| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
| |
lldb_private::Error objects the rules are:
- short strings that don't start with a capitol letter unless the name is a
class or anything else that is always capitolized
- no trailing newline character
- should be one line if possible
Implemented a first pass at adding "--gdb-format" support to anything that
accepts format with optional size/count.
llvm-svn: 142999
|
|
|
|
|
|
|
|
|
|
|
|
| |
OptionGroupFormat. Updated OptionGroupFormat to be able to also use the
"--size" and "--count" options. Commands that use a OptionGroupFormat instance
can choose which of the options they want by initializing OptionGroupFormat
accordingly. Clients can either get only the "--format", "--format" + "--size",
or "--format" + "--size" + "--count". This is in preparation for upcoming
chnages where there are alternate ways (GDB format specification) to set a
format.
llvm-svn: 142911
|
|
|
|
| |
llvm-svn: 142833
|
|
|
|
|
|
|
|
|
|
|
| |
process IDs, and thread IDs, but was mainly needed for for the UserID's for
Types so that DWARF with debug map can work flawlessly. With DWARF in .o files
the type ID was the DIE offset in the DWARF for the .o file which is not
unique across all .o files, so now the SymbolFileDWARFDebugMap class will
make the .o file index part (the high 32 bits) of the unique type identifier
so it can uniquely identify the types.
llvm-svn: 142534
|
|
|
|
|
|
| |
parser for a method whose class isn't currently in the process of completing itself. Currently, methods of a class, must be parsed when the class type that contains the method is asked to complete itself through the clang::ExternalASTSource virtual functions. Now we "do the right thing" by checking if the class is being defined, and if so we parse it, else we tell the class to complete itself so everything happens correctly.
llvm-svn: 141908
|
|
|
|
| |
llvm-svn: 141879
|
|
|
|
|
|
| |
be in namespaces.
llvm-svn: 141845
|
|
|
|
|
|
|
| |
core Module functions that the expression parser
will soon be using.
llvm-svn: 141766
|
|
|
|
|
|
|
|
|
|
| |
for a Range, RangeArray, RangeData (range + data), or a RangeDataArray. We have many range implementations in LLDB and I will be converting over to using the classes in RangeMap.h so we can have one set of code that does ranges and searching of ranges.
Fixed up DWARFDebugAranges to use the new range classes.
Fixed the enumeration parsing to take a lldb_private::Error to avoid a lot of duplicated code. Now when an invalid enumeration is supplied, an error will be returned and that error will contain a list of the valid enumeration values.
llvm-svn: 141382
|
|
|
|
|
|
| |
and statics when no arguments are given.
llvm-svn: 141222
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
symbol context that represents an inlined function. This function has been
renamed internally to:
bool
SymbolContext::GetParentOfInlinedScope (const Address &curr_frame_pc,
SymbolContext &next_frame_sc,
Address &next_frame_pc) const;
And externally to:
SBSymbolContext
SBSymbolContext::GetParentOfInlinedScope (const SBAddress &curr_frame_pc,
SBAddress &parent_frame_addr) const;
The correct blocks are now correctly calculated.
Switched the stack backtracing engine (in StackFrameList) and the address
context printing over to using the internal SymbolContext::GetParentOfInlinedScope(...)
so all inlined callstacks will match exactly.
llvm-svn: 140910
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- New SBSection objects that are object file sections which can be accessed
through the SBModule classes. You can get the number of sections, get a
section at index, and find a section by name.
- SBSections can contain subsections (first find "__TEXT" on darwin, then
us the resulting SBSection to find "__text" sub section).
- Set load addresses for a SBSection in the SBTarget interface
- Set the load addresses of all SBSection in a SBModule in the SBTarget interface
- Add a new module the an existing target in the SBTarget interface
- Get a SBSection from a SBAddress object
This should get us a lot closer to being able to symbolicate using LLDB through
the public API.
llvm-svn: 140437
|
|
|
|
|
|
|
|
|
|
|
|
| |
return before we try to dereference the target later in the function.
Currently,
% lldb -x
(lldb) target stop-hook list
crashes because of this.
llvm-svn: 140417
|
|
|
|
|
|
| |
newlines output at the end of 'image lookup' / 'image lookup -v'.
llvm-svn: 140357
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
shared pointers.
Changed the ExecutionContext over to use shared pointers for
the target, process, thread and frame since these objects can
easily go away at any time and any object that was holding onto
an ExecutionContext was running the risk of using a bad object.
Now that the shared pointers for target, process, thread and
frame are just a single pointer (they all use the instrusive
shared pointers) the execution context is much safer and still
the same size.
Made the shared pointers in the the ExecutionContext class protected
and made accessors for all of the various ways to get at the pointers,
references, and shared pointers.
llvm-svn: 140298
|
|
|
|
|
|
|
|
|
| |
__attribute__ format so the compiler knows that this method takes
printf style formatter arguments and checks that it's being used
correctly. Fix a couple dozen incorrect SetErrorStringWithFormat()
calls throughout the sources.
llvm-svn: 140115
|
|
|
|
|
|
|
|
|
|
|
| |
ModuleSP
Module::GetSP();
Since we are now using intrusive ref counts, we can easily turn any
pointer to a module into a shared pointer just by assigning it.
llvm-svn: 139984
|
|
|
|
|
|
| |
Add a simple test case for that.
llvm-svn: 138281
|
|
|
|
|
|
| |
variable' commands to use an Options object instead of passing an ever-increasing number of arguments to the DumpValueObject() method, with the ultimate aim of making that call private implementation
llvm-svn: 137622
|
|
|
|
|
|
| |
new cap setting
llvm-svn: 137462
|
|
|
|
|
|
|
|
|
|
|
|
| |
*New setting target.max-children-count gives an upper-bound to the number of child objects that will be displayed at each depth-level
This might be a breaking change in some scenarios. To override the new limit you can use the --show-all-children (-A) option
to frame variable or increase the limit in your lldbinit file
*Command "type synthetic" has been split in two:
- "type synthetic" now only handles Python synthetic children providers
- the new command "type filter" handles filters
Because filters and synthetic providers are both ways to replace the children of a ValueObject, only one can be effective at any given time.
llvm-svn: 137416
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is helping us track down some extra references to ModuleSP objects that
are causing things to get kept around for too long.
Added a module pointer accessor to target and change a lot of code to use
it where it would be more efficient.
"taret delete" can now specify "--clean=1" which will cleanup the global module
list for any orphaned module in the shared module cache which can save memory
and also help track down module reference leaks like we have now.
llvm-svn: 137294
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ability to dump more information about modules in "target modules list". We
can now dump the shared pointer reference count for modules, the pointer to
the module itself (in case performance tools can help track down who has
references to said pointer), and the modification time.
Added "target delete [target-idx ...]" to be able to delete targets when they
are no longer needed. This will help track down memory usage issues and help
to resolve when module ref counts keep getting incremented. If the command gets
no arguments, the currently selected target will be deleted. If any arguments
are given, they must all be valid target indexes (use the "target list"
command to get the current target indexes).
Took care of a bunch of "no newline at end of file" warnings.
TimeValue objects can now dump their time to a lldb_private::Stream object.
Modified the "target modules list --global" command to not error out if there
are no targets since it doesn't require a target.
Fixed an issue in the MacOSX DYLD dynamic loader plug-in where if a shared
library was updated on disk, we would keep using the older one, even if it was
updated.
Don't allow the ModuleList::GetSharedModule(...) to return an empty module.
Previously we could specify a valid path on disc to a module, and specify an
architecture that wasn't contained in that module and get a shared pointer to
a module that wouldn't be able to return an object file or a symbol file. We
now make sure an object file can be extracted prior to adding the shared pointer
to the module to get added to the shared list.
llvm-svn: 137196
|
|
|
|
|
|
|
|
|
|
| |
@"Hello" instead of "Hello")
new --raw-output (-R) option to frame variable prevents using summaries and synthetic children
other future formatting enhancements will be excluded by using the -R option
test case enhanced to check that -R works correctly
llvm-svn: 137185
|
|
|
|
|
|
|
|
|
| |
command that allows us to see all modules that exist and
their corresponding global shared pointer count. This will
help us track down memory issues when modules aren't being
removed and cleaned up from the module list.
llvm-svn: 137078
|
|
|
|
|
|
| |
object on successful adding of a module.
llvm-svn: 136744
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Completely new implementation of SBType
- Various enhancements in several other classes
Python synthetic children providers for std::vector<T>, std::list<T> and std::map<K,V>:
- these return the actual elements into the container as the children of the container
- basic template name parsing that works (hopefully) on both Clang and GCC
- find them in examples/synthetic and in the test suite in functionalities/data-formatter/data-formatter-python-synth
New summary string token ${svar :
- the syntax is just the same as in ${var but this new token lets you read the values
coming from the synthetic children provider instead of the actual children
- Python providers above provide a synthetic child len that returns the number of elements
into the container
Full bug fix for the issue in which getting byte size for a non-complete type would crash LLDB
Several other fixes, including:
- inverted the order of arguments in the ClangASTType constructor
- EvaluationPoint now only returns SharedPointer's to Target and Process
- the help text for several type subcommands now correctly indicates argument-less options as such
llvm-svn: 136504
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
indicate that you want the summary to be used to print the target object
(e.g. ${var%S}). this might already be the default if your variable is of an aggregate type
new feature: synthetic filters. you can restrict the number of children for your variables to only a meaningful subset
- the restricted list of children obeys the typical rules (e.g. summaries prevail over children)
- one-line summaries show only the filtered (synthetic) children, if you type an expanded summary string, or you use Python scripts, all the real children are accessible
- to provide a synthetic children list use the "type synth add" command, as in:
type synth add foo_type --child varA --child varB[0] --child varC->packet->flags[1-4]
(you can use ., ->, single-item array operator [N] and bitfield operator [N-M]; array slice access is not supported, giving simplified names to expression paths is not supported)
- a new -S option to frame variable and target variable lets you override synthetic children and instead show real ones
llvm-svn: 135731
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- help type summary add now gives some hints on how to use it
frame variable and target variable now have a --no-summary-depth (-Y) option:
- simply using -Y without an argument will skip one level of summaries, i.e.
your aggregate types will expand their children and display no summary, even
if they have one. children will behave normally
- using -Y<int>, as in -Y4, -Y7, ..., will skip as many levels of summaries as
given by the <int> parameter (obviously, -Y and -Y1 are the same thing). children
beneath the given depth level will behave normally
-Y0 is the same as omitting the --no-summary-depth parameter entirely
This option replaces the defined-but-unimplemented --no-summary
llvm-svn: 135336
|
|
|
|
| |
llvm-svn: 135005
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
use lldb_private::Target::ReadMemory(...) to allow constant strings
to be displayed in global variables prior on in between process
execution.
Centralized the variable declaration dumping into:
bool
Variable::DumpDeclaration (Stream *s, bool show_fullpaths, bool show_module);
Fixed an issue if you used "target variable --regex <regex>" where the
variable name would not be displayed, but the regular expression would.
Fixed an issue when viewing global variables through "target variable"
might not display correctly when doing DWARF in object files.
llvm-svn: 134878
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Made it so that you can create synthetic children of array
value objects. This is for creating array members when the
array index is out of range. This comes in handy when you have
a structure definition like:
struct Collection
{
uint32_t count;
Item array[0];
};
"array" has 1 item, but many times in practice there are more
items in "item_array".
This allows you to do:
(lldb) target variable g_collection.array[3]
To implement this, the get child at index has been modified
to have a "ignore_array_bounds" boolean that can be set to true.
llvm-svn: 134846
|
|
|
|
|
|
|
|
|
|
| |
you can do things like:
(lldb) target variable g_global.a
(lldb) target variable *g_global.ptr
(lldb) target variable g_global.ptr[1]
llvm-svn: 134745
|
|
|
|
|
|
|
| |
constructing itself and causing unexpected things to happen
in LLDB.
llvm-svn: 134598
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
group class: OptionGroupVariable. It gets initialized with
a boolean that indicates if the frame specific options are
included so that this can be used in both the "frame variable"
and "target variable" commands.
Removed the global functionality from the "frame variable"
command. Users should switch to using the "target variable"
command.
llvm-svn: 134594
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
variables prior to running your binary. Zero filled sections now get
section data correctly filled with zeroes when Target::ReadMemory
reads from the object file section data.
Added new option groups and option values for file lists. I still need
to hook up all of the options to "target variable" to allow more complete
introspection by file and shlib.
Added the ability for ValueObjectVariable objects to be created with
only the target as the execution context. This allows them to be read
from the object files through Target::ReadMemory(...).
Added a "virtual Module * GetModule()" function to the ValueObject
class. By default it will look to the parent variable object and
return its module. The module is needed when we have global variables
that have file addresses (virtual addresses that are specific to
module object files) and in turn allows global variables to be displayed
prior to running.
Removed all of the unused proxy object support that bit rotted in
lldb_private::Value.
Replaced a lot of places that used "FileSpec::Compare (lhs, rhs) == 0" code
with the more efficient "FileSpec::Equal (lhs, rhs)".
Improved logging in GDB remote plug-in.
llvm-svn: 134579
|
|
|
|
|
|
| |
work for "-s".
llvm-svn: 133479
|
|
|
|
|
|
|
|
|
|
| |
not write output (prompts, instructions,etc.) if the CommandInterpreter
is in batch_mode.
Also, finish updating InputReaders to write to the asynchronous stream,
rather than using the Debugger's output file directly.
llvm-svn: 133162
|
|
|
|
|
|
| |
hook was added if the input was interrupted.
llvm-svn: 130907
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Removed the "image" command and moved it to "target modules". Added an alias
for "image" to "target modules".
Added some new target commands to be able to add and load modules to a target:
(lldb) target modules add <path>
(lldb) target modules load [--file <path>] [--slide <offset>] [<sect-name> <sect-load-addr> ...]
So you can load individual sections without running a target:
(lldb) target modules load --file /usr/lib/libSystem.B.dylib __TEXT 0x7fccc80000 __DATA 0x1234000000
Or you can rigidly slide an entire shared library:
(lldb) target modules load --file /usr/lib/libSystem.B.dylib --slid 0x7fccc80000
This should improve bare board debugging when symbol files need to be slid around manually.
llvm-svn: 130796
|
|
|
|
|
|
| |
for one-liner.
llvm-svn: 130741
|
|
|
|
|
|
| |
stop-hook add' command.
llvm-svn: 130740
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
command line driver, including the lldb prompt being output by
editline, the asynchronous process output & error messages, and
asynchronous messages written by target stop-hooks.
As part of this it introduces a new Stream class,
StreamAsynchronousIO. A StreamAsynchronousIO object is created with a
broadcaster, who will eventually broadcast the stream's data for a
listener to handle, and an event type indicating what type of event
the broadcaster will broadcast. When the Write method is called on a
StreamAsynchronousIO object, the data is appended to an internal
string. When the Flush method is called on a StreamAsynchronousIO
object, it broadcasts it's data string and clears the string.
Anything in lldb-core that needs to generate asynchronous output for
the end-user should use the StreamAsynchronousIO objects.
I have also added a new notification type for InputReaders, to let
them know that a asynchronous output has been written. This is to
allow the input readers to, for example, refresh their prompts and
lines, if desired. I added the case statements to all the input
readers to catch this notification, but I haven't added any code for
handling them yet (except to the IOChannel input reader).
llvm-svn: 130721
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
line tables specify breakpoints can be set in the source. When dumping the
source, the number of breakpoints that can be set on a source line are shown
as a prefix:
(lldb) source list -f test.c -l1 -c222 -b
1 #include <stdio.h>
2 #include <sys/fcntl.h>
3 #include <unistd.h>
4 int
5 sleep_loop (const int num_secs)
[2] 6 {
7 int i;
[1] 8 for (i=0; i<num_secs; ++i)
9 {
[1] 10 printf("%d of %i - sleep(1);\n", i, num_secs);
[1] 11 sleep(1);
12 }
13 return 0;
[1] 14 }
15
16 int
17 main (int argc, char const* argv[])
[1] 18 {
[1] 19 printf("Process: %i\n\n", getpid());
[1] 20 puts("Press any key to continue..."); getchar();
[1] 21 sleep_loop (20);
22 return 12;
[1] 23 }
Above we can see there are two breakpoints for line 6 and one breakpoint for
lines 8, 10, 11, 14, 18, 19, 20, 21 and 23. All other lines have no line table
entries for them. This helps visualize the data provided in the debug
information without having to manually dump all line tables. It also includes
all inline breakpoint that may result for a given file which can also be very
handy to see.
llvm-svn: 129747
|
|
|
|
|
|
| |
"target select" commands.
llvm-svn: 129717
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
threads, and stack frame down in the lldb_private::Process,
lldb_private::Thread, lldb_private::StackFrameList and the
lldb_private::StackFrame classes. We had some command line
commands that had duplicate versions of the process status
output ("thread list" and "process status" for example).
Removed the "file" command and placed it where it should
have been: "target create". Made an alias for "file" to
"target create" so we stay compatible with GDB commands.
We can now have multple usable targets in lldb at the
same time. This is nice for comparing two runs of a program
or debugging more than one binary at the same time. The
new command is "target select <target-idx>" and also to see
a list of the current targets you can use the new "target list"
command. The flow in a debug session can be:
(lldb) target create /path/to/exe/a.out
(lldb) breakpoint set --name main
(lldb) run
... hit breakpoint
(lldb) target create /bin/ls
(lldb) run /tmp
Process 36001 exited with status = 0 (0x00000000)
(lldb) target list
Current targets:
target #0: /tmp/args/a.out ( arch=x86_64-apple-darwin, platform=localhost, pid=35999, state=stopped )
* target #1: /bin/ls ( arch=x86_64-apple-darwin, platform=localhost, pid=36001, state=exited )
(lldb) target select 0
Current targets:
* target #0: /tmp/args/a.out ( arch=x86_64-apple-darwin, platform=localhost, pid=35999, state=stopped )
target #1: /bin/ls ( arch=x86_64-apple-darwin, platform=localhost, pid=36001, state=exited )
(lldb) bt
* thread #1: tid = 0x2d03, 0x0000000100000b9a a.out`main + 42 at main.c:16, stop reason = breakpoint 1.1
frame #0: 0x0000000100000b9a a.out`main + 42 at main.c:16
frame #1: 0x0000000100000b64 a.out`start + 52
Above we created a target for "a.out" and ran and hit a
breakpoint at "main". Then we created a new target for /bin/ls
and ran it. Then we listed the targest and selected our original
"a.out" program, so we showed two concurent debug sessions
going on at the same time.
llvm-svn: 129695
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
lldb_private::OptionGroup
lldb_private::OptionGroupOptions
OptionGroup lets you define a class that encapsulates settings that you want
to reuse in multiple commands. It contains only the option definitions and the
ability to set the option values, but it doesn't directly interface with the
lldb_private::Options class that is the front end to all of the CommandObject
option parsing. For that the OptionGroupOptions class can be used. It aggregates
one or more OptionGroup objects and directs the option setting to the
appropriate OptionGroup class. For an example of this, take a look at the
CommandObjectFile and how it uses its "m_option_group" object shown below
to be able to set values in both the FileOptionGroup and PlatformOptionGroup
classes. The members used in CommandObjectFile are:
OptionGroupOptions m_option_group;
FileOptionGroup m_file_options;
PlatformOptionGroup m_platform_options;
Then in the constructor for CommandObjectFile you can combine the option
settings. The code below shows a simplified version of the constructor:
CommandObjectFile::CommandObjectFile(CommandInterpreter &interpreter) :
CommandObject (...),
m_option_group (interpreter),
m_file_options (),
m_platform_options(true)
{
m_option_group.Append (&m_file_options);
m_option_group.Append (&m_platform_options);
m_option_group.Finalize();
}
We append the m_file_options and then the m_platform_options and then tell
the option group the finalize the results. This allows the m_option_group to
become the organizer of our prefs and after option parsing we end up with
valid preference settings in both the m_file_options and m_platform_options
objects. This also allows any other commands to use the FileOptionGroup and
PlatformOptionGroup classes to implement options for their commands.
Renamed:
virtual void Options::ResetOptionValues();
to:
virtual void Options::OptionParsingStarting();
And implemented a new callback named:
virtual Error Options::OptionParsingFinished();
This allows Options subclasses to verify that the options all go together
after all of the options have been specified and gives the chance for the
command object to return an error. It also gives a chance to take all of the
option values and produce or initialize objects after all options have
completed parsing.
Modfied:
virtual Error
SetOptionValue (int option_idx, const char *option_arg) = 0;
to be:
virtual Error
SetOptionValue (uint32_t option_idx, const char *option_arg) = 0;
(option_idx is now unsigned).
llvm-svn: 129415
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This allows you to have a platform selected, then specify a triple using
"i386" and have the remaining triple items (vendor, os, and environment) set
automatically.
Many interpreter commands take the "--arch" option to specify an architecture
triple, so now the command options needed to be able to get to the current
platform, so the Options class now take a reference to the interpreter on
construction.
Modified the build LLVM building in the Xcode project to use the new
Xcode project level user definitions:
LLVM_BUILD_DIR - a path to the llvm build directory
LLVM_SOURCE_DIR - a path to the llvm sources for the llvm that will be used to build lldb
LLVM_CONFIGURATION - the configuration that lldb is built for (Release,
Release+Asserts, Debug, Debug+Asserts).
I also changed the LLVM build to not check if "lldb/llvm" is a symlink and
then assume it is a real llvm build directory versus the unzipped llvm.zip
package, so now you can actually have a "lldb/llvm" directory in your lldb
sources.
llvm-svn: 129112
|
|
|
|
|
|
|
|
| |
public types and public enums. This was done to keep the SWIG stuff from
parsing all sorts of enums and types that weren't needed, and allows us to
abstract our API better.
llvm-svn: 128239
|
|
|
|
|
|
| |
rather than the option_arg value that was passed in.
llvm-svn: 128064
|