| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
| |
not the corresponding location information) earlier.
We need the type as written in order to properly merge functions with
deduced return types, so we need to load that early. But we don't want
to load the location information early, because that contains
problematic things such as the function parameters.
llvm-svn: 336016
|
|
|
|
|
|
|
| |
This reverts commit r335084 as requested by David Jones and
Eric Christopher because of differences of emitted warnings.
llvm-svn: 335516
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
... instead of prepending it at the beginning (the original behavior
since implemented in r122535 2010-12-23). This builds up an
AttributeList in the the order in which the attributes appear in the
source.
The reverse order caused nodes for attributes in the AST (e.g. LoopHint)
to be in the reverse, and therefore printed in the wrong order by
-ast-dump. Some TODO comments mention this. The order was explicitly
reversed for enable_if attribute overload resolution and name mangling,
which is not necessary anymore with this patch.
The change unfortunately has some secondary effects, especially for
diagnostic output. In the simplest cases, the CHECK lines or expected
diagnostic were changed to the the new output. If the kind of
error/warning changed, the attribute's order was changed instead.
It also causes some 'previous occurrence here' hints to be textually
after the main marker. This typically happens when attributes are
merged, but are incompatible. Interchanging the role of the the main
and note SourceLocation will also cause the case where two different
declaration's attributes (in contrast to multiple attributes of the
same declaration) are merged to be reversed. There is no easy fix
because sometimes previous attributes are merged into a new
declaration's attribute list, sometimes new attributes are added to a
previous declaration's attribute list. Since 'previous occurrence here'
pointing to locations after the main marker is not rare, I left the
markers as-is; it is only relevant when the attributes are declared in
the same declaration anyway, which often is on the same line.
Differential Revision: https://reviews.llvm.org/D48100
llvm-svn: 335084
|
|
|
|
| |
llvm-svn: 335022
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is the second attempt of r333500 (Update NRVO logic to support early return).
The previous one was reverted for a miscompilation for an incorrect NRVO set up on templates such as:
```
struct Foo {};
template <typename T>
T bar() {
T t;
if (false)
return T();
return t;
}
```
Where, `t` is marked as non-NRVO variable before its instantiation. However, while its instantiation, it's left an NRVO candidate, turned into an NRVO variable later.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D47586
llvm-svn: 335019
|
|
|
|
|
|
| |
This reverts commit r333500, which causes stage2 compiler crashes.
llvm-svn: 333547
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The previous implementation misses an opportunity to apply NRVO (Named Return Value
Optimization) below. That discourages user to write early return code.
```
struct Foo {};
Foo f(bool b) {
if (b)
return Foo();
Foo oo;
return oo;
}
```
That is, we can/should apply RVO for a local variable if:
* It's directly returned by at least one return statement.
* And, all reachable return statements in its scope returns the variable directly.
While, the previous implementation disables the RVO in a scope if there are multiple return
statements that refers different variables.
On the new algorithm, local variables are in NRVO_Candidate state at first, and a return
statement changes it to NRVO_Disabled for all visible variables but the return statement refers.
Then, at the end of the function AST traversal, NRVO is enabled for variables in NRVO_Candidate
state and refers from at least one return statement.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: xbolva00, Quuxplusone, arthur.j.odwyer, cfe-commits
Differential Revision: https://reviews.llvm.org/D47067
llvm-svn: 333500
|
|
|
|
| |
llvm-svn: 332400
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Support for ObjC/C ODR-like semantics with structural equivalence
checking was added back in r306918. There enums are handled and also
checked for structural equivalence. However, at use time of
EnumConstantDecl, support was missing for preventing ambiguous
name lookup.
Add the missing bits for properly merging EnumConstantDecl.
rdar://problem/38374569
llvm-svn: 331232
|
|
|
|
|
|
|
|
|
|
|
|
| |
During deserialization clang is currently missing the merging of
protocols into the canonical interface for the class extension.
This merging only currently happens during parsing and should also
be considered during deserialization.
rdar://problem/38724303
llvm-svn: 331063
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
See Richard's humbling feedback here:
http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20180423/226482.html
http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20180423/226486.html
Wish I'd had the patience to solicit the feedback prior to committing :)
Sorry for the noise guys.
Thank you Richard for being the steward that clang deserves!
llvm-svn: 330888
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
declarations
This patch is a tweak of changyu's patch: https://reviews.llvm.org/D40381. It differs in that the recognition of the 'concept' token is moved into the machinery that recognizes declaration-specifiers - this allows us to leverage the attribute handling machinery more seamlessly.
See the test file to get a sense of the basic parsing that this patch supports.
There is much more work to be done before concepts are usable...
Thanks Changyu!
llvm-svn: 330794
|
|
|
|
|
|
| |
warnings; other minor fixes (NFC).
llvm-svn: 329851
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
registers.
This patch fixes a bug in r328731 that caused structs transitively
containing __weak fields to be passed in registers. The patch replaces
the flag RecordDecl::CanPassInRegisters with a 2-bit enum that indicates
whether the struct or structs containing the struct are forced to be
passed indirectly.
This reapplies r329617. r329617 didn't specify the underlying type for
enum ArgPassingKind, which caused regression tests to fail on a windows
bot.
rdar://problem/39194693
Differential Revision: https://reviews.llvm.org/D45384
llvm-svn: 329635
|
|
|
|
|
|
|
|
| |
This reverts commit r329617. It broke a windows bot.
http://lab.llvm.org:8011/builders/llvm-clang-lld-x86_64-scei-ps4-windows10pro-fast/builds/16372/steps/test/logs/stdio
llvm-svn: 329627
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
registers.
This patch fixes a bug in r328731 that caused structs transitively
containing __weak fields to be passed in registers. The patch replaces
the flag RecordDecl::CanPassInRegisters with a 2-bit enum that indicates
whether the struct or structs containing the struct are forced to be
passed indirectly.
rdar://problem/39194693
llvm-svn: 329617
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
layout" rules.
The new rules say that a standard-layout struct has its first non-static
data member and all base classes at offset 0, and consider a class to
not be standard-layout if that would result in multiple subobjects of a
single type having the same address.
We track "is C++11 standard-layout class" separately from "is
standard-layout class" so that the ABIs that need this information can
still use it.
Differential Revision: https://reviews.llvm.org/D45176
llvm-svn: 329332
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
in templatized code under ARC
The AST for the fragment
```
@interface I
@end
template <typename>
void decode(I *p) {
for (I *k in p) {}
}
void decode(I *p) {
decode<int>(p);
}
```
differs heavily when templatized and non-templatized:
```
|-FunctionTemplateDecl 0x7fbfe0863940 <line:4:1, line:7:1> line:5:6 decode
| |-TemplateTypeParmDecl 0x7fbfe0863690 <line:4:11> col:11 typename depth 0 index 0
| |-FunctionDecl 0x7fbfe08638a0 <line:5:1, line:7:1> line:5:6 decode 'void (I *__strong)'
| | |-ParmVarDecl 0x7fbfe08637a0 <col:13, col:16> col:16 referenced p 'I *__strong'
| | `-CompoundStmt 0x7fbfe0863b88 <col:19, line:7:1>
| | `-ObjCForCollectionStmt 0x7fbfe0863b50 <line:6:3, col:20>
| | |-DeclStmt 0x7fbfe0863a50 <col:8, col:13>
| | | `-VarDecl 0x7fbfe08639f0 <col:8, col:11> col:11 k 'I *const __strong'
| | |-ImplicitCastExpr 0x7fbfe0863a90 <col:16> 'I *' <LValueToRValue>
| | | `-DeclRefExpr 0x7fbfe0863a68 <col:16> 'I *__strong' lvalue ParmVar 0x7fbfe08637a0 'p' 'I *__strong'
| | `-CompoundStmt 0x7fbfe0863b78 <col:19, col:20>
| `-FunctionDecl 0x7fbfe0863f80 <line:5:1, line:7:1> line:5:6 used decode 'void (I *__strong)'
| |-TemplateArgument type 'int'
| |-ParmVarDecl 0x7fbfe0863ef8 <col:13, col:16> col:16 used p 'I *__strong'
| `-CompoundStmt 0x7fbfe0890cf0 <col:19, line:7:1>
| `-ObjCForCollectionStmt 0x7fbfe0890cc8 <line:6:3, col:20>
| |-DeclStmt 0x7fbfe0890c70 <col:8, col:13>
| | `-VarDecl 0x7fbfe0890c00 <col:8, col:11> col:11 k 'I *__strong' callinit
| | `-ImplicitValueInitExpr 0x7fbfe0890c60 <<invalid sloc>> 'I *__strong'
| |-ImplicitCastExpr 0x7fbfe0890cb0 <col:16> 'I *' <LValueToRValue>
| | `-DeclRefExpr 0x7fbfe0890c88 <col:16> 'I *__strong' lvalue ParmVar 0x7fbfe0863ef8 'p' 'I *__strong'
| `-CompoundStmt 0x7fbfe0863b78 <col:19, col:20>
```
Note how in the instantiated version ImplicitValueInitExpr unexpectedly appears.
While objects are auto-initialized under ARC, it does not make sense to
have an initializer for a for-loop variable, and it makes even less
sense to have such a different AST for instantiated and non-instantiated
version.
Digging deeper, I have found that there are two separate Sema* files for
dealing with templates and for dealing with non-templatized code.
In a non-templatized version, an initialization was performed only for
variables which are not loop variables for an Objective-C loop and not
variables for a C++ for-in loop:
```
if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
bool IsForRangeLoop = false;
if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
IsForRangeLoop = true;
if (Tok.is(tok::l_brace))
FRI->RangeExpr = ParseBraceInitializer();
else
FRI->RangeExpr = ParseExpression();
}
Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
if (IsForRangeLoop)
Actions.ActOnCXXForRangeDecl(ThisDecl);
Actions.FinalizeDeclaration(ThisDecl);
D.complete(ThisDecl);
return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
}
SmallVector<Decl *, 8> DeclsInGroup;
Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
D, ParsedTemplateInfo(), FRI);
```
However the code in SemaTemplateInstantiateDecl was inconsistent,
guarding only against C++ for-in loops.
rdar://38391075
Differential Revision: https://reviews.llvm.org/D44989
llvm-svn: 328749
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ObjC and ObjC++ pass non-trivial structs in a way that is incompatible
with each other. For example:
typedef struct {
id f0;
__weak id f1;
} S;
// this code is compiled in c++.
extern "C" {
void foo(S s);
}
void caller() {
// the caller passes the parameter indirectly and destructs it.
foo(S());
}
// this function is compiled in c.
// 'a' is passed directly and is destructed in the callee.
void foo(S a) {
}
This patch fixes the incompatibility by passing and returning structs
with __strong or weak fields using the C ABI in C++ mode. __strong and
__weak fields in a struct do not cause the struct to be destructed in
the caller and __strong fields do not cause the struct to be passed
indirectly.
Also, this patch fixes the microsoft ABI bug mentioned here:
https://reviews.llvm.org/D41039?id=128767#inline-364710
rdar://problem/38887866
Differential Revision: https://reviews.llvm.org/D44908
llvm-svn: 328731
|
|
|
|
|
|
|
|
|
|
|
| |
r327219 added wrappers to std::sort which randomly shuffle the container before
sorting. This will help in uncovering non-determinism caused due to undefined
sorting order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of
std::sort.
llvm-svn: 328636
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During reading C++ definition data for lambda we can access
CXXRecordDecl representing lambda before we finished reading the
definition data. This can happen by reading a captured variable which is
VarDecl, then reading its decl context which is CXXMethodDecl `operator()`,
then trying to merge redeclarable methods and accessing
enclosing CXXRecordDecl. The call stack looks roughly like
VisitCXXRecordDecl
ReadCXXRecordDefinition
VisitVarDecl
VisitCXXMethodDecl
mergeRedeclarable
getPrimaryContextForMerging
If we add fake definition data at this point, later we'll hit the assertion
Assertion failed: (!DD.IsLambda && !MergeDD.IsLambda && "faked up lambda definition?"), function MergeDefinitionData, file clang/lib/Serialization/ASTReaderDecl.cpp, line 1675.
The fix is to assign definition data before reading it. Fixes PR32556.
rdar://problem/37461072
Reviewers: rsmith, bruno
Reviewed By: rsmith
Subscribers: cfe-commits, jkorous-apple, aprantl
Differential Revision: https://reviews.llvm.org/D43494
llvm-svn: 328153
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch uses the infrastructure added in r326307 for enabling
non-trivial fields to be declared in C structs to allow __weak fields in
C structs in ARC.
This recommits r327206, which was reverted because it caused
module-enabled builders to fail. I discovered that the
CXXRecordDecl::CanPassInRegisters flag wasn't being set correctly in
some cases after I moved it to RecordDecl.
Thanks to Eric Liu for helping me investigate the bug.
rdar://problem/33599681
https://reviews.llvm.org/D44095
llvm-svn: 327870
|
|
|
|
|
|
| |
rdar://problem/38421774
llvm-svn: 327434
|
|
|
|
|
|
|
|
|
|
|
| |
ARC."
This reverts commit r327206 as there were test failures caused by this
patch.
http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20180312/221427.html
llvm-svn: 327294
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch uses the infrastructure added in r326307 for enabling
non-trivial fields to be declared in C structs to allow __weak fields in
C structs in ARC.
rdar://problem/33599681
Differential Revision: https://reviews.llvm.org/D44095
llvm-svn: 327206
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
So I wrote a clang-tidy check to lint out redundant `isa`, `cast`, and
`dyn_cast`s for fun. This is a portion of what it found for clang; I
plan to do similar cleanups in LLVM and other subprojects when I find
time.
Because of the volume of changes, I explicitly avoided making any change
that wasn't highly local and obviously correct to me (e.g. we still have
a number of foo(cast<Bar>(baz)) that I didn't touch, since overloading
is a thing and the cast<Bar> did actually change the type -- just up the
class hierarchy).
I also tried to leave the types we were cast<>ing to somewhere nearby,
in cases where it wasn't locally obvious what we were dealing with
before.
llvm-svn: 326416
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The 'trivial_abi' attribute can be applied to a C++ class, struct, or
union. It makes special functions of the annotated class (the destructor
and copy/move constructors) to be trivial for the purpose of calls and,
as a result, enables the annotated class or containing classes to be
passed or returned using the C ABI for the underlying type.
When a type that is considered trivial for the purpose of calls despite
having a non-trivial destructor (which happens only when the class type
or one of its subobjects is a 'trivial_abi' class) is passed to a
function, the callee is responsible for destroying the object.
For more background, see the discussions that took place on the mailing
list:
http://lists.llvm.org/pipermail/cfe-dev/2017-November/055955.html
http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20180101/thread.html#214043
rdar://problem/35204524
Differential Revision: https://reviews.llvm.org/D41039
llvm-svn: 324269
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GCC's attribute 'target', in addition to being an optimization hint,
also allows function multiversioning. We currently have the former
implemented, this is the latter's implementation.
This works by enabling functions with the same name/signature to coexist,
so that they can all be emitted. Multiversion state is stored in the
FunctionDecl itself, and SemaDecl manages the definitions.
Note that it ends up having to permit redefinition of functions so
that they can all be emitted. Additionally, all versions of the function
must be emitted, so this also manages that.
Note that this includes some additional rules that GCC does not, since
defining something as a MultiVersion function after a usage has been made illegal.
The only 'history rewriting' that happens is if a function is emitted before
it has been converted to a multiversion'ed function, at which point its name
needs to be changed.
Function templates and virtual functions are NOT yet supported (not supported
in GCC either).
Additionally, constructors/destructors are disallowed, but the former is
planned.
llvm-svn: 322028
|
|
|
|
|
|
|
|
|
| |
Attempting to recompute it are doomed to fail because the IDNS of a declaration
is not necessarily preserved across serialization and deserialization (in turn
because whether a friend declaration is visible depends on whether some prior
non-friend declaration exists).
llvm-svn: 321921
|
|
|
|
|
|
|
| |
Extend the hashing to functions, which allows detection of function definition
mismatches across modules. This is a re-commit of r320230.
llvm-svn: 321395
|
|
|
|
| |
llvm-svn: 320239
|
|
|
|
|
|
|
| |
Extend the hashing to functions, which allows detection of function definition
mismatches across modules.
llvm-svn: 320230
|
|
|
|
|
|
|
|
|
| |
templates too.
While here, split the "point of instantiation changed" notification out from
it; these two really are orthogonal changes.
llvm-svn: 319727
|
|
|
|
|
|
| |
changing the C++1z terminology over to C++17. NFC intended, these are all mechanical changes.
llvm-svn: 319688
|
|
|
|
|
|
|
|
|
|
| |
whether they have an initializer.
We cannot distinguish between a declaration of a variable template
specialization and a definition of one that lacks an initializer without this,
and would previously mistake the latter for the former.
llvm-svn: 319605
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
FunctionDecl.
The anonymous union did NOT save us storage, but instead behaved as if we added an additional integer data member to FunctionDecl.
For additional context, the anonymous union renders the bit fields as non-adjacent and prevents them from sharing the same 'memory location' (i.e. bit-storage) by requiring the anonymous union object to be appropriately aligned.
This was confirmed through discussion with Richard Smith in Albuquerque (ISO C++ Meeting)
https://reviews.llvm.org/rL316292
llvm-svn: 317984
|
|
|
|
|
|
|
|
|
| |
for instantiating its definition.
We model the 'inline'ness as being instantiated with the static data member in
order to track whether the declaration has become a definition yet.
llvm-svn: 317147
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
deduction-guides in line with WG21's p0620r0.
In order to identify the copy deduction candidate, I considered two approaches:
- attempt to determine whether an implicit guide is a copy deduction candidate by checking certain properties of its subsituted parameter during overload-resolution.
- using one of the many bits (WillHaveBody) from FunctionDecl (that CXXDeductionGuideDecl inherits from) that are otherwise irrelevant for deduction guides
After some brittle gymnastics w the first strategy, I settled on the second, although to avoid confusion and to give that bit a better name, i turned it into a member of an anonymous union.
Given this identification 'bit', the tweak to overload resolution was a simple reordering of the deduction guide checks (in SemaOverload.cpp::isBetterOverloadCandidate), in-line with Jason Merrill's p0620r0 drafting which made it into the working paper. Concordant with that, I made sure the copy deduction candidate is always added.
References:
See https://bugs.llvm.org/show_bug.cgi?id=34970
See http://wg21.link/p0620r0
llvm-svn: 316292
|
|
|
|
|
|
|
|
|
|
| |
This feature is not (yet) approved by the C++ committee, so this is liable to
be reverted or significantly modified based on committee feedback.
No functionality change intended for existing code (a new type must be defined
in namespace std to take advantage of this feature).
llvm-svn: 315662
|
|
|
|
|
|
|
|
|
|
|
| |
deserialization."
This is breaking a build of https://github.com/abseil/abseil-cpp and so
likely not really NFC. Also reverted subsequent r314956/7.
I'll forward reproduction instructions to Richard.
llvm-svn: 315439
|
|
|
|
|
|
| |
definitions of the enclosing function.
llvm-svn: 314956
|
|
|
|
|
|
|
|
|
|
|
|
| |
In its place, track on the canonical function declaration whether there is a
declaration with a body (and if so, which one). This brings function definition
handling in line with what we do in all other contexts, and is necessary to
allow us to merge declarations within multiple definitions of the same function
(eg, PR33924).
No functionality change intended.
llvm-svn: 314955
|
|
|
|
| |
llvm-svn: 314581
|
|
|
|
|
|
| |
always have their name mangled.
llvm-svn: 312684
|
|
|
|
|
|
| |
that unit, not in importers.
llvm-svn: 312665
|
|
|
|
|
|
|
|
|
|
| |
move constructor.
Previously user-defined reduction initializer was considered as an
assignment expression, not as initializer. Fixed this by treating the
initializer expression as an initializer.
llvm-svn: 312638
|
|
|
|
|
|
|
| |
This would be trivial, except that our in-memory and serialized representations
for FieldDecls assumed that this can't happen.
llvm-svn: 311867
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
constructors when deciding whether classes should be passed indirectly.
This fixes ABI differences between Clang and GCC:
* Previously, Clang ignored the move constructor when making this
determination. It now takes the move constructor into account, per
https://github.com/itanium-cxx-abi/cxx-abi/pull/17 (this change may
seem recent, but the ABI change was agreed on the Itanium C++ ABI
list a long time ago).
* Previously, Clang's behavior when the copy constructor was deleted
was unstable -- depending on whether the lazy declaration of the
copy constructor had been triggered, you might get different behavior.
We now eagerly declare the copy constructor whenever its deletedness
is unclear, and ignore deleted copy/move constructors when looking for
a trivial such constructor.
This also fixes an ABI difference between Clang and MSVC:
* If the copy constructor would be implicitly deleted (but has not been
lazily declared yet), for instance because the class has an rvalue
reference member, we would pass it directly. We now pass such a class
indirectly, matching MSVC.
Based on a patch by Vassil Vassilev, which was based on a patch by Bernd
Schmidt, which was based on a patch by Reid Kleckner!
This is a re-commit of r310401, which was reverted in r310464 due to ARM
failures (which should now be fixed).
llvm-svn: 310983
|
|
|
|
|
|
|
|
|
| |
constructors when deciding whether classes should be passed indirectly."
This reverts commit r310401 because it seems to have broken some ARM
bot(s).
llvm-svn: 310464
|