
value to pass for the ArchSpec.
The goal here is to eventually break the Host->Target->Host
circular dependency.
Differential Revision: https://reviews.llvm.org/D57780
llvm-svn: 354168
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch properly extracts the full submodule path as well as its
search paths from DWARF import decls and passes it on to the
ClangModulesDeclVendor.
rdar://problem/47970144
Differential Revision: https://reviews.llvm.org/D58090
llvm-svn: 353961
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The `ap` suffix is a remnant of lldb's former use of auto pointers,
before they got deprecated. Although all their uses were replaced by
unique pointers, some variables still carried the suffix.
In r353795 I removed another auto_ptr remnant, namely redundant calls to
::get for unique_pointers. Jim justly noted that this is a good
opportunity to clean up the variable names as well.
I went over all the changes to ensure my find-and-replace didn't have
any undesired side-effects. I hope I didn't miss any, but if you end up
at this commit doing a git blame on a weirdly named variable, please
know that the change was unintentional.
llvm-svn: 353912
|
|
|
|
|
|
|
|
| |
This commit removes redundant calls to smart pointer’s ::get() method.
https://clang.llvm.org/extra/clang-tidy/checks/readability-redundant-smartptr-get.html
llvm-svn: 353795
|
|
|
|
|
|
|
|
|
|
|
| |
Unlike std::make_unique, which is only available since C++14,
std::make_shared is available since C++11. Not only is std::make_shared
a lot more readable compared to ::reset(new), it also performs a single
heap allocation for the object and control block.
Differential revision: https://reviews.llvm.org/D57990
llvm-svn: 353764
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This adds support for auto-detection of path style to SymbolFileBreakpad
(similar to how r351328 did the same for DWARF). We guess each file
entry separately, as we have no idea which file came from which compile
units (and different compile units can have different path styles). The
breakpad generates should have already converted the paths to absolute
ones, so this guess should be reasonable accurate, but as always with
these kinds of things, it is hard to give guarantees about anything.
In an attempt to bring some unity to the path guessing logic, I move the
guessing logic from inside SymbolFileDWARF into the FileSpec class and
have both symbol files use it to implent their desired behavior.
Reviewers: clayborg, lemo, JDevlieghere
Subscribers: aprantl, markmentovai, lldb-commits
Differential Revision: https://reviews.llvm.org/D57895
llvm-svn: 353702
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D57413
llvm-svn: 352557
|
|
|
|
|
|
|
|
|
|
|
| |
This is a continuation of my quest to make the size 0 a supported value.
This reapplies r352394 with additional PDB parser fixes prepared by
Pavel Labath!
Differential Revision: https://reviews.llvm.org/D57273
llvm-svn: 352521
|
|
|
|
|
|
| |
This reverts commit r352394 because it broke three windows-specific tests.
llvm-svn: 352434
|
|
|
|
|
|
|
|
| |
This is a continuation of my quest to make the size 0 a supported value.
Differential Revision: https://reviews.llvm.org/D57273
llvm-svn: 352394
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If we opened a file which was produced on system with different path
syntax, we would parse the paths from the debug info incorrectly.
The reason for that is that we would parse the paths as they were
native. For example this meant that on linux we would treat the entire
windows path as a single file name with no directory component, and then
we would concatenate that with the single directory component from the
DW_AT_comp_dir attribute. When parsing posix paths on windows, we would
at least get the directory separators right, but we still would treat
the posix paths as relative, and concatenate them where we shouldn't.
This patch attempts to remedy this by guessing the path syntax used in
each compile unit. (Unfortunately, there is no info in DWARF which would
give the definitive path style used by the produces, so guessing is all
we can do.) Currently, this guessing is based on the DW_AT_comp_dir
attribute of the compile unit, but this can be refined later if needed
(for example, the DW_AT_name of the compile unit may also contain some
useful info). This style is then used when parsing the line table of
that compile unit.
This patch is sufficient to make the line tables come out right, and
enable breakpoint setting by file name work correctly. Setting a
breakpoint by full path still has some kinks (specifically, using a
windows-style full path will not work on linux because the path will be
parsed as a linux path), but this will require larger changes in how
breakpoint setting works.
Reviewers: clayborg, zturner, JDevlieghere
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D56543
llvm-svn: 351328
|
|
|
|
|
|
| |
This addresses post-commit feedback for https://reviews.llvm.org/D56688
llvm-svn: 351237
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The code in LLDB assumes that CompilerType and friends use the size 0
as a sentinel value to signal an error. This works for C++, where no
zero-sized type exists, but in many other programming languages
(including I believe C) types of size zero are possible and even
common. This is a particular pain point in swift-lldb, where extra
code exists to double-check that a type is *really* of size zero and
not an error at various locations.
To remedy this situation, this patch starts by converting
CompilerType::getBitSize() and getByteSize() to return an optional
result. To avoid wasting space, I hand-rolled my own optional data
type assuming that no type is larger than what fits into 63
bits. Follow-up patches would make similar changes to the ValueObject
hierarchy.
rdar://problem/47178964
Differential Revision: https://reviews.llvm.org/D56688
llvm-svn: 351214
|
|
|
|
|
|
| |
Patch by Ali Tamur! (tamur@google.com)
llvm-svn: 351158
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This parameter was only ever used with the Module set, and
since a SymbolFile is tied to a module, the parameter turns
out to be entirely unnecessary. Furthermore, it doesn't make
a lot of sense to ask a caller to ask SymbolFile which is tied
to Module X to find types for Module Y, but that possibility
was open with the previous interface. By removing this
parameter from the API, it makes it harder to use incorrectly
as well as easier for an implementor to understand what it
needs to do.
llvm-svn: 351133
|
|
|
|
|
|
|
|
|
|
|
| |
Every callsite was passing an empty SymbolContext, so this parameter
had no effect. Inside the DWARF implementation of this function,
however, there was one codepath that checked members of the
SymbolContext. Since no call-sites actually ever used this
functionality, it was essentially dead code, so I've deleted this
code path as well.
llvm-svn: 351132
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This method took a SymbolContext but only actually cared about the
case where the m_function member was set. Furthermore, it was
intended to be implemented to parse blocks recursively despite not
documenting this in its name. So we change the name to indicate
that it should be recursive, while also limiting the function
parameter to be a Function&. This lets the caller know what is
required to use it, as well as letting new implementers know what
kind of inputs they need to be prepared to handle.
llvm-svn: 351131
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously all of these functions accepted a SymbolContext&.
While a CompileUnit is one member of a SymbolContext, there
are also many others, and by passing such a monolithic parameter
in this way it makes the requirements and assumptions of the
API unclear for both callers as well as implementors.
All these methods need is a CompileUnit. By limiting the
parameter type in this way, we simplify the code as well as
make it self-documenting for both implementers and users.
Differential Revision: https://reviews.llvm.org/D56564
llvm-svn: 350943
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The function SymbolFile::ParseTypes previously accepted a SymbolContext.
This makes it extremely difficult to implement faithfully, because you
have to account for all possible combinations of members being set in
the SymbolContext. On the other hand, no clients of this function
actually care about implementing this function to this strict of a
standard. AFAICT, there is actually only 1 client in the entire
codebase, and it is the function ParseAllDebugSymbols, which is itself
only called for testing purposes when dumping information. At this
call-site, the only field it sets is the CompileUnit, meaning that an
implementer of a SymbolFile need not worry about any examining or
handling any other fields which might be set.
By restricting this API to accept exactly a CompileUnit& and nothing
more, we can simplify the life of new SymbolFile plugin implementers by
making it clear exactly what the necessary and sufficient set of
functionality they need to implement is, while at the same time removing
some dead code that tried to handle other types of SymbolContext fields
that were never going to be set anyway.
Differential Revision: https://reviews.llvm.org/D56462
llvm-svn: 350889
|
|
|
|
| |
llvm-svn: 350651
|
|
|
|
| |
llvm-svn: 350577
|