| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
| |
This patch ensures built-in functions are rewritten using the proper
parent declaration.
Existing tests are modified to run in C++ mode to ensure the
functionality works also with C++ for OpenCL while not increasing the
testing runtime.
llvm-svn: 365499
|
|
|
|
|
|
|
|
| |
Ignore trailing NullStmts in compound expressions when determining the result type and value. This is to match the GCC behavior which ignores semicolons at the end of compound expressions.
Patch by Dominic Ferreira.
llvm-svn: 365498
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For background of BPF CO-RE project, please refer to
http://vger.kernel.org/bpfconf2019.html
In summary, BPF CO-RE intends to compile bpf programs
adjustable on struct/union layout change so the same
program can run on multiple kernels with adjustment
before loading based on native kernel structures.
In order to do this, we need keep track of GEP(getelementptr)
instruction base and result debuginfo types, so we
can adjust on the host based on kernel BTF info.
Capturing such information as an IR optimization is hard
as various optimization may have tweaked GEP and also
union is replaced by structure it is impossible to track
fieldindex for union member accesses.
Three intrinsic functions, preserve_{array,union,struct}_access_index,
are introducted.
addr = preserve_array_access_index(base, index, dimension)
addr = preserve_union_access_index(base, di_index)
addr = preserve_struct_access_index(base, gep_index, di_index)
here,
base: the base pointer for the array/union/struct access.
index: the last access index for array, the same for IR/DebugInfo layout.
dimension: the array dimension.
gep_index: the access index based on IR layout.
di_index: the access index based on user/debuginfo types.
If using these intrinsics blindly, i.e., transforming all GEPs
to these intrinsics and later on reducing them to GEPs, we have
seen up to 7% more instructions generated. To avoid such an overhead,
a clang builtin is proposed:
base = __builtin_preserve_access_index(base)
such that user wraps to-be-relocated GEPs in this builtin
and preserve_*_access_index intrinsics only apply to
those GEPs. Such a buyin will prevent performance degradation
if people do not use CO-RE, even for programs which use
bpf_probe_read().
For example, for the following example,
$ cat test.c
struct sk_buff {
int i;
int b1:1;
int b2:2;
union {
struct {
int o1;
int o2;
} o;
struct {
char flags;
char dev_id;
} dev;
int netid;
} u[10];
};
static int (*bpf_probe_read)(void *dst, int size, const void *unsafe_ptr)
= (void *) 4;
#define _(x) (__builtin_preserve_access_index(x))
int bpf_prog(struct sk_buff *ctx) {
char dev_id;
bpf_probe_read(&dev_id, sizeof(char), _(&ctx->u[5].dev.dev_id));
return dev_id;
}
$ clang -target bpf -O2 -g -emit-llvm -S -mllvm -print-before-all \
test.c >& log
The generated IR looks like below:
...
define dso_local i32 @bpf_prog(%struct.sk_buff*) #0 !dbg !15 {
%2 = alloca %struct.sk_buff*, align 8
%3 = alloca i8, align 1
store %struct.sk_buff* %0, %struct.sk_buff** %2, align 8, !tbaa !45
call void @llvm.dbg.declare(metadata %struct.sk_buff** %2, metadata !43, metadata !DIExpression()), !dbg !49
call void @llvm.lifetime.start.p0i8(i64 1, i8* %3) #4, !dbg !50
call void @llvm.dbg.declare(metadata i8* %3, metadata !44, metadata !DIExpression()), !dbg !51
%4 = load i32 (i8*, i32, i8*)*, i32 (i8*, i32, i8*)** @bpf_probe_read, align 8, !dbg !52, !tbaa !45
%5 = load %struct.sk_buff*, %struct.sk_buff** %2, align 8, !dbg !53, !tbaa !45
%6 = call [10 x %union.anon]* @llvm.preserve.struct.access.index.p0a10s_union.anons.p0s_struct.sk_buffs(
%struct.sk_buff* %5, i32 2, i32 3), !dbg !53, !llvm.preserve.access.index !19
%7 = call %union.anon* @llvm.preserve.array.access.index.p0s_union.anons.p0a10s_union.anons(
[10 x %union.anon]* %6, i32 1, i32 5), !dbg !53
%8 = call %union.anon* @llvm.preserve.union.access.index.p0s_union.anons.p0s_union.anons(
%union.anon* %7, i32 1), !dbg !53, !llvm.preserve.access.index !26
%9 = bitcast %union.anon* %8 to %struct.anon.0*, !dbg !53
%10 = call i8* @llvm.preserve.struct.access.index.p0i8.p0s_struct.anon.0s(
%struct.anon.0* %9, i32 1, i32 1), !dbg !53, !llvm.preserve.access.index !34
%11 = call i32 %4(i8* %3, i32 1, i8* %10), !dbg !52
%12 = load i8, i8* %3, align 1, !dbg !54, !tbaa !55
%13 = sext i8 %12 to i32, !dbg !54
call void @llvm.lifetime.end.p0i8(i64 1, i8* %3) #4, !dbg !56
ret i32 %13, !dbg !57
}
!19 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "sk_buff", file: !3, line: 1, size: 704, elements: !20)
!26 = distinct !DICompositeType(tag: DW_TAG_union_type, scope: !19, file: !3, line: 5, size: 64, elements: !27)
!34 = distinct !DICompositeType(tag: DW_TAG_structure_type, scope: !26, file: !3, line: 10, size: 16, elements: !35)
Note that @llvm.preserve.{struct,union}.access.index calls have metadata llvm.preserve.access.index
attached to instructions to provide struct/union debuginfo type information.
For &ctx->u[5].dev.dev_id,
. The "%6 = ..." represents struct member "u" with index 2 for IR layout and index 3 for DI layout.
. The "%7 = ..." represents array subscript "5".
. The "%8 = ..." represents union member "dev" with index 1 for DI layout.
. The "%10 = ..." represents struct member "dev_id" with index 1 for both IR and DI layout.
Basically, traversing the use-def chain recursively for the 3rd argument of bpf_probe_read() and
examining all preserve_*_access_index calls, the debuginfo struct/union/array access index
can be achieved.
The intrinsics also contain enough information to regenerate codes for IR layout.
For array and structure intrinsics, the proper GEP can be constructed.
For union intrinsics, replacing all uses of "addr" with "base" should be enough.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D61809
llvm-svn: 365438
|
|
|
|
|
|
|
|
|
| |
This reverts commit r365435.
Forgot adding the Differential Revision link. Will add to the
commit message and resubmit.
llvm-svn: 365436
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For background of BPF CO-RE project, please refer to
http://vger.kernel.org/bpfconf2019.html
In summary, BPF CO-RE intends to compile bpf programs
adjustable on struct/union layout change so the same
program can run on multiple kernels with adjustment
before loading based on native kernel structures.
In order to do this, we need keep track of GEP(getelementptr)
instruction base and result debuginfo types, so we
can adjust on the host based on kernel BTF info.
Capturing such information as an IR optimization is hard
as various optimization may have tweaked GEP and also
union is replaced by structure it is impossible to track
fieldindex for union member accesses.
Three intrinsic functions, preserve_{array,union,struct}_access_index,
are introducted.
addr = preserve_array_access_index(base, index, dimension)
addr = preserve_union_access_index(base, di_index)
addr = preserve_struct_access_index(base, gep_index, di_index)
here,
base: the base pointer for the array/union/struct access.
index: the last access index for array, the same for IR/DebugInfo layout.
dimension: the array dimension.
gep_index: the access index based on IR layout.
di_index: the access index based on user/debuginfo types.
If using these intrinsics blindly, i.e., transforming all GEPs
to these intrinsics and later on reducing them to GEPs, we have
seen up to 7% more instructions generated. To avoid such an overhead,
a clang builtin is proposed:
base = __builtin_preserve_access_index(base)
such that user wraps to-be-relocated GEPs in this builtin
and preserve_*_access_index intrinsics only apply to
those GEPs. Such a buyin will prevent performance degradation
if people do not use CO-RE, even for programs which use
bpf_probe_read().
For example, for the following example,
$ cat test.c
struct sk_buff {
int i;
int b1:1;
int b2:2;
union {
struct {
int o1;
int o2;
} o;
struct {
char flags;
char dev_id;
} dev;
int netid;
} u[10];
};
static int (*bpf_probe_read)(void *dst, int size, const void *unsafe_ptr)
= (void *) 4;
#define _(x) (__builtin_preserve_access_index(x))
int bpf_prog(struct sk_buff *ctx) {
char dev_id;
bpf_probe_read(&dev_id, sizeof(char), _(&ctx->u[5].dev.dev_id));
return dev_id;
}
$ clang -target bpf -O2 -g -emit-llvm -S -mllvm -print-before-all \
test.c >& log
The generated IR looks like below:
...
define dso_local i32 @bpf_prog(%struct.sk_buff*) #0 !dbg !15 {
%2 = alloca %struct.sk_buff*, align 8
%3 = alloca i8, align 1
store %struct.sk_buff* %0, %struct.sk_buff** %2, align 8, !tbaa !45
call void @llvm.dbg.declare(metadata %struct.sk_buff** %2, metadata !43, metadata !DIExpression()), !dbg !49
call void @llvm.lifetime.start.p0i8(i64 1, i8* %3) #4, !dbg !50
call void @llvm.dbg.declare(metadata i8* %3, metadata !44, metadata !DIExpression()), !dbg !51
%4 = load i32 (i8*, i32, i8*)*, i32 (i8*, i32, i8*)** @bpf_probe_read, align 8, !dbg !52, !tbaa !45
%5 = load %struct.sk_buff*, %struct.sk_buff** %2, align 8, !dbg !53, !tbaa !45
%6 = call [10 x %union.anon]* @llvm.preserve.struct.access.index.p0a10s_union.anons.p0s_struct.sk_buffs(
%struct.sk_buff* %5, i32 2, i32 3), !dbg !53, !llvm.preserve.access.index !19
%7 = call %union.anon* @llvm.preserve.array.access.index.p0s_union.anons.p0a10s_union.anons(
[10 x %union.anon]* %6, i32 1, i32 5), !dbg !53
%8 = call %union.anon* @llvm.preserve.union.access.index.p0s_union.anons.p0s_union.anons(
%union.anon* %7, i32 1), !dbg !53, !llvm.preserve.access.index !26
%9 = bitcast %union.anon* %8 to %struct.anon.0*, !dbg !53
%10 = call i8* @llvm.preserve.struct.access.index.p0i8.p0s_struct.anon.0s(
%struct.anon.0* %9, i32 1, i32 1), !dbg !53, !llvm.preserve.access.index !34
%11 = call i32 %4(i8* %3, i32 1, i8* %10), !dbg !52
%12 = load i8, i8* %3, align 1, !dbg !54, !tbaa !55
%13 = sext i8 %12 to i32, !dbg !54
call void @llvm.lifetime.end.p0i8(i64 1, i8* %3) #4, !dbg !56
ret i32 %13, !dbg !57
}
!19 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "sk_buff", file: !3, line: 1, size: 704, elements: !20)
!26 = distinct !DICompositeType(tag: DW_TAG_union_type, scope: !19, file: !3, line: 5, size: 64, elements: !27)
!34 = distinct !DICompositeType(tag: DW_TAG_structure_type, scope: !26, file: !3, line: 10, size: 16, elements: !35)
Note that @llvm.preserve.{struct,union}.access.index calls have metadata llvm.preserve.access.index
attached to instructions to provide struct/union debuginfo type information.
For &ctx->u[5].dev.dev_id,
. The "%6 = ..." represents struct member "u" with index 2 for IR layout and index 3 for DI layout.
. The "%7 = ..." represents array subscript "5".
. The "%8 = ..." represents union member "dev" with index 1 for DI layout.
. The "%10 = ..." represents struct member "dev_id" with index 1 for both IR and DI layout.
Basically, traversing the use-def chain recursively for the 3rd argument of bpf_probe_read() and
examining all preserve_*_access_index calls, the debuginfo struct/union/array access index
can be achieved.
The intrinsics also contain enough information to regenerate codes for IR layout.
For array and structure intrinsics, the proper GEP can be constructed.
For union intrinsics, replacing all uses of "addr" with "base" should be enough.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 365435
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D64349
llvm-svn: 365411
|
|
|
|
|
|
|
|
|
|
|
|
| |
On macOS, BOOL is a typedef for signed char, but it should never hold a value
that isn't 1 or 0. Any code that expects a different value in their BOOL should
be fixed.
rdar://51954400
Differential revision: https://reviews.llvm.org/D63856
llvm-svn: 365408
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
default-constructible and assignable.
This is a fix for rG864949 which only disabled default construction and
assignment for lambdas with capture-defaults, where the C++2a draft
disables them for lambdas with any lambda-capture at all.
Patch by Logan Smith!
Differential Revision: https://reviews.llvm.org/D64058
llvm-svn: 365406
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
spurious `-Warc-repeated-use-of-weak` warnings
This reverts r365382 (git commit 8b1becf2e31d9170ee356a19c7b6ea991d3a520f)
Appears to regress this semi-reduced fragment of valid code from windows
SDK headers:
#define InterlockedIncrement64 _InterlockedIncrement64
extern "C" __int64 InterlockedIncrement64(__int64 volatile *Addend);
#pragma intrinsic(_InterlockedIncrement64)
unsigned __int64 InterlockedIncrement(unsigned __int64 volatile *Addend) {
return (unsigned __int64)(InterlockedIncrement64)((volatile __int64 *)Addend);
}
Found on a buildbot here, but no mail was sent due to it already being
red:
http://lab.llvm.org:8011/builders/sanitizer-windows/builds/48067
llvm-svn: 365393
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
spurious `-Warc-repeated-use-of-weak` warnings
The spurious -Warc-repeated-use-of-weak warnings are issued when an
initializer expression uses a weak ObjC pointer.
My first attempt to silence the warnings (r350917) caused clang to
reject code that is legal in C++17. The patch is based on the feedback I
received from Richard when the patch was reverted.
http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20190422/268945.html
http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20190422/268943.html
Differential Revision: https://reviews.llvm.org/D62645
llvm-svn: 365382
|
|
|
|
|
|
|
| |
Provide more data to the user in the error message about unsupported
type for device compilation.
llvm-svn: 365374
|
|
|
|
|
|
| |
llvm::partition_point. NFC
llvm-svn: 365006
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Currently HeaderSearch only looks at SearchDir's passed into it, but in
addition to those paths headers can be relative to including file's directory.
This patch makes sure that is taken into account.
Reviewers: gribozavr
Subscribers: jkorous, arphaman, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63295
llvm-svn: 365005
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds a new builtin, __builtin_bit_cast(T, v), which performs a
bit_cast from a value v to a type T. This expression can be evaluated at
compile time under specific circumstances.
The compile time evaluation currently doesn't support bit-fields, but I'm
planning on fixing this in a follow up (some of the logic for figuring this out
is in CodeGen). I'm also planning follow-ups for supporting some more esoteric
types that the constexpr evaluator supports, as well as extending
__builtin_memcpy constexpr evaluation to use the same infrastructure.
rdar://44987528
Differential revision: https://reviews.llvm.org/D62825
llvm-svn: 364954
|
|
|
|
|
|
|
|
| |
Previously, lambda captures were processed in the function called during
capturing the variables. It leads to the recursive functions calls and
may result in the compiler crash.
llvm-svn: 364820
|
|
|
|
|
|
|
|
|
| |
If the variable is used in the OpenMP region implicitly, we need to
check the data-sharing attributes for such variables and generate
implicit clauses for them. Patch improves analysis of such variables for
better handling of data-sharing rules.
llvm-svn: 364683
|
|
|
|
|
|
|
|
|
| |
Fixed handling of the data-sharing attributes for static members when
requesting top most attribute. Previously, it might return the incorrect
attributes for static members if they were overriden in the outer
constructs.
llvm-svn: 364655
|
|
|
|
|
|
|
|
|
|
|
|
| |
According to the OpenMP 5.0 standard, the loop iteration variable in the associated
for-loop of a simd construct with just one associated for-loop may be
listed in a private, lastprivate, or linear clause with a linear-step
that is the increment of the associated for-loop. Also, the loop
teration variables in the associated for-loops of a simd construct with
multiple associated for-loops may be listed in a private or lastprivate
clause.
llvm-svn: 364650
|
|
|
|
|
|
|
|
| |
The errors for incorrectly specified data-sharing attributes for simd
constructs must be emitted only for the explicitly provided clauses, not
the predetermined ones.
llvm-svn: 364647
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Without an explicit declaration for placement new, clang would reject
uses of placement new with "'default new' is not supported in OpenCL
C++". This may mislead users into thinking that placement new is not
supported, see e.g. PR42060.
Clarify that placement new requires an explicit declaration.
Differential Revision: https://reviews.llvm.org/D63561
llvm-svn: 364423
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch introduces support of hip_pinned_shadow variable for HIP.
A hip_pinned_shadow variable is a global variable with attribute hip_pinned_shadow.
It has external linkage on device side and has no initializer. It has internal
linkage on host side and has initializer or static constructor. It can be accessed
in both device code and host code.
This allows HIP runtime to implement support of HIP texture reference.
Differential Revision: https://reviews.llvm.org/D62738
llvm-svn: 364381
|
|
|
|
|
|
|
|
| |
template argument.
We do need one of these but we don't need two.
llvm-svn: 364347
|
|
|
|
|
|
| |
value of the LHS operand.
llvm-svn: 364265
|
|
|
|
|
|
|
|
|
| |
type-dependent argument packs.
We need to strip off the PackExpansionExpr to get the real (dependent)
type rather than an opaque DependentTy.
llvm-svn: 364165
|
|
|
|
|
|
|
| |
The indentation of the return here was off, and confusing as a result.
Cleaned up a bit extra while I was in the area.
llvm-svn: 364104
|
|
|
|
|
|
|
|
| |
If the variably modified type is declared outside of the captured region
and then used in the cast expression along with array subscript
expression, the type is not captured and it leads to the compiler crash.
llvm-svn: 364080
|
|
|
|
|
|
|
| |
The threadprivate variables should not be captured in the outlined
regions, otherwise it leads to the compiler crash.
llvm-svn: 364061
|
|
|
|
|
|
|
|
| |
Extend reference binding behavior to account for address spaces.
Differential Revision: https://reviews.llvm.org/D62914
llvm-svn: 364032
|
|
|
|
|
|
|
|
|
| |
Improved wording and also simplified by using printing
method from qualifiers.
Differential Revision: https://reviews.llvm.org/D62914
llvm-svn: 364023
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
this patch has multiple small improvements related to the APValue in ConstantExpr.
changes:
- APValue in ConstantExpr are now cleaned up using ASTContext::addDestruction instead of there own system.
- ConstantExprBits Stores the ValueKind of the result beaing stored.
- VerifyIntegerConstantExpression now stores the evaluated value in ConstantExpr.
- the Constant Evaluator uses the stored value of ConstantExpr when available.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63376
llvm-svn: 364011
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Add support for the C++2a [[no_unique_address]] attribute for targets using the Itanium C++ ABI.
This depends on D63371.
Reviewers: rjmccall, aaron.ballman
Subscribers: dschuff, aheejin, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63451
llvm-svn: 363976
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
template argument contains a backreference to a dependently-typed
earlier parameter.
In a case like:
template<typename T, T A, decltype(A) = A> struct X {};
template<typename U> auto Y = X<U, 0>();
we previously treated both references to `A` in the third parameter as
being of type `int` when checking the template-id in `Y`. That`s wrong;
the type of `A` in these contexts is the dependent type `U`.
When we encounter a non-type template argument that we can't convert to
the parameter type because of type-dependence, we now insert a dependent
conversion node so that the SubstNonTypeTemplateParmExpr for the
template argument will have the parameter's type rather than whatever
type the argument had.
llvm-svn: 363972
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If we construct an object in some arbitrary non-default addr space
it should fail unless either:
- There is an implicit conversion from the address space to default
/generic address space.
- There is a matching ctor qualified with an address space that is
either exactly matching or convertible to the address space of an
object.
Differential Revision: https://reviews.llvm.org/D62156
llvm-svn: 363944
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change fixes https://bugs.llvm.org/show_bug.cgi?id=40997.
Reviewers: GorNishanov, rsmith
Reviewed by: GorNishanov
Subscribers: cfe-commits, lewissbaker, modocache, llvm-commits
Differential Revision: https://reviews.llvm.org/D63381
llvm-svn: 363804
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
I've found that most often the proper way to fix this warning is to add
`static`, because if the code otherwise compiles and links, the function
or variable is apparently not needed outside of the TU.
We can't provide a fix-it hint for variable declarations, because
multiple VarDecls can share the same type, and if we put static in front
of that, we affect all declared variables, some of which might have
previous declarations.
We also provide no fix-it hint for the rare case of an `extern` function
definition, because that would require removing `extern` and I have no
idea how to get the source location of the storage class specifier from
a FunctionDecl. I believe this information is only available earlier in
the AST construction from DeclSpec::getStorageClassSpecLoc(), but we
don't have that here.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D59402
llvm-svn: 363749
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
There was a search for non-prototype declarations for the function, but
we only showed the results for zero-parameter functions. Now we show the
note for functions with parameters as well, but we omit the fix-it hint
suggesting to add `void`.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D62750
llvm-svn: 363748
|
|
|
|
|
|
|
|
|
| |
The device code must use the same long double type as the host.
Otherwise the code cannot be linked and executed properly. Patch adds
only basic support and checks for supporting of the host long double
double on the device.
llvm-svn: 363717
|
|
|
|
|
|
|
|
|
|
| |
Reland r363242 after fixing an issue with the tablegen dependence.
Patch by Pierre Gondois and Sven van Haastregt.
Differential revision: https://reviews.llvm.org/D62849
llvm-svn: 363541
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
When using ConstantExpr we often need the result of the expression to be kept in the AST. Currently this is done on a by the node that needs the result and has been done multiple times for enumerator, for constexpr variables... . This patch adds to ConstantExpr the ability to store the result of evaluating the expression. no functional changes expected.
Changes:
- Add trailling object to ConstantExpr that can hold an APValue or an uint64_t. the uint64_t is here because most ConstantExpr yield integral values so there is an optimized layout for integral values.
- Add basic* serialization support for the trailing result.
- Move conversion functions from an enum to a fltSemantics from clang::FloatingLiteral to llvm::APFloatBase. this change is to make it usable for serializing APValues.
- Add basic* Import support for the trailing result.
- ConstantExpr created in CheckConvertedConstantExpression now stores the result in the ConstantExpr Node.
- Adapt AST dump to print the result when present.
basic* : None, Indeterminate, Int, Float, FixedPoint, ComplexInt, ComplexFloat,
the result is not yet used anywhere but for -ast-dump.
Reviewers: rsmith, martong, shafik
Reviewed By: rsmith
Subscribers: rnkovacs, hiraditya, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62399
llvm-svn: 363493
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Since the addition of __builtin_is_constant_evaluated the result of an expression can change based on whether it is evaluated in constant context. a lot of semantic checking performs evaluations with out specifying context. which can lead to wrong diagnostics.
for example:
```
constexpr int i0 = (long long)__builtin_is_constant_evaluated() * (1ll << 33); //#1
constexpr int i1 = (long long)!__builtin_is_constant_evaluated() * (1ll << 33); //#2
```
before the patch, #2 was diagnosed incorrectly and #1 wasn't diagnosed.
after the patch #1 is diagnosed as it should and #2 isn't.
Changes:
- add a flag to Sema to passe in constant context mode.
- in SemaChecking.cpp calls to Expr::Evaluate* are now done in constant context when they should.
- in SemaChecking.cpp diagnostics for UB are not checked for in constant context because an error will be emitted by the constant evaluator.
- in SemaChecking.cpp diagnostics for construct that cannot appear in constant context are not checked for in constant context.
- in SemaChecking.cpp diagnostics on constant expression are always emitted because constant expression are always evaluated.
- semantic checking for initialization of constexpr variables is now done in constant context.
- adapt test that were depending on warning changes.
- add test.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D62009
llvm-svn: 363488
|
|
|
|
| |
llvm-svn: 363472
|
|
|
|
| |
llvm-svn: 363450
|
|
|
|
|
|
| |
Also reject default arguments appearing in invalid locations.
llvm-svn: 363447
|
|
|
|
|
|
| |
rather than duplicating operator name tables in multiple places.
llvm-svn: 363446
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
is used
Summary: This patch avoids the emission of maps for target link variables when unified memory is present.
Reviewers: ABataev, caomhin
Reviewed By: ABataev
Subscribers: guansong, jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60883
llvm-svn: 363435
|
|
|
|
|
|
|
|
|
| |
In addition to being unused and duplicating code, this was also wrong
(it didn't properly mark the operand as being potentially not odr-used).
This reinstates r363340, reverted in r363352.
llvm-svn: 363430
|
|
|
|
|
|
|
|
|
|
|
| |
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
This reinstates r363337, reverted in r363352.
llvm-svn: 363429
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
conversion applied to a member access or similar not-quite-trivial lvalue expression.
Summary:
When a variable is named in a context where we can't directly emit a
reference to it (because we don't know for sure that it's going to be
defined, or it's from an enclosing function and not captured, or the
reference might not "work" for some reason), we emit a copy of the
variable as a global and use that for the known-to-be-read-only access.
This reinstates r363295, reverted in r363352, with a fix for PR42276:
we now produce a proper name for a non-odr-use reference to a static
constexpr data member. The name <mangled-name>.const is used in that
case; such names are reserved to the implementation for cases such as
this and should demangle nicely.
Reviewers: rjmccall
Subscribers: jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63157
llvm-svn: 363428
|
|
|
|
|
|
|
|
|
| |
This reverts commit r363242 as it broke some builds with
make[2]: *** No rule to make target 'ClangOpenCLBuiltinsImpl', needed by
'tools/clang/lib/Sema/CMakeFiles/obj.clangSema.dir/SemaLookup.cpp.o'.
llvm-svn: 363376
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
this revision adds Lexing, Parsing and Basic Semantic for the consteval specifier as specified by http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1073r3.html
with this patch, the consteval specifier is treated as constexpr but can only be applied to function declaration.
Changes:
- add the consteval keyword.
- add parsing of consteval specifier for normal declarations and lambdas expressions.
- add the whether a declaration is constexpr is now represented by and enum everywhere except for variable because they can't be consteval.
- adapt diagnostic about constexpr to print constexpr or consteval depending on the case.
- add tests for basic semantic.
Reviewers: rsmith, martong, shafik
Reviewed By: rsmith
Subscribers: eraman, efriedma, rnkovacs, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D61790
llvm-svn: 363362
|