| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
| |
the right thing and break.
llvm-svn: 261950
|
|
|
|
|
|
|
|
|
|
| |
ClangExpressionParser::FindFunctionInModule
Committed on behalf of: Luke Drummond
Differential Revision: http://reviews.llvm.org/D17274
llvm-svn: 261861
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patches does the following:
+ fix return type: ClangExpressionParser::Parse returns unsigned, but was actually returning a signed value, num_errors.
+ use helper clang::TextDiagnosticBuffer::getNumErrors() instead of counting the errors ourself.
+ limit scoping of block-level automatic variables as much as practical.
+ remove reused multipurpose TextDiagnosticBuffer::const_iterator in favour of loop-scoped err, warn, and note variables in the diagnostic printing code.
+ refactor diagnostic printing loops to use a proper loop invariant.
Author: Luke Drummond <luke.drummond@codeplay.com>
Differential Revision: http://reviews.llvm.org/D17273
llvm-svn: 261345
|
|
|
|
|
|
|
|
|
|
|
|
| |
[git 65dafa83] introduced the GetBuiltinIncludePath function copied from cfe/lib/Driver/CC1Options.cpp
This function is no longer used in lldb's expression parser and I believe it is safe to remove it.
Author: Luke Drummond <luke.drummond@codeplay.com>
Differential Revision: http://reviews.llvm.org/D17266
llvm-svn: 261328
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
for MIPS
SUMMARY:
This patch implements ArchSpec::GetClangTargetCPU() that provides string representing current architecture as a target CPU.
This string is then passed to tools like clang so that they generate correct code for that target.
Reviewers: clayborg, zturner
Subscribers: mohit.bhakkad, sagar, jaydeep, lldb-commits
Differential Revision: http://reviews.llvm.org/D17022
llvm-svn: 261206
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
the xcode project file to catch switch statements that have a
case that falls through unintentionally.
Define LLVM_FALLTHROUGH to indicate instances where a case has code
and intends to fall through. This should be in llvm/Support/Compiler.h;
Peter Collingbourne originally checked in there (r237766), then
reverted (r237941) because he didn't have time to mark up all the
'case' statements that were intended to fall through. I put together
a patch to get this back in llvm http://reviews.llvm.org/D17063 but
it hasn't been approved in the past week. I added a new
lldb-private-defines.h to hold the definition for now.
Every place in lldb where there is a comment that the fall-through
is intentional, I added LLVM_FALLTHROUGH to silence the warning.
I haven't tried to identify whether the fallthrough is a bug or
not in the other places.
I haven't tried to add this to the cmake option build flags.
This warning will only work for clang.
This build cleanly (with some new warnings) on macosx with clang
under xcodebuild, but if this causes problems for people on other
configurations, I'll back it out.
llvm-svn: 260930
|
|
|
|
|
|
|
| |
Silence a -Wreorder warning about order of member initialization and a
-Wqual-cast warning about casting away constness. NFC.
llvm-svn: 260868
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since IRExecutionUnit is now capable of looking up symbols, and the JIT is up to
the task of generating the appropriate relocations, we don't need to do all the
work that IRForTarget used to do to fixup symbols at the IR level.
We also don't need to allocate data manually (with its attendant bugs) because
the JIT is capable of doing so without crashing.
We also don't need the awkward lldb.call.realName metadata to determine what
calls are objc_msgSend, because they now just reference objc_msgSend.
To make this work, we ensure that we recognize which symbols are extern "C" and
report them to the compiler as such. We also report the full Decl of functions
rather than just making up top-level functions with the appropriate types.
This should not break any testcases, but let me know if you run into any issues.
<rdar://problem/22864926>
llvm-svn: 260768
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I'm preparing to remove symbol lookup from IRForTarget, where it constitutes a
dreadful hack working around no-longer-existing JIT bugs. Thanks to our
contributors, IRForTarget has a lot of smarts that IRExecutionUnit doesn't have,
so I've cleaned them up a bit and moved them over to IRExecutionUnit.
Also for historical reasons, IRExecutionUnit used the "Small" code model on non-
ELF platforms (namely, OS X). That's no longer necessary, and we can use the
same code model as everyone else on OS X. I've fixed that.
llvm-svn: 260734
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
file with "-fmodules -gmodules", each SymbolFileDWARF can reference module DWARF info by looking in other DWARF files. Then if you have 1000 .o files that each reference one or more .pcm files in their debug info, a simple Module::FindTypes(...) call can end up searching the same .pcm file over and over and over. Now all internal FindTypes methods in classes (ModuleList, Module, SymbolFile) now take an extra argument:
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files
Each time a SymbolFile::FindTypes() is called, it needs to check the searched_symbol_files list to make sure it hasn't already been asked to find the type and return immediately if it has been checked. This will stop circular dependencies from also crashing LLDB during type queries.
This has proven to be an issue when debugging large applications on MacOSX that use DWARF in .o files.
<rdar://problem/24581488>
llvm-svn: 260434
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: This relands r259810 with fix for failures on Mac.
Reviewers: spyffe, tfiala
Subscribers: tfiala, lldb-commits
Differential Revision: http://reviews.llvm.org/D16900
llvm-svn: 259902
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This reverts commit 8af14b5f9af68c31ac80945e5b5d56f0a14b38e4.
Reverting as it breaks a few tests on Mac.
Reviewers: spyffe
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D16895
llvm-svn: 259823
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
While evaluating expressions when stopped in a class method, there was a
problem of member variables hiding local variables. This was happening
because, in the context of a method, clang already knew about member
variables with their name and assumed that they were the only variables
with those names in scope. Consequently, clang never checks with LLDB
about the possibility of local variables with the same name and goes
wrong. This change addresses the problem by using an artificial
namespace "$__lldb_local_vars". All local variables in scope are
declared in the "$__lldb_expr" method as follows:
using $__lldb_local_vars::<local var 1>;
using $__lldb_local_vars::<local var 2>;
...
This hides the member variables with the same name and forces clang to
enquire about the variables which it thinks are declared in
$__lldb_local_vars. When LLDB notices that clang is enquiring about
variables in $__lldb_local_vars, it looks up local vars and conveys
their information if found. This way, member variables do not hide local
variables, leading to correct evaluation of expressions.
A point to keep in mind is that the above solution does not solve the
problem for one specific case:
namespace N
{
int a;
}
class A
{
public:
void Method();
int a;
};
void
A::Method()
{
using N::a;
...
// Since the above solution only touches locals, it does not
// force clang to enquire about "a" coming from namespace N.
}
Reviewers: clayborg, spyffe
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D16746
llvm-svn: 259810
|
|
|
|
|
|
|
|
|
| |
Runtimes should be able to pass custom compilation options to the JIT for their stack frame. This patch adds a custom expression options member class to LanguageOptions, and modifies the clang expression evaluator to check the current runtime for those options. If those options are available on the runtime, they are passed to the clang compiler.
Committed for Luke Drummond.
Differential Revision: http://reviews.llvm.org/D15527
llvm-svn: 259644
|
|
|
|
| |
llvm-svn: 259494
|
|
|
|
|
|
|
|
| |
This change was made based on a bad signal from the
Green Dragon LLDB builder. This change was not needed.
Reverting out r259114.
llvm-svn: 259216
|
|
|
|
| |
llvm-svn: 259114
|
|
|
|
|
|
| |
Differential revision: http://reviews.llvm.org/D16662
llvm-svn: 259098
|
|
|
|
| |
llvm-svn: 259086
|
|
|
|
| |
llvm-svn: 259084
|
|
|
|
|
|
|
|
|
|
| |
If your program refers to modules (as indicated in DWARF) we will now try to
load these modules and give you access to their types in expressions. This used
to be gated by a setting ("settings set target.auto-import-clang-modules true")
but that setting defaulted to false. Now it defaults to true -- but you can
disable it by toggling the setting to false.
llvm-svn: 257812
|
|
|
|
| |
llvm-svn: 257671
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change is relevant for inferiors compiled with GCC. GCC does not
emit complete debug info for std::basic_string<...>, and consequently, Clang
(the LLDB compiler) does not generate correct mangled names for certain
functions.
This change removes the hard-coded alternate names in
ItaniumABILanguageRuntime.cpp.
Before the hard-coded names were put in ItaniumABILanguageRuntime.cpp, one could
not evaluate std::string methods (ex. std::string::length). After putting in
the hard-coded names, one could evaluate them. However, it did not still
enable one to call methods on, say for example, std::vector<string>.
This change makes that possible.
There is some amount of incompleteness in this change. Consider the
following example:
std::string hello("hello"), world("world");
std::map<std::string, std::string> m;
m[hello] = world;
One can still not evaluate the expression "m[hello]" in LLDB. Will
address this issue in another pass.
Reviewers: jingham, vharron, evgeny777, spyffe, dawn
Subscribers: clayborg, dawn, lldb-commits
Differential Revision: http://reviews.llvm.org/D12809
llvm-svn: 257113
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When multiple functions are found by name, lldb removes duplicate entries of
functions with the same type, so the first function in the symbol context list
is chosen, even if it isn't in scope. This patch uses the declaration context
of the execution context to select the function which is in scope.
This fixes cases like the following:
int func();
namespace ns {
int func();
void here() {
// Run to BP here and eval 'p func()';
// lldb used to find ::func(), now finds ns::func().
}
}
Reviewed by: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D15312
llvm-svn: 255439
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
support.
It was previously reverted due to issues that showed up only on linux. I was able to reproduce these issues and fix the underlying cause.
So this is the same patch as 254476 with the following two fixes:
- Fix not trying to complete classes that don't have external sources
- Fix ClangASTSource::CompleteType() to check the decl context of types that it finds by basename to ensure we don't complete a type "S" with a type like "std::S". Before this fix ClangASTSource::CompleteType() would accept _any_ type that had a matching basename and copy it into the other type.
<rdar://problem/22992457>
llvm-svn: 254980
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It used to be a unique pointer, and there could be a case where ClangASTSource
held onto a copy of the pointer but Target::Destroy destroyed the unique pointer
in the mean time.
I also ensured that there is a validity check on the target (which confirms that
a ClangASTImporter can be generated) before the target's shared pointer is
copied into ClangASTSource.
This race condition caused a crash if Target::Destroy was called and then later
the target objecct was deleted.
llvm-svn: 252665
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Since this is within the lldb namespace, the compiler tries to
export a symbol for it. Unfortunately, since it is inlined, the
symbol is hidden and this results in a mess of warnings when
building on OS X with cmake.
Moving it to the lldb_private namespace eliminates that problem.
Reviewers: clayborg
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D14417
llvm-svn: 252396
|
|
|
|
|
|
|
| |
Remove implicit ilist iterator conversions before reapplying r252372
(which will disallow them).
llvm-svn: 252378
|
|
|
|
|
|
|
|
|
|
|
| |
Fixed Clang-tidy warnings:
* modernize-use-override;
* modernize-use-nullptr;
* modernize-use-default;
* readability-simplify-boolean-expr.
llvm-svn: 252374
|
|
|
|
|
|
| |
place.
llvm-svn: 252129
|
|
|
|
|
|
|
|
|
| |
push it too. All the
callers had to do this by hand and we ended up never actually adding initial arguments and then
reusing them by passing in the struct address separately, so the distinction wasn't needed.
llvm-svn: 252108
|
|
|
|
|
|
|
|
| |
UserExpression. This
isn't used in this commit but will be in a future commit.
llvm-svn: 251887
|
|
|
|
|
|
|
|
|
|
|
| |
The Go interpreter doesn't JIT or use LLVM, so this also
moves all the JIT related code from UserExpression to a new class LLVMUserExpression.
Differential Revision: http://reviews.llvm.org/D13073
Fix merge
llvm-svn: 251820
|
|
|
|
|
|
|
|
| |
This reverts commit r251340.
Breaks the Windows build because Windows doesn't have getuid. The fix is not obvious.
llvm-svn: 251354
|
|
|
|
|
|
|
|
| |
On UNIX (but not Darwin) the username needs to be respected when creating a
temporary module directory, so that different users don't pollute each others'
module caches.
llvm-svn: 251340
|
|
|
|
|
|
|
|
|
| |
in DWARF as a member of a class, but it has a "this" parameter. Specifically,
*this needs to have the LLDB expression added as a method.
This fixes TestWithLimitDebugInfo.
llvm-svn: 251151
|
|
|
|
|
|
|
|
| |
source/Plugins; other minor fixes.
Differential Revision: http://reviews.llvm.org/D13916
llvm-svn: 250872
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: spyffe
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D13333
llvm-svn: 249570
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The concept here is that languages may have different ways of communicating
results. In particular, languages may have different names for their result
variables and in fact may have multiple types of result variables (e.g.,
error results). Materializer was tied to one specific model of result handling.
Instead, now UserExpressions can register their own handlers for the result
variables they inject. This allows language-specific code in Materializer to
be moved into the expression parser plug-in, and it simplifies Materializer.
These delegates are subclasses of PersistentVariableDelegate.
PersistentVariableDelegate can provide the name of the result variable, and is
notified when the result variable is populated. It can also be used to touch
persistent variables if need be, updating language-specific state. The
UserExpression owns the delegate and can decide on its result based on
consulting all of its (potentially multiple) delegates.
The user expression itself now makes the determination of what the final result
of the expression is, rather than relying on the Materializer, and I've added a
virtual function to UserExpression to allow this.
llvm-svn: 249233
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The ClangExpressionVariable::CreateVariableInList functions looked cute, but
caused more confusion than they solved. I removed them, and instead made sure
that there are adequate facilities for easily adding newly-constructed
ExpressionVariables to lists.
I also made some of the constructors that are common be generic, so that it's
possible to construct expression variables from generic places (like the ABI and
ValueObject) without having to know the specifics about the class.
llvm-svn: 249095
|
|
|
|
|
|
|
|
| |
Also added some target-level search functions so that persistent variables and
symbols can be searched for without hand-iterating across the map of
TypeSystems.
llvm-svn: 249027
|
|
|
|
|
|
| |
report any (yet).
llvm-svn: 248970
|
|
|
|
|
|
|
|
|
|
| |
the corresponding TypeSystem. This makes sense because what kind of data there
is -- and how it can be looked up -- depends on the language.
Functionality that is common to all type systems is factored out into
PersistentExpressionState.
llvm-svn: 248934
|
|
|
|
| |
llvm-svn: 248631
|
|
|
|
|
|
|
|
|
| |
There are still a bunch of dependencies on the plug-in, but this helps to
identify them.
There are also a few more bits we need to move (and abstract, for example the
ClangPersistentVariables).
llvm-svn: 248612
|
|
|
|
|
|
|
|
| |
As part of our overall switch from hand-rolling RTTI to using LLVM-compatible
methods, I've done the same for ExpressionVariable. The main documentation for
how to do this is in TypeSystem.h, so I've simply referred to that.
llvm-svn: 247085
|
|
|
|
| |
llvm-svn: 246932
|
|
|
|
|
|
|
|
|
| |
stores information about a variable that different parts of LLDB use, from the
compiler-specific portion that only the expression parser cares about.
http://reviews.llvm.org/D12602
llvm-svn: 246871
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This doesn't exist in other LLVM projects any longer and doesn't
do anything.
Reviewers: chaoren, labath
Subscribers: emaste, tberghammer, lldb-commits, danalbert
Differential Revision: http://reviews.llvm.org/D12586
llvm-svn: 246749
|
|
|
|
| |
llvm-svn: 246746
|