| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
See D42775 for discussion. Turns out, just exploring nodes which
weren't explored first is not quite enough, as e.g. the first quick
traversal resulting in a report can mark everything as "visited", and
then subsequent traversals of the same region will get all the pitfalls
of DFS.
Priority queue-based approach in comparison shows much greater
increase in coverage and even performance, without sacrificing memory.
Differential Revision: https://reviews.llvm.org/D43354
llvm-svn: 326136
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Bison/YACC generated files result in a very large number of (presumably)
false positives from the analyzer.
These false positives are "true" in a sense of the information analyzer
sees: assuming that the lexer can return any token at any point a number
of uninitialized reads does occur.
(naturally, the analyzer can not capture a complex invariant that
certain tokens can only occur under certain conditions).
Current fix simply stops analysis on those files.
I have examined a very large number of such auto-generated files, and
they do all start with such a comment.
Conversely, user code is very unlikely to contain such a comment.
rdar://33608161
Differential Revision: https://reviews.llvm.org/D43421
llvm-svn: 326135
|
|
|
|
|
|
|
|
|
|
| |
RegionManager"
This reverts commit df306c4c5ab4a6b8d3c47432346d1f9b90c328b4.
Reverting until I can figured out the reasons for failures.
llvm-svn: 326131
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Addresses https://bugs.llvm.org/show_bug.cgi?id=36206
rdar://37159026
A proper fix would be much harder, and would involve changing the
appropriate code in ExprEngine to be aware of the size limitations of
the type used for addressing.
Differential Revision: https://reviews.llvm.org/D43218
llvm-svn: 326122
|
|
|
|
| |
llvm-svn: 326024
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The assertion gets exposed when changing the exploration order.
This is a quick hacky fix, but the intention is that if the nodes do
merge, it should not matter which predecessor should be traverse.
A proper fix would be not to traverse predecessors at all, as all
information relevant for any decision should be avilable locally.
rdar://37540480
Differential Revision: https://reviews.llvm.org/D42773
llvm-svn: 325977
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
was not initialized
In the wild, many cases of null pointer dereference, or uninitialized
value read occur because the value was meant to be initialized by the
inlined function, but did not, most often due to error condition in the
inlined function.
This change highlights the return branch taken by the inlined function,
in order to help user understand the error report and see why the value
was uninitialized.
rdar://36287652
Differential Revision: https://reviews.llvm.org/D41848
llvm-svn: 325976
|
|
|
|
|
|
|
|
|
|
|
|
| |
executed lines
When viewing the report in the collapsed mode the label signifying where
did the execution go is often necessary for properly understanding the
context.
Differential Revision: https://reviews.llvm.org/D43145
llvm-svn: 325975
|
|
|
|
|
|
|
|
|
|
|
|
| |
The checker marks the locations where the analyzer creates sinks. However, it
can happen that the sink was created because of a loop which does not contain
condition statement, only breaks in the body. The exhausted block is the block
which should contain the condition but empty, in this case.
This change only emits this marking in order to avoid the undefined behavior.
Differential Revision: https://reviews.llvm.org/D42266
llvm-svn: 325693
|
|
|
|
|
|
| |
No functionality change intended.
llvm-svn: 325468
|
|
|
|
| |
llvm-svn: 325293
|
|
|
|
| |
llvm-svn: 325292
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Array destructors, like constructors, need to be called for each element of the
array separately. We do not have any mechanisms to do this in the analyzer,
so for now all we do is evaluate a single constructor or destructor
conservatively and give up. It automatically causes the necessary invalidation
and pointer escape for the whole array, because this is how RegionStore works.
Implement this conservative behavior for temporary destructors. This fixes the
crash on the provided test.
Differential Revision: https://reviews.llvm.org/D43149
llvm-svn: 325286
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Temporary destructors fire at the end of the full-expression. It is reasonable
to attach the path note for entering/leaving the temporary destructor to its
CXXBindTemporaryExpr. This would not affect lifetime-extended temporaries with
their automatic destructors which aren't temporary destructors.
The path note may be confusing in the case of destructors after elidable copy
constructors.
Differential Revision: https://reviews.llvm.org/D43144
llvm-svn: 325284
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Inline them if possible - a separate flag is added to control this.
The whole thing is under the cfg-temporary-dtors flag, off by default so far.
Temporary destructors are called at the end of full-expression. If the
temporary is lifetime-extended, automatic destructors kick in instead,
which are not addressed in this patch, and normally already work well
modulo the overally broken support for lifetime extension.
The patch operates by attaching the this-region to the CXXBindTemporaryExpr in
the program state, and then recalling it during destruction that was triggered
by that CXXBindTemporaryExpr. It has become possible because
CXXBindTemporaryExpr is part of the construction context since r325210.
Differential revision: https://reviews.llvm.org/D43104
llvm-svn: 325282
|
|
|
|
|
|
|
|
| |
Don't look at the parent statement to figure out if the cxx-allocator-inlining
flag should kick in and prevent us from inlining the constructor within
a new-expression. We now have construction contexts for that purpose.
llvm-svn: 325278
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since r325210, in cfg-temporary-dtors mode, we can rely on the CFG to tell us
that we're indeed constructing a temporary, so we can trivially construct a
temporary region and inline the constructor.
Much like r325202, this is only done under the off-by-default
cfg-temporary-dtors flag because the temporary destructor, even if available,
will not be inlined and won't have the correct object value (target region).
Unless this is fixed, it is quite unsafe to inline the constructor.
If the temporary is lifetime-extended, the destructor would be an automatic
destructor, which would be evaluated with a "correct" target region - modulo
the series of incorrect relocations performed during the lifetime extension.
It means that at least, values within the object are guaranteed to be properly
escaped or invalidated.
Differential Revision: https://reviews.llvm.org/D43062
llvm-svn: 325211
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
EvalCallOptions were introduced in r324018 for allowing various parts of
ExprEngine to notify the inlining mechanism, while preparing for evaluating a
function call, of possible difficulties with evaluating the call that they
foresee. Then mayInlineCall() would still be a single place for making the
decision.
Use that mechanism for destructors as well - pass the necessary flags from the
CFG-element-specific destructor handlers.
Part of this patch accidentally leaked into r324018, which led into a change in
tests; this change is reverted now, because even though the change looked
correct, the underlying behavior wasn't. Both of these commits were not intended
to introduce any function changes otherwise.
Differential Revision: https://reviews.llvm.org/D42991
llvm-svn: 325209
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This only affects the cfg-temporary-dtors mode - in this mode we begin inlining
constructors that are constructing function return values. These constructors
have a correct construction context since r324952.
Because temporary destructors are not only never inlined, but also don't have
the correct target region yet, this change is not entirely safe. But this
will be fixed in the subsequent commits, while this stays off behind the
cfg-temporary-dtors flag.
Lifetime extension for return values is still not modeled correctly.
Differential Revision: https://reviews.llvm.org/D42875
llvm-svn: 325202
|
|
|
|
|
|
|
|
|
| |
In CFG, every DeclStmt has exactly one decl, which is always a variable.
It is also pointless to check that the initializer is the constructor because
that's how construction contexts work now.
llvm-svn: 325201
|
|
|
|
|
|
|
|
|
| |
treat __assume(0) like __builtin_unreachable.
Fixes PR29134.
https://reviews.llvm.org/D43221
llvm-svn: 325052
|
|
|
|
|
|
|
|
|
|
| |
See reviews.llvm.org/M1 for evaluation, and
lists.llvm.org/pipermail/cfe-dev/2018-January/056718.html for
discussion.
Differential Revision: https://reviews.llvm.org/D42775
llvm-svn: 324956
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Massive false positives were known to be caused by continuing the analysis
after a destructor with a noreturn attribute has been executed in the program
but not modeled in the analyzer due to being missing in the CFG.
Now that work is being done on enabling the modeling of temporary constructors
and destructors in the CFG, we need to make sure that the heuristic that
suppresses these false positives keeps working when such modeling is disabled.
In particular, different code paths open up when the corresponding constructor
is being inlined during analysis.
Differential Revision: https://reviews.llvm.org/D42779
llvm-svn: 324802
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The analyzer was relying on peeking the next CFG element during analysis
whenever it was trying to figure out what object is being constructed
by a given constructor. This information is now available in the current CFG
element in all cases that were previously supported by the analyzer,
so no complicated lookahead is necessary anymore.
No functional change intended - the context in the CFG should for now be
available if and only if it was previously discoverable via CFG lookahead.
Differential Revision: https://reviews.llvm.org/D42721
llvm-svn: 324800
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D43131
llvm-svn: 324793
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This expression may or may not be evaluated in compile time, so tracking the
result symbol is of potential interest. However, run-time offsetof is not yet
supported by the analyzer, so for now this callback is only there to assist
future implementation.
Patch by Henry Wong!
Differential Revision: https://reviews.llvm.org/D42300
llvm-svn: 324790
|
|
|
|
|
|
|
|
|
|
|
| |
This builtin is evaluated in compile time. But in the analyzer we don't yet
automagically evaluate all calls that can be evaluated in compile time.
Patch by Felix Kostenzer!
Differential Revision: https://reviews.llvm.org/D42745
llvm-svn: 324789
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D43133
llvm-svn: 324785
|
|
|
|
|
|
|
|
|
|
|
| |
Even though most of the inconsistencies in MallocChecker's bug categories were
fixed in r302016, one more was introduced in r301913 which was later missed.
Patch by Henry Wong!
Differential Revision: https://reviews.llvm.org/D43074
llvm-svn: 324680
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds a new CFGStmt sub-class, CFGConstructor, which replaces
the regular CFGStmt with CXXConstructExpr in it whenever the CFG has additional
information to provide regarding what sort of object is being constructed.
It is useful for figuring out what memory is initialized in client of the
CFG such as the Static Analyzer, which do not operate by recursive AST
traversal, but instead rely on the CFG to provide all the information when they
need it. Otherwise, the statement that triggers the construction and defines
what memory is being initialized would normally occur after the
construct-expression, and the client would need to peek to the next CFG element
or use statement parent map to understand the necessary facts about
the construct-expression.
As a proof of concept, CFGConstructors are added for new-expressions
and the respective test cases are provided to demonstrate how it works.
For now, the only additional data contained in the CFGConstructor element is
the "trigger statement", such as new-expression, which is the parent of the
constructor. It will be significantly expanded in later commits. The additional
data is organized as an auxiliary structure - the "construction context",
which is allocated separately from the CFGElement.
Differential Revision: https://reviews.llvm.org/D42672
llvm-svn: 324668
|
|
|
|
|
|
|
|
| |
It is useful for debugging problems with C++ operator new() or temporaries.
Differential Revision: https://reviews.llvm.org/D42560
llvm-svn: 324663
|
|
|
|
|
|
|
|
|
|
|
| |
It makes it easier to discriminate between values of similar expressions
in different stack frames.
It also makes the separate backtrace section in ExplodedGraph dumps redundant.
Differential Revision: https://reviews.llvm.org/D42552
llvm-svn: 324660
|
|
|
|
|
|
|
|
| |
a function
Differential Revision: https://reviews.llvm.org/D42558
llvm-svn: 324507
|
|
|
|
|
|
|
|
| |
Due to Buildbot failures - most likely that's because target triples were not
specified in the tests, even though the checker behaves differently with
different target triples.
llvm-svn: 324167
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a security check which is disabled by default but will be enabled
whenever the user consciously enables the security package. If mmap()ed memory
is both writable and executable, it makes it easier for the attacker to execute
arbitrary code when contents of this memory are compromised. Some applications
require such mmap()s though, such as different sorts of JIT.
Patch by David Carlier!
Differential Revision: https://reviews.llvm.org/D42645
llvm-svn: 324166
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
macro is explicitly returning NULL
We already suppress such reports for inlined functions, we should then
get the same behavior for macros.
The underlying reason is that the same macro, can be called from many
different contexts, and nullability can only be expected in _some_ of
them.
Assuming that the macro can return null in _all_ of them sometimes leads
to a large number of false positives.
E.g. consider the test case for the dynamic cast implementation in
macro: in such cases, the bug report is unwanted.
Tracked in rdar://36304776
Differential Revision: https://reviews.llvm.org/D42404
llvm-svn: 324161
|
|
|
|
|
|
|
|
|
|
|
| |
No in-tree checkers use this callback so far, hence no tests. But better fix
this now than remember to fix this when the checkers actually appear.
Patch by Henry Wong!
Differential Revision: https://reviews.llvm.org/D42785
llvm-svn: 324053
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If the return statement is stored, we might as well allow querying
against it.
Also fix the bug where the return statement is not stored
if there is no return value.
This change un-merges two ExplodedNodes during call exit when the state
is otherwise identical - the CallExitBegin node itself and the "Bind
Return Value"-tagged node.
And expose the return statement through
getStatement helper function.
Differential Revision: https://reviews.llvm.org/D42130
llvm-svn: 324052
|
|
|
|
| |
llvm-svn: 324050
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D42774
llvm-svn: 324049
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We use CXXTempObjectRegion exclusively as a bailout value for construction
targets when we are unable to find the correct construction region.
Sometimes it works correctly, but rather accidentally than intentionally.
Now that we want to increase the amount of situations where it works correctly,
the first step is to introduce a different way of communicating our failure
to find the correct construction region. EvalCallOptions are introduced
for this purpose.
For now EvalCallOptions are communicating two kinds of problems:
- We have been completely unable to find the correct construction site.
- We have found the construction site correctly, and there's more than one of
them (i.e. array construction which we currently don't support).
Accidentally find and fix a test in which the new approach to communicating
failures produces better results.
Differential Revision: https://reviews.llvm.org/D42457
llvm-svn: 324018
|
|
|
|
|
|
|
|
|
|
|
|
| |
including non-function-like ones
No reason to treat function-like macros differently here.
Tracked in rdar://29907377
Differential Revision: https://reviews.llvm.org/D42444
llvm-svn: 323827
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D42562
llvm-svn: 323696
|
|
|
|
|
|
| |
"in in" -> "in", "on on" -> "on" etc.
llvm-svn: 323509
|
|
|
|
|
|
|
|
|
|
|
|
| |
Do not attempt to get the pointee of void* while generating a bug report
(otherwise it will trigger an assert inside RegionStoreManager::getBinding
assert(!T->isVoidType() && "Attempting to dereference a void pointer!")).
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D42396
llvm-svn: 323382
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This allows the analyzer to analyze ("inline") custom operator new() calls and,
even more importantly, inline constructors of objects that were allocated
by any operator new() - not necessarily a custom one.
All changes in the tests in the current commit are intended improvements,
even if they didn't carry any explicit FIXME flag.
It is possible to restore the old behavior via
-analyzer-config c++-allocator-inlining=false
(this flag is supported by scan-build as well, and it can be into a clang
--analyze invocation via -Xclang .. -Xclang ..). There is no intention to
remove the old behavior for now.
Differential Revision: https://reviews.llvm.org/D42219
rdar://problem/12180598
llvm-svn: 323373
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I.e. not after. In the c++-allocator-inlining=true mode, we need to make the
assumption that the conservatively evaluated operator new() has returned a
non-null value. Previously we did this on CXXNewExpr, but now we have to do that
before calling the constructor, because some clever constructors are sometimes
assuming that their "this" is null and doing weird stuff. We would also crash
upon evaluating CXXNewExpr when the allocator was inlined and returned null and
had a throw specification; this is UB even for custom allocators, but we still
need not to crash.
Added more FIXME tests to ensure that eventually we fix calling the constructor
for null return values.
Differential Revision: https://reviews.llvm.org/D42192
llvm-svn: 323370
|
|
|
|
|
|
|
|
| |
label attached
Differential Revision: https://reviews.llvm.org/D42320
llvm-svn: 323251
|
|
|
|
|
|
|
|
|
|
|
|
| |
Analyzing problems which appear in scan-build results can be very
difficult, as after the launch no exact invocation is stored, and it's
super-hard to launch the debugger.
With this patch, the exact analyzer invocation appears in the footer,
and can be copied to debug/check reproducibility/etc.
rdar://35980230
llvm-svn: 323245
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The check (inside StackHintGeneratorForSymbol::getMessage)
if (!N)
return getMessageForSymbolNotFound()
is moved to the beginning of the function.
Differential revision: https://reviews.llvm.org/D42388
Test plan: make check-all
llvm-svn: 323146
|