| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If ReadASTBlock does not find its top-level submodule, there's something
wrong the with the PCM. Error in that case, to avoid hitting problems
further from the source.
Note that the Swift compiler sometimes hits a case in
CompilerInstance::loadModule where the top-level submodule mysteriously
does not have Module::IsFromModuleFile set. That will emit a confusing
warn_missing_submodule, which was never intended for the main module.
The recent audit of error-handling in ReadAST may have rooted out the
real problem. If not, this commit will help to clarify the real
problem, and replace a confusing warning with an error pointing at the
malformed PCM file.
We're specifically sniffing out whether the top-level submodule was
found/processed, in case there is a malformed module file that is
missing it. If there is an error encountered during ReadSubmoduleBlock
the return status should already propagate through. It would be nice to
detect other missing submodules around here to catch other instances of
warn_missing_submodule closer to the source, but that's left as a future
exercise.
https://reviews.llvm.org/D70063
|
|
|
|
|
|
|
|
| |
ReadASTBlock and ReadASTExtensions can both return failures. Be
consistent and remove all the just-loaded modules, just like when
ReadASTCore returns failures.
https://reviews.llvm.org/D70055
|
|
|
|
|
|
|
| |
These were found via an audit. In the case of `ParseLineTable` this is
actually dead code, since parsing the line table always succeeds, but
it's prudent to be defensive since it's possible an assertion there
could be converted to a `true` return in the future.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Split a loop in ReadAST that visits the just-loaded module chain,
between an initial loop that reads further from the ASTs (and can fail)
and a second loop that does some preloading (and cannot fail). This
makes it less likely for a reading failure to affect the AST.
This is not fixing a known bug and the behaviour change may not be
observable, it's just part of an audit to look at all of the error
handling in the ASTReader.
https://reviews.llvm.org/D70056
|
| |
|
|
|
|
|
|
|
| |
As part of an audit of whether all errors are being reported from the
ASTReader, delay err_module_file_conflict if a diagnostic is already in
flight when it is hit. This required plumbing an extra argument through
the delayed diagnostic mechanics in DiagnosticsEngine.
|
|
|
|
|
|
| |
The other paremeters appear to be sufficient to determine which modules
have just been loaded and need to be removed, so stop collecting and
sending in that set explicitly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
they are synthesized.
This patch is motivated by (and factored out from)
https://reviews.llvm.org/D66121 which is a debug info bugfix. Starting
with DWARF 5 all Objective-C methods are nested inside their
containing type, and that patch implements this for synthesized
Objective-C properties.
1. SemaObjCProperty populates a list of synthesized accessors that may
need to inserted into an ObjCImplDecl.
2. SemaDeclObjC::ActOnEnd inserts forward-declarations for all
accessors for which no override was provided into their
ObjCImplDecl. This patch does *not* synthesize AST function
*bodies*. Moving that code from the static analyzer into Sema may
be a good idea though.
3. Places that expect all methods to have bodies have been updated.
I did not update the static analyzer's inliner for synthesized
properties to point back to the property declaration (see
test/Analysis/Inputs/expected-plists/nullability-notes.m.plist), which
I believed to be more bug than a feature.
Differential Revision: https://reviews.llvm.org/D68108
rdar://problem/53782400
|
|
|
|
| |
Added full support for parallel master taskloop simd directive.
|
|
|
|
|
| |
This reverts commit ffa214ef22892d75340dc6720271863901dc2c90, it was
causing ASAN test failures on sanitizer-x86_64-linux-bootstrap.
|
|
|
|
|
|
| |
Part of the C++20 concepts implementation effort.
- Associated constraints (requires clauses, currently) are now enforced when instantiating/specializing templates and when considering partial specializations and function overloads.
- Elaborated diagnostics give helpful insight as to why the constraints were not satisfied.
Phabricator: D41569
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
- HIP/CUDA host side needs to use device kernel symbol name to match the
device side binaries. Without a consistent naming between host- and
device-side compilations, it's risky that wrong device binaries are
executed. Consistent naming is usually not an issue until unnamed
types are used, especially the lambda. In this patch, the consistent
name mangling is addressed for the extended lambdas, i.e. the lambdas
annotated with `__device__`.
- In [Itanium C++ ABI][1], the mangling of the lambda is generally
unspecified unless, in certain cases, ODR rule is required to ensure
consisent naming cross TUs. The extended lambda is such a case as its
name may be part of a device kernel function, e.g., the extended
lambda is used as a template argument and etc. Thus, we need to force
ODR for extended lambdas as they are referenced in both device- and
host-side TUs. Furthermore, if a extended lambda is nested in other
(extended or not) lambdas, those lambdas are required to follow ODR
naming as well. This patch revises the current lambda mangle numbering
to force ODR from an extended lambda to all its parent lambdas.
- On the other side, the aforementioned ODR naming should not change
those lambdas' original linkages, i.e., we cannot replace the original
`internal` with `linkonce_odr`; otherwise, we may violate ODR in
general. This patch introduces a new field `HasKnownInternalLinkage`
in lambda data to decouple the current linkage calculation based on
mangling number assigned.
[1]: https://itanium-cxx-abi.github.io/cxx-abi/abi.html
Reviewers: tra, rsmith, yaxunl, martong, shafik
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D68818
llvm-svn: 375309
|
|
|
|
|
|
|
|
| |
operator that is rewritten as a call to multiple other operators.
No functionality change yet: nothing creates these expressions.
llvm-svn: 375305
|
|
|
|
|
|
| |
Added trsing/semantics/codegen for combined construct master taskloop simd.
llvm-svn: 375255
|
|
|
|
|
|
|
| |
The expression of the priority clause must be captured in the combined
task-based directives, like 'parallel master taskloop' directive.
llvm-svn: 375026
|
|
|
|
|
|
|
| |
The condition of the final clause must be captured in the combined
task-based directives, like 'parallel master taskloop' directive.
llvm-svn: 374942
|
|
|
|
|
|
|
| |
Add code to correctly calculate the associated constraints of a template (no enforcement yet).
D41284 on Phabricator.
llvm-svn: 374938
|
|
|
|
|
|
|
|
|
|
| |
Part of C++20 Concepts implementation effort. Added Concept Specialization Expressions that are created when a concept is refe$
D41217 on Phabricator.
(recommit after fixing failing Parser test on windows)
llvm-svn: 374903
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit ec87b003823d63f3342cf648f55a134c1522e612.
The test fails on Windows, see e.g.
http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/11533/steps/stage%201%20check/logs/stdio
Also revert follow-up r374893.
llvm-svn: 374899
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
When files often get touched during builds, the mtime based validation
leads to different problems in implicit modules builds, even when the
content doesn't actually change:
- Modules only: module invalidation due to out of date files. Usually causing rebuild traffic.
- Modules + PCH: build failures because clang cannot rebuild a module if it comes from building a PCH.
- PCH: build failures because clang cannot rebuild a PCH in case one of the input headers has different mtime.
This patch proposes hashing the content of input files (headers and
module maps), which is performed during serialization time. When looking
at input files for validation, clang only computes the hash in case
there's a mtime mismatch.
I've tested a couple of different hash algorithms availble in LLVM in
face of building modules+pch for `#import <Cocoa/Cocoa.h>`:
- `hash_code`: performace diff within the noise, total module cache increased by 0.07%.
- `SHA1`: 5% slowdown. Haven't done real size measurements, but it'd be BLOCK_ID+20 bytes per input file, instead of BLOCK_ID+8 bytes from `hash_code`.
- `MD5`: 3% slowdown. Like above, but BLOCK_ID+16 bytes per input file.
Given the numbers above, the patch uses `hash_code`. The patch also
improves invalidation error msgs to point out which type of problem the
user is facing: "mtime", "size" or "content".
rdar://problem/29320105
Reviewers: dexonsmith, arphaman, rsmith, aprantl
Subscribers: jkorous, cfe-commits, ributzka
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67249
> llvm-svn: 374841
llvm-svn: 374895
|
|
|
|
|
|
| |
Part of C++20 Concepts implementation effort. Added Concept Specialization Expressions that are created when a concept is referenced with arguments, and tests thereof.
llvm-svn: 374882
|
|
|
|
|
|
|
|
| |
as it's breaking a few bots.
This reverts r374841 (git commit 2a1386c81de504b5bda44fbecf3f7b4cdfd748fc)
llvm-svn: 374842
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
When files often get touched during builds, the mtime based validation
leads to different problems in implicit modules builds, even when the
content doesn't actually change:
- Modules only: module invalidation due to out of date files. Usually causing rebuild traffic.
- Modules + PCH: build failures because clang cannot rebuild a module if it comes from building a PCH.
- PCH: build failures because clang cannot rebuild a PCH in case one of the input headers has different mtime.
This patch proposes hashing the content of input files (headers and
module maps), which is performed during serialization time. When looking
at input files for validation, clang only computes the hash in case
there's a mtime mismatch.
I've tested a couple of different hash algorithms availble in LLVM in
face of building modules+pch for `#import <Cocoa/Cocoa.h>`:
- `hash_code`: performace diff within the noise, total module cache increased by 0.07%.
- `SHA1`: 5% slowdown. Haven't done real size measurements, but it'd be BLOCK_ID+20 bytes per input file, instead of BLOCK_ID+8 bytes from `hash_code`.
- `MD5`: 3% slowdown. Like above, but BLOCK_ID+16 bytes per input file.
Given the numbers above, the patch uses `hash_code`. The patch also
improves invalidation error msgs to point out which type of problem the
user is facing: "mtime", "size" or "content".
rdar://problem/29320105
Reviewers: dexonsmith, arphaman, rsmith, aprantl
Subscribers: jkorous, cfe-commits, ributzka
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67249
llvm-svn: 374841
|
|
|
|
|
|
|
| |
The expression of the num_tasks clause must be captured in the combined
task-based directives, like 'parallel master taskloop' directive.
llvm-svn: 374819
|
|
|
|
|
|
|
| |
The expression of the grainsize clause must be captured in the combined
task-based directives, like 'parallel master taskloop' directive.
llvm-svn: 374810
|
|
|
|
|
|
|
|
|
| |
Added parsing/sema/codegen support for 'parallel master taskloop'
constructs. Some of the clauses, like 'grainsize', 'num_tasks', 'final'
and 'priority' are not supported in full, only constant expressions can
be used currently in these clauses.
llvm-svn: 374791
|
|
|
|
|
|
|
|
|
|
|
| |
file.
Reduces duplication and thereby reduces the risk that someone will
forget to update one of these places, as I did when adding
DefaultedDestructorIsConstexpr (though I've been unable to produce
a testcase for which that matters so far).
llvm-svn: 374484
|
|
|
|
|
|
| |
Added full support for master taskloop directive.
llvm-svn: 374437
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
branch where it's used
The existing code is not defined, you are not allowed
to produce non-null pointer from null pointer (F->FileSortedDecls here).
That being said, i'm not really confident this is fix-enough, but we'll see.
FAIL: Clang :: Modules/no-module-map.cpp (6879 of 16079)
******************** TEST 'Clang :: Modules/no-module-map.cpp' FAILED ********************
Script:
--
: 'RUN: at line 1'; /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/bin/clang -cc1 -internal-isystem /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/lib/clang/10.0.0/include -nostdsysteminc -fmodules-ts -fmodule-name=ab -x c++-header /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/test/Modules/Inputs/no-module-map/a.h /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/test/Modules/Inputs/no-module-map/b.h -emit-header-module -o /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/tools/clang/test/Modules/Output/no-module-map.cpp.tmp.pcm
: 'RUN: at line 2'; /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/bin/clang -cc1 -internal-isystem /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/lib/clang/10.0.0/include -nostdsysteminc -fmodules-ts -fmodule-file=/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/tools/clang/test/Modules/Output/no-module-map.cpp.tmp.pcm /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/test/Modules/no-module-map.cpp -I/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/test/Modules/Inputs/no-module-map -verify
: 'RUN: at line 3'; /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/bin/clang -cc1 -internal-isystem /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/lib/clang/10.0.0/include -nostdsysteminc -fmodules-ts -fmodule-file=/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/tools/clang/test/Modules/Output/no-module-map.cpp.tmp.pcm /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/test/Modules/no-module-map.cpp -I/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/test/Modules/Inputs/no-module-map -verify -DA
: 'RUN: at line 4'; /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/bin/clang -cc1 -internal-isystem /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/lib/clang/10.0.0/include -nostdsysteminc -fmodules-ts -fmodule-file=/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/tools/clang/test/Modules/Output/no-module-map.cpp.tmp.pcm /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/test/Modules/no-module-map.cpp -I/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/test/Modules/Inputs/no-module-map -verify -DB
: 'RUN: at line 5'; /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/bin/clang -cc1 -internal-isystem /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/lib/clang/10.0.0/include -nostdsysteminc -fmodules-ts -fmodule-file=/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/tools/clang/test/Modules/Output/no-module-map.cpp.tmp.pcm /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/test/Modules/no-module-map.cpp -I/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/test/Modules/Inputs/no-module-map -verify -DA -DB
: 'RUN: at line 7'; /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/bin/clang -cc1 -internal-isystem /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/lib/clang/10.0.0/include -nostdsysteminc -E /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/tools/clang/test/Modules/Output/no-module-map.cpp.tmp.pcm -o - | /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/bin/FileCheck /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/test/Modules/no-module-map.cpp
: 'RUN: at line 8'; /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/bin/clang -cc1 -internal-isystem /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/lib/clang/10.0.0/include -nostdsysteminc -frewrite-imports -E /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/tools/clang/test/Modules/Output/no-module-map.cpp.tmp.pcm -o - | /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/bin/FileCheck /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/test/Modules/no-module-map.cpp
--
Exit Code: 2
Command Output (stderr):
--
/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/lib/Serialization/ASTReader.cpp:1526:50: runtime error: applying non-zero offset 8 to null pointer
#0 0x3a9bd0c in clang::ASTReader::ReadSLocEntry(int) /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/lib/Serialization/ASTReader.cpp:1526:50
#1 0x328b6f8 in clang::SourceManager::loadSLocEntry(unsigned int, bool*) const /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/lib/Basic/SourceManager.cpp:461:28
#2 0x328b351 in clang::SourceManager::initializeForReplay(clang::SourceManager const&) /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/lib/Basic/SourceManager.cpp:399:11
#3 0x3996c71 in clang::FrontendAction::BeginSourceFile(clang::CompilerInstance&, clang::FrontendInputFile const&) /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/lib/Frontend/FrontendAction.cpp:581:27
#4 0x394f341 in clang::CompilerInstance::ExecuteAction(clang::FrontendAction&) /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/lib/Frontend/CompilerInstance.cpp:956:13
#5 0x3a8a92b in clang::ExecuteCompilerInvocation(clang::CompilerInstance*) /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/lib/FrontendTool/ExecuteCompilerInvocation.cpp:290:25
#6 0xaf8d62 in cc1_main(llvm::ArrayRef<char const*>, char const*, void*) /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/tools/driver/cc1_main.cpp:250:15
#7 0xaf1602 in ExecuteCC1Tool /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/tools/driver/driver.cpp:309:12
#8 0xaf1602 in main /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/tools/driver/driver.cpp:382:12
#9 0x7f2c1eecc2e0 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x202e0)
#10 0xad57f9 in _start (/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/bin/clang-10+0xad57f9)
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/clang/lib/Serialization/ASTReader.cpp:1526:50 in
llvm-svn: 374328
|
|
|
|
|
|
|
|
|
| |
We previously failed to treat an array with an instantiation-dependent
but not value-dependent bound as being an instantiation-dependent type.
We now track the array bound expression as part of a constant array type
if it's an instantiation-dependent expression.
llvm-svn: 373685
|
|
|
|
|
|
|
|
| |
our autogenerated files. NFC.
As requested by Nico Weber.
llvm-svn: 373425
|
|
|
|
|
|
|
|
|
|
| |
has a constexpr destructor.
For constexpr variables, reject if the variable does not have constant
destruction. In all cases, do not emit runtime calls to the destructor
for variables with constant destruction.
llvm-svn: 373159
|
|
|
|
|
|
| |
Fixes static analyzer uninitialized variable warning for the OMPClause - the function appears to cover all cases, but I've added an assertion to make sure.
llvm-svn: 371934
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D67424
llvm-svn: 371890
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order to enable future improvements to our attribute diagnostics,
this moves info from ParsedAttr into CommonAttributeInfo, then makes
this type the base of the *Attr and ParsedAttr types. Quite a bit of
refactoring took place, including removing a bunch of redundant Spelling
Index propogation.
Differential Revision: https://reviews.llvm.org/D67368
llvm-svn: 371875
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
non-trivial C union types
This recommits r365985, which was reverted because it broke a few
projects using unions containing non-trivial ObjC pointer fields in
system headers. We now have a patch to fix the problem (see
https://reviews.llvm.org/D65256).
Original commit message:
This patch diagnoses uses of non-trivial C unions and structs/unions
containing non-trivial C unions in the following contexts, which require
default-initialization, destruction, or copying of the union objects,
instead of disallowing fields of non-trivial types in C unions, which is
what we currently do:
- function parameters.
- function returns.
- assignments.
- compound literals.
- block captures except capturing of `__block` variables by non-escaping blocks.
- local and global variable definitions.
- lvalue-to-rvalue conversions of volatile types.
See the discussion in https://reviews.llvm.org/D62988 for more background.
rdar://problem/50679094
Differential Revision: https://reviews.llvm.org/D63753
llvm-svn: 371275
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If contents of a file that is part of a PCM are overridden when reading
it, but weren't overridden when the PCM was being built, the ASTReader
will emit an error. Now it creates a separate FileEntry for recovery,
bypassing the overridden content instead of discarding it. The
pre-existing testcase clang/test/PCH/remap-file-from-pch.cpp confirms
that the new recovery method works correctly.
This resolves a long-standing FIXME to avoid hypothetically invalidating
another precompiled module that's already using the overridden contents.
This also removes ContentCache-related API that would be unsafe to use
across `CompilerInstance`s in an implicit modules build. This helps to
unblock us sinking it from SourceManager into FileManager in the future,
which would allow us to delete `InMemoryModuleCache`.
https://reviews.llvm.org/D66710
llvm-svn: 370546
|
|
|
|
|
|
| |
Remove this dead code. We always close it.
llvm-svn: 370488
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This prevents a crash when an error should be emitted instead.
During implicit module builds, there are cases where ReadASTCore is called with
ImportedBy set to nullptr, which breaks expectations in ReadModuleMapFileBlock,
leading to crashes.
Fix this by improving ReadModuleMapFileBlock to handle ImportedBy correctly.
This only happens non deterministically in the wild, when the underlying file
system changes while concurrent compiler invocations use implicit modules,
forcing rebuilds which see an inconsistent filesystem state. That said, there's
no much to do w.r.t. writing tests here.
rdar://problem/48828801
llvm-svn: 370422
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Marking a module for a rebuild when its signature differs from the
expected one causes redundant module rebuilds for incremental builds.
When a module is updated, its signature changes. But its consumers still
have the old signature and loading them will result in signature
mismatches. It will correctly cause the rebuilds for the consumers but
we don't need to rebuild the common module for each of them as it is
already up to date.
In practice this bug causes longer build times. We are doing more work
than required and only a single process can build a module, so parallel
builds degrade to a single-process mode where extra processes are just
waiting on a file lock.
Fix by not marking a module dependency for a rebuild on signature
mismatch. We'll check if it is up to date when we load it.
rdar://problem/50212358
Reviewers: dexonsmith, bruno, rsmith
Reviewed By: dexonsmith, bruno
Subscribers: jkorous, ributzka, cfe-commits, aprantl
Differential Revision: https://reviews.llvm.org/D66907
llvm-svn: 370274
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Refactor ContentCache::IsSystemFile to IsFileVolatile, checking
SourceManager::userFilesAreVolatile at construction time. This is a
step toward lowering ContentCache down from SourceManager to
FileManager.
No functionality change intended.
https://reviews.llvm.org/D66713
llvm-svn: 369958
|
|
|
|
|
|
|
|
|
|
| |
construct.
OpenMP 5.0 introduced new clause for declare target directive, device_type clause, which may accept values host, nohost, and any. Host means
that the function must be emitted only for the host, nohost - only for
the device, and any - for both, device and the host.
llvm-svn: 369775
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
dependencies
when the FileManager is reused across invocations
This commit introduces a parallel API to FileManager's getFile: getFileEntryRef, which returns
a reference to the FileEntry, and the name that was used to access the file. In the case of
a VFS with 'use-external-names', the FileEntyRef contains the external name of the file,
not the filename that was used to access it.
The new API is adopted only in the HeaderSearch and Preprocessor for include file lookup, so that the
accessed path can be propagated to SourceManager's FileInfo. SourceManager's FileInfo now can report this accessed path, using
the new getName method. This API is then adopted in the dependency collector, which now correctly reports dependencies when a file
is included both using a symlink and a real path in the case when the FileManager is reused across multiple Preprocessor invocations.
Note that this patch does not fix all dependency collector issues, as the same problem is still present in other cases when dependencies
are obtained using FileSkipped, InclusionDirective, and HasInclude. This will be fixed in follow-up commits.
Differential Revision: https://reviews.llvm.org/D65907
llvm-svn: 369680
|
|
|
|
| |
llvm-svn: 369675
|
|
|
|
|
|
|
|
|
|
| |
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
Differential revision: https://reviews.llvm.org/D66259
llvm-svn: 368942
|
|
|
|
|
|
|
|
| |
Added basic support for non-rectangular loops. It requires an additional
analysis of min/max boundaries for non-rectangular loops. Since only
linear dependency is allowed, we can do this analysis.
llvm-svn: 368903
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Create ASTContext::attachCommentsToJustParsedDecls so we don't have to load external comments in Sema when trying to attach existing comments to just parsed Decls.
- Keep comments ordered and cache their decomposed location - faster SourceLoc-based searching.
- Optimize work with redeclarations.
- Keep one comment per redeclaration chain (represented by canonical Decl) instead of comment per redeclaration.
- For redeclaration chains with no comment attached keep just the last declaration in chain that had no comment instead of every comment-less redeclaration.
Differential Revision: https://reviews.llvm.org/D65301
llvm-svn: 368732
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds the SVE built-in types defined by the Procedure Call
Standard for the Arm Architecture:
https://developer.arm.com/docs/100986/0000
It handles the types in all relevant places that deal with built-in types.
At the moment, some of these places bail out with an error, including:
(1) trying to generate LLVM IR for the types
(2) trying to generate debug info for the types
(3) trying to mangle the types using the Microsoft C++ ABI
(4) trying to @encode the types in Objective C
(1) and (2) are fixed by follow-on patches but (unlike this patch)
they deal mostly with target-specific LLVM details, so seemed like
a logically separate change. There is currently no spec for (3) and
(4), so reporting an error seems like the correct behaviour for now.
The intention is that the types will become sizeless types:
http://lists.llvm.org/pipermail/cfe-dev/2019-June/062523.html
The main purpose of the sizeless type extension is to diagnose
impossible or dangerous uses of the types, such as any that would
require sizeof to have a meaningful defined value.
Until then, the patch sets the alignments of the types to the values
specified in the link above. It also sets the sizes of the types to
zero, which is chosen to be consistently wrong and shouldn't affect
correctly-written code (i.e. code that would compile even with the
sizeless type extension).
The patch adds the common subset of functionality needed to test the
sizeless type extension on the one hand and to provide SVE intrinsic
functions on the other. After this patch, the two pieces of work are
essentially independent.
The patch is based on one by Graham Hunter:
https://reviews.llvm.org/D59245
Differential Revision: https://reviews.llvm.org/D62960
llvm-svn: 368413
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Added support for basic analysis of the linear variables and linear step
expression. Linear loop iteration variables must be excluded from this
analysis, only non-loop iteration variables must be analyzed.
Reviewers: NoQ
Subscribers: guansong, cfe-commits, caomhin, kkwli0
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65461
llvm-svn: 368295
|
|
|
|
|
|
| |
F_{None,Text,Append} are kept for compatibility since r334221.
llvm-svn: 367800
|