| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
| |
Added parsing/sema analysis of the allocate clause.
llvm-svn: 357068
|
| |
|
|
|
|
|
|
|
|
| |
This fixes a false positive on the following, where st is configured to have
different sizes based on some preprocessor logic:
if (sizeof(buf) == sizeof(*st))
memcpy(&buf, st, sizeof(*st));
llvm-svn: 357041
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
MarkVarDeclODRUsed indirectly calls captureInBlock, which creates a copy
expression. The copy expression is insulated in it's own
ExpressionEvaluationContext, so it saves, mutates, and restores MaybeODRUseExprs
as CleanupVarDeclMarking is iterating through it, leading to a crash. Fix this
by iterating through a local copy of MaybeODRUseExprs.
rdar://47493525
https://reviews.llvm.org/D59670
llvm-svn: 357040
|
| |
|
|
|
|
|
|
|
|
| |
FileManager constructs a VFS in its constructor if it isn't passed one,
and there's no way to reset it. Make that contract clear by returning a
reference from its accessor.
https://reviews.llvm.org/D59388
llvm-svn: 357038
|
| |
|
|
|
|
|
|
|
|
| |
The intention is to add metadata to direct call sites of functions
marked with __declspec(allocator), which will ultimately result in some
S_HEAPALLOCSITE debug info records when emitting codeview.
This is a piece of PR38491
llvm-svn: 356964
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
are dependent
Bail-out of CheckArrayAccess when the types of the base expression before
and after eventual casts are dependent. We will get another chance to check
for array bounds during instantiation. Fixes PR41087.
Differential Revision: https://reviews.llvm.org/D59776
Reviewed By: efriedma
llvm-svn: 356957
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CorrectionCandidateCallback unless we are going to do some typo correction
The various CorrectionCandidateCallbacks are currently heap-allocated
unconditionally. This was needed because of delayed typo correction.
However these allocations represent currently 15.4% of all allocations
(number of allocations) when parsing all of Boost (!), mostly because
of ParseCastExpression, ParseStatementOrDeclarationAfterAttrtibutes
and isCXXDeclarationSpecifier. Note that all of these callback objects
are small. Let's not do this.
Instead initially allocate the callback on the stack, and only do a
heap allocation if we are going to do some typo correction. Do this by:
1. Adding a clone function to each callback, which will do a polymorphic
clone of the callback. This clone function is required to be implemented
by every callback (of which there is a fair amount). Make sure this is
the case by making it pure virtual.
2. Use this clone function when we are going to try to correct a typo.
This additionally cut the time of -fsyntax-only on all of Boost by 0.5%
(not that much, but still something). No functional changes intended.
Differential Revision: https://reviews.llvm.org/D58827
Reviewed By: rnk
llvm-svn: 356925
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
https://reviews.llvm.org/D59076 added a new coroutine error that
prevented users from using 'co_await' or 'co_yield' within a exception
handler. However, it was reverted in https://reviews.llvm.org/rC356774
because it caused a regression in nested scopes in C++ catch statements,
as documented by https://bugs.llvm.org/show_bug.cgi?id=41171.
The issue was due to an incorrect use of a `clang::ParseScope`. To fix:
1. Add a regression test for catch statement parsing that mimics the bug
report from https://bugs.llvm.org/show_bug.cgi?id=41171.
2. Re-apply the coroutines error patch from
https://reviews.llvm.org/D59076, but this time with the correct
ParseScope behavior.
Reviewers: GorNishanov, tks2103, rsmith, riccibruno, jbulow
Reviewed By: riccibruno
Subscribers: EricWF, jdoerfert, lewissbaker, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59752
llvm-svn: 356865
|
| |
|
|
|
|
|
|
| |
The commit https://reviews.llvm.org/rC356296 is causing a regression in nested
catch scopes, https://bugs.llvm.org/show_bug.cgi?id=41171. Revert this change
for now in order to un-break that problem report.
llvm-svn: 356774
|
| |
|
|
| |
llvm-svn: 356759
|
| |
|
|
|
|
|
|
|
|
|
|
| |
dynamic_allocators.
According to the OpenMP 5.0, 2.11.3 allocate Directive, Restrictions,
allocate directives that appear in a target region must specify an
allocator clause unless a requires directive with the dynamic_allocators
clause is present in the same compilation unit. Patch adds a check for a
presence of the requires directive with the dynamic_allocators clause.
llvm-svn: 356758
|
| |
|
|
|
|
|
|
|
|
|
| |
clause in target region.
According to the OpenMP 5.0, 2.11.3 allocate Directive, Restrictions,
allocate directives that appear in a target region must specify an
allocator clause unless a requires directive with the dynamic_allocators
clause is present in the same compilation unit.
llvm-svn: 356752
|
| |
|
|
|
|
|
|
| |
Previously implemented check required the reevaluation of the already
evaluated predefined allocator kind for the global variables. Patch
simplifies this evaluation and removes extra code.
llvm-svn: 356699
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
After https://reviews.llvm.org/rL355317 we noticed that quite a decent
amount of code redeclares builtins (memcpy in particular, I believe
reduced from an MSVC header) with a calling convention specified.
This gets particularly troublesome when the user specifies a new
'default' calling convention on the command line.
When looking to add a diagnostic for this case, it was noticed that we
had 3 other diagnostics that differed only slightly. This patch ALSO
unifies those under a 'select'. Unfortunately, the order of words in
ONE of these diagnostics was reversed ("'thiscall' calling convention"
vs "calling convention 'thiscall'"), so this patch also standardizes on
the former.
Differential Revision: https://reviews.llvm.org/D59560
Change-Id: I79f99fe7c2301640755ffdd774b46eb44526bb22
llvm-svn: 356663
|
| |
|
|
|
|
|
|
|
|
|
| |
allocators.
It is better to deduce omp_allocator_handle_t type from the predefined
allocators, because omp.h header might not define it explicitly. Plus,
it allows to identify the predefined allocators correctly when trying to
build the allcoator for the global variables.
llvm-svn: 356607
|
| |
|
|
|
|
|
|
| |
versions that have the major number only
rdar://48018651
llvm-svn: 356605
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this commit, we emit unavailable errors for calls to functions during
overload resolution, and for references to all other declarations in
DiagnoseUseOfDecl. The early checks during overload resolution aren't as good as
the DiagnoseAvailabilityOfDecl based checks, as they error on the code from
PR40991. This commit fixes this by removing the early checking.
llvm.org/PR40991
rdar://48564179
Differential revision: https://reviews.llvm.org/D59394
llvm-svn: 356599
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This diff previously exposed a bug in LLVM's IRLinker, breaking
buildbots that tried to self-host LLVM with monolithic LTO.
The bug is now in LLVM by D59552
Original commit message:
As PR17480 describes, clang does not support the used attribute
for member functions of class templates. This means that if the member
function is not used, its definition is never instantiated. This patch
changes clang to emit the definition if it has the used attribute.
Test Plan: Added a testcase
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D56928
llvm-svn: 356598
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf, page 3:
```
structured block
For C/C++, an executable statement, possibly compound, with a single entry at the
top and a single exit at the bottom, or an OpenMP construct.
COMMENT: See Section 2.1 on page 38 for restrictions on structured
blocks.
```
```
2.1 Directive Format
Some executable directives include a structured block. A structured block:
• may contain infinite loops where the point of exit is never reached;
• may halt due to an IEEE exception;
• may contain calls to exit(), _Exit(), quick_exit(), abort() or functions with a
_Noreturn specifier (in C) or a noreturn attribute (in C/C++);
• may be an expression statement, iteration statement, selection statement, or try block, provided
that the corresponding compound statement obtained by enclosing it in { and } would be a
structured block; and
Restrictions
Restrictions to structured blocks are as follows:
• Entry to a structured block must not be the result of a branch.
• The point of exit cannot be a branch out of the structured block.
C / C++
• The point of entry to a structured block must not be a call to setjmp().
• longjmp() and throw() must not violate the entry/exit criteria.
```
Of particular note here is the fact that OpenMP structured blocks are as-if `noexcept`,
in the same sense as with the normal `noexcept` functions in C++.
I.e. if throw happens, and it attempts to travel out of the `noexcept` function
(here: out of the current structured-block), then the program terminates.
Now, one of course can say that since it is explicitly prohibited by the Specification,
then any and all programs that violate this Specification contain undefined behavior,
and are unspecified, and thus no one should care about them. Just don't write broken code /s
But i'm not sure this is a reasonable approach.
I have personally had oss-fuzz issues of this origin - exception thrown inside
of an OpenMP structured-block that is not caught, thus causing program termination.
This issue isn't all that hard to catch, it's not any particularly different from
diagnosing the same situation with the normal `noexcept` function.
Now, clang static analyzer does not presently model exceptions.
But clang-tidy has a simplisic [[ https://clang.llvm.org/extra/clang-tidy/checks/bugprone-exception-escape.html | bugprone-exception-escape ]] check,
and it is even refactored as a `ExceptionAnalyzer` class for reuse.
So it would be trivial to use that analyzer to check for
exceptions escaping out of OpenMP structured blocks. (D59466)
All that sounds too great to be true. Indeed, there is a caveat.
Presently, it's practically impossible to do. To check a OpenMP structured block
you need to somehow 'get' the OpenMP structured block, and you can't because
it's simply not modelled in AST. `CapturedStmt`/`CapturedDecl` is not it's representation.
Now, it is of course possible to write e.g. some AST matcher that would e.g.
match every OpenMP executable directive, and then return the whatever `Stmt` is
the structured block of said executable directive, if any.
But i said //practically//. This isn't practical for the following reasons:
1. This **will** bitrot. That matcher will need to be kept up-to-date,
and refreshed with every new OpenMP spec version.
2. Every single piece of code that would want that knowledge would need to
have such matcher. Well, okay, if it is an AST matcher, it could be shared.
But then you still have `RecursiveASTVisitor` and friends.
`2 > 1`, so now you have code duplication.
So it would be reasonable (and is fully within clang AST spirit) to not
force every single consumer to do that work, but instead store that knowledge
in the correct, and appropriate place - AST, class structure.
Now, there is another hoop we need to get through.
It isn't fully obvious //how// to model this.
The best solution would of course be to simply add a `OMPStructuredBlock` transparent
node. It would be optimal, it would give us two properties:
* Given this `OMPExecutableDirective`, what's it OpenMP structured block?
* It is trivial to check whether the `Stmt*` is a OpenMP structured block (`isa<OMPStructuredBlock>(ptr)`)
But OpenMP structured block isn't **necessarily** the first, direct child of `OMP*Directive`.
(even ignoring the clang's `CapturedStmt`/`CapturedDecl` that were inserted inbetween).
So i'm not sure whether or not we could re-create AST statements after they were already created?
There would be other costs to a new AST node: https://bugs.llvm.org/show_bug.cgi?id=40563#c12
```
1. You will need to break the representation of loops. The body should be replaced by the "structured block" entity.
2. You will need to support serialization/deserialization.
3. You will need to support template instantiation.
4. You will need to support codegen and take this new construct to account in each OpenMP directive.
```
Instead, there **is** an functionally-equivalent, alternative solution, consisting of two parts.
Part 1:
* Add a member function `isStandaloneDirective()` to the `OMPExecutableDirective` class,
that will tell whether this directive is stand-alone or not, as per the spec.
We need it because we can't just check for the existance of associated statements,
see code comment.
* Add a member function `getStructuredBlock()` to the OMPExecutableDirective` class itself,
that assert that this is not a stand-alone directive, and either return the correct loop body
if this is a loop-like directive, or the captured statement.
This way, given an `OMPExecutableDirective`, we can get it's structured block.
Also, since the knowledge is ingrained into the clang OpenMP implementation,
it will not cause any duplication, and //hopefully// won't bitrot.
Great we achieved 1 of 2 properties of `OMPStructuredBlock` approach.
Thus, there is a second part needed:
* How can we check whether a given `Stmt*` is `OMPStructuredBlock`?
Well, we can't really, in general. I can see this workaround:
```
class FunctionASTVisitor : public RecursiveASTVisitor<FunctionASTVisitor> {
using Base = RecursiveASTVisitor<FunctionASTVisitor>;
public:
bool VisitOMPExecDir(OMPExecDir *D) {
OmpStructuredStmts.emplace_back(D.getStructuredStmt());
}
bool VisitSOMETHINGELSE(???) {
if(InOmpStructuredStmt)
HI!
}
bool TraverseStmt(Stmt *Node) {
if (!Node)
return Base::TraverseStmt(Node);
if (OmpStructuredStmts.back() == Node)
++InOmpStructuredStmt;
Base::TraverseStmt(Node);
if (OmpStructuredStmts.back() == Node) {
OmpStructuredStmts.pop_back();
--InOmpStructuredStmt;
}
return true;
}
std::vector<Stmt*> OmpStructuredStmts;
int InOmpStructuredStmt = 0;
};
```
But i really don't see using it in practice.
It's just too intrusive; and again, requires knowledge duplication.
.. but no. The solution lies right on the ground.
Why don't we simply store this `i'm a openmp structured block` in the bitfield of the `Stmt` itself?
This does not appear to have any impact on the memory footprint of the clang AST,
since it's just a single extra bit in the bitfield. At least the static assertions don't fail.
Thus, indeed, we can achieve both of the properties without a new AST node.
We can cheaply set that bit right in sema, at the end of `Sema::ActOnOpenMPExecutableDirective()`,
by just calling the `getStructuredBlock()` that we just added.
Test coverage that demonstrates all this has been added.
This isn't as great with serialization though. Most of it does not use abbrevs,
so we do end up paying the full price (4 bytes?) instead of a single bit.
That price, of course, can be reclaimed by using abbrevs.
In fact, i suspect that //might// not just reclaim these bytes, but pack these PCH significantly.
I'm not seeing a third solution. If there is one, it would be interesting to hear about it.
("just don't write code that would require `isa<OMPStructuredBlock>(ptr)`" is not a solution.)
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=40563 | PR40563 ]].
Reviewers: ABataev, rjmccall, hfinkel, rsmith, riccibruno, gribozavr
Reviewed By: ABataev, gribozavr
Subscribers: mgorny, aaron.ballman, steveire, guansong, jfb, jdoerfert, cfe-commits
Tags: #clang, #openmp
Differential Revision: https://reviews.llvm.org/D59214
llvm-svn: 356570
|
| |
|
|
|
|
|
|
|
|
|
| |
The attribute pass_dynamic_object_size(n) behaves exactly like
pass_object_size(n), but instead of evaluating __builtin_object_size on calls,
it evaluates __builtin_dynamic_object_size, which has the potential to produce
runtime code when the object size can't be determined statically.
Differential revision: https://reviews.llvm.org/D58757
llvm-svn: 356515
|
| |
|
|
|
|
|
|
| |
If the allocator was specified for the variable and next one is found
with the different allocator, the warning is emitted, and the allocator
is ignored.
llvm-svn: 356513
|
| |
|
|
|
|
|
|
|
|
| |
According to OpenMP, 2.11.3 allocate Directive, Restrictions, C / C++,
if a list item has a static storage type, the allocator expression in
the allocator clause must be a constant expression that evaluates to
one of the predefined memory allocator values. Added check for this
restriction.
llvm-svn: 356496
|
| |
|
|
|
|
|
|
|
|
| |
When we create overloads for the builtin compound assignment operators
we need to preserve address space for the reference operand taking it
from the argument that is passed in.
Differential Revision: https://reviews.llvm.org/D59367
llvm-svn: 356475
|
| |
|
|
|
|
|
|
| |
external linkage when marked as dllexport and targeting the MSVC ABI.
Patch thanks to Zahira Ammarguellat.
llvm-svn: 356458
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch refactors several instances of cast<> used in if
conditionals. Since cast<> asserts on failure, the else branch can
never be taken.
In some cases, the fix is to replace cast<> with dyn_cast<>. While
others required the removal of the conditional and some minor
refactoring.
A discussion can be seen here: http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20190318/265044.html
Differential Revision: https://reviews.llvm.org/D59529
llvm-svn: 356441
|
| |
|
|
|
|
| |
See D59455.
llvm-svn: 356430
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Similar to D56967, we add the existing diag::note_locked_here to tell
the user where we saw the locking that isn't matched correctly.
Reviewers: aaron.ballman, delesley
Reviewed By: aaron.ballman
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59455
llvm-svn: 356427
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These diagnose overflowing calls to subset of fortifiable functions. Some
functions, like sprintf or strcpy aren't supported right not, but we should
probably support these in the future. We previously supported this kind of
functionality with -Wbuiltin-memcpy-chk-size, but that diagnostic doesn't work
with _FORTIFY implementations that use wrapper functions. Also unlike that
diagnostic, we emit these warnings regardless of whether _FORTIFY_SOURCE is
actually enabled, which is nice for programs that don't enable the runtime
checks.
Why not just use diagnose_if, like Bionic does? We can get better diagnostics in
the compiler (i.e. mention the sizes), and we have the potential to diagnose
sprintf and strcpy which is impossible with diagnose_if (at least, in languages
that don't support C++14 constexpr). This approach also saves standard libraries
from having to add diagnose_if.
rdar://48006655
Differential revision: https://reviews.llvm.org/D58797
llvm-svn: 356397
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
As reported in https://bugs.llvm.org/show_bug.cgi?id=40978, it's an
error to use the `co_yield` or `co_await` keywords outside of a valid
"suspension context" as defined by [expr.await]p2 of
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4775.pdf.
Whether or not the current scope was in a function-try-block's
(https://en.cppreference.com/w/cpp/language/function-try-block) handler
could be determined using scope flag `Scope::FnTryCatchScope`. No
such flag existed for a simple C++ catch statement, so this commit adds
one.
Reviewers: GorNishanov, tks2103, rsmith
Reviewed By: GorNishanov
Subscribers: EricWF, jdoerfert, cfe-commits, lewissbaker
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59076
llvm-svn: 356296
|
| |
|
|
| |
llvm-svn: 356231
|
| |
|
|
|
|
|
|
| |
If the doacross lop construct is used and the loop counter is declare
outside of the loop, the compiler might crash trying to get the address
of the loop counter. Patch fixes this problem.
llvm-svn: 356198
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
We were allocating the implicit attribute in the declarator's attribute pool,
but putting into the declaration specifier's ParsedAttributesView. If there are
multiple declarators, then we'll use the attribute from the declaration
specifier after clearing out the declarators attribute pool. Fix this by
allocating the attribute in the declaration specifier's pool.
rdar://48529718
Differential revision: https://reviews.llvm.org/D59327
llvm-svn: 356187
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
lists and method declarations
This adds support for static_assert() (and _Static_assert()) in
@interface/@implementation ivar lists and in @interface method declarations.
It was already supported in @implementation blocks outside of the ivar lists.
The assert AST nodes are added at file scope, matching where other
(non-Objective-C) declarations at @interface / @implementation level go (cf
`allTUVariables`).
Also add a `__has_feature(objc_c_static_assert)` that's true in C11 (and
`__has_extension(objc_c_static_assert)` that's always true) and
`__has_feature(objc_cxx_static_assert)` that's true in C++11 modea fter this
patch, so it's possible to check if this is supported.
Differential Revision: https://reviews.llvm.org/D59223
llvm-svn: 356148
|
| |
|
|
|
|
|
|
|
|
| |
This reverts commit r353765. After talking with our c stdlib folks, we decided
to use the existing pass_object_size attribute to implement _FORTIFY_SOURCE
wrappers, like Bionic does (I didn't realize that pass_object_size could be used
for this purpose). Sorry for the flip/flop, and thanks to James Y. Knight for
pointing this out to me.
llvm-svn: 356103
|
| |
|
|
|
|
| |
C does not support ADL, disable it for C to prevent compiler crash.
llvm-svn: 356089
|
| |
|
|
|
|
|
| |
Added parsing/sema analysis/serialization/deserialization for the
'allocator' clause of the 'allocate' directive.
llvm-svn: 355952
|
| |
|
|
|
|
|
|
|
| |
As for OpenCL C, we need to allow using printf and toolchain variadic
functions (prefixed by "__") in C++ mode.
Differential Revision: https://reviews.llvm.org/D59219
llvm-svn: 355915
|
| |
|
|
|
|
|
|
| |
If the declare target link global is used in the target region
indirectly (used in the inner parallel, teams, etc. regions), we may
miss this variable and it leads to incorrect codegen.
llvm-svn: 355858
|
| |
|
|
|
|
|
|
|
| |
There is nontrivial bug caused in lld that I need to further
investigate. Meanwhile, I'll revert this.
This reverts commit 8297e93480c636dc90fd14653c5a66406193363f.
llvm-svn: 355721
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
expression inside the parentheses is a valid UTF-8 string literal.
Previously clang emitted an expression like @("abc") as a message send
to stringWithUTF8String. This commit makes clang emit the boxed
expression as a compile-time constant instead.
This commit also has the effect of silencing the nullable-to-nonnull
conversion warning clang started emitting after r317727, which
originally motivated this commit (see https://oleb.net/2018/@keypath).
rdar://problem/42684601
Differential Revision: https://reviews.llvm.org/D58729
llvm-svn: 355662
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The patch originally broke code that was incompatible with GCC, but
we want to follow GCC behavior here according to the discussion in
https://reviews.llvm.org/D58216
Original commit message:
As PR17480 describes, clang does not support the used attribute
for member functions of class templates. This means that if the member
function is not used, its definition is never instantiated. This patch
changes clang to emit the definition if it has the used attribute.
Test Plan: Added a testcase
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D56928
llvm-svn: 355627
|
| |
|
|
|
|
|
| |
Added parsing/sema analysis/serialization/deserialization support for
'allocate' directive.
llvm-svn: 355614
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change adds a new diagnostic for mismatching address spaces
to be used for C++ casts (only enabled in C style cast for now,
the rest will follow!).
The change extends C-style cast rules to account for address spaces.
It also adds a separate function for address space cast checking that
can be used to map from a separate address space cast operator
addrspace_cast (to be added as a follow up patch).
Note, that after this change clang will no longer allows arbitrary
address space conversions in reinterpret_casts because they can lead
to accidental errors. The implicit safe conversions would still be
allowed.
Differential Revision: https://reviews.llvm.org/D58346
llvm-svn: 355609
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Adjust address space for references and pointer operands of builtin operators.
Currently this change only fixes addr space in assignment (= and |=) operator,
that is needed for the test case reported in the bug. Wider support for all
other operations will follow.
Differential Revision: https://reviews.llvm.org/D58719
llvm-svn: 355608
|
| |
|
|
|
|
|
|
|
| |
The address space for the Base class pointer when up-casting
from Derived should be taken from the Derived class pointer.
Differential Revision: https://reviews.llvm.org/D53818
llvm-svn: 355606
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This change fixes temporary materialization to happen in the right
(default) address space when binding to it a reference of different type.
It adds address space conversion afterwards to match the addr space
of a reference.
Differential Revision: https://reviews.llvm.org/D58634
llvm-svn: 355499
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Apparently GCC allows this, and there's code relying on it (see bug).
The idea is to allow expression that would have been allowed if they
were cast to int. So I based the code on how such a cast would be done
(the CK_PointerToIntegral case in IntExprEvaluator::VisitCastExpr()).
Differential Revision: https://reviews.llvm.org/D58821
llvm-svn: 355491
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This reverts rL352390 / D57280.
As discussed in https://reviews.llvm.org/D57112#inline-506781,
'flush' clause does not exist in the OpenMP spec, it can not be
specified, and `OMPFlushClause` class is just a helper class.
Now, here's the caveat. I have read @ABataev's
> Well, I think it would be good to filter out OMPC_flush somehow
> because there is no such clause actually, it is a pseudo clause
> for better handling of the flush directive.
as if that clause is pseudo clause that only exists for the sole
purpose of simplifying the parser. As in, it never reaches AST.
I did not however try to verify that. Too bad, i was wrong.
It absolutely *does* reach AST. Therefore my understanding/justification
for the change was flawed, which makes the patch a regression which **must** be reverted.
@gribozavr has brought that up again in https://reviews.llvm.org/D57112#inline-521238
> > ...
> Sorry to be late for this discussion, but I don't think this conclusion
> follows. ASTMatchers are supposed to match the AST as it is.
> Even if OMPC_flush is synthetic, it exists in the AST, and users might
> want to match it. I think users would find anything else (trying to filter
> out AST nodes that are not in the source code) to be surprising. For example,
> there's a matcher materializeTemporaryExpr even though this AST node is a
> Clang invention and is not a part of the C++ spec.
>
> Matching only constructs that appear in the source code is not feasible with
> ASTMatchers, because they are based on Clang's AST that exposes tons of semantic
> information, and its design is dictated by the structure of the semantic information.
> See "RFC: Tree-based refactorings with Clang" in cfe-dev for a library that will
> focus on representing source code as faithfully as possible.
>
> Not to even mention that this code is in ASTTypeTraits, a general library for
> handling AST nodes, not specifically for AST Matchers...
Reviewers: gribozavr, ABataev, rjmccall, aaron.ballman
Reviewed By: gribozavr, ABataev
Subscribers: dylanmckay, guansong, arphaman, jdoerfert, cfe-commits, gribozavr, ABataev
Tags: #clang, #openmp
Differential Revision: https://reviews.llvm.org/D58979
llvm-svn: 355486
|
| |
|
|
|
|
|
|
|
| |
This patch includes the necessary code for converting between a fixed point type and integer.
This also includes constant expression evaluation for conversions with these types.
Differential Revision: https://reviews.llvm.org/D56900
llvm-svn: 355462
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If a kernel template has a function as its template parameter, a device function should be
allowed as template argument since a kernel can call a device function. However,
currently if the kernel template is instantiated in a host function, clang will emit an error
message saying the device function is an invalid candidate for the template parameter.
This happens because clang checks the reference to the device function during parsing
the template arguments. At this point, the template is not instantiated yet. Clang incorrectly
assumes the device function is called by the host function and emits the error message.
This patch fixes the issue by disabling checking of device function during parsing template
arguments and deferring the check to the instantion of the template. At that point, the
template decl is already available, therefore the check can be done against the instantiated
function template decl.
Differential Revision: https://reviews.llvm.org/D56411
llvm-svn: 355421
|