| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
|
|
|
|
|
|
|
| |
point precision loss"
This reverts commit r366972 which broke the following tests:
Clang :: CXX/dcl.decl/dcl.init/dcl.init.list/p7-0x.cpp
Clang :: CXX/dcl.decl/dcl.init/dcl.init.list/p7-cxx11-nowarn.cpp
llvm-svn: 366979
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
precision loss
Issue an warning when the code tries to do an implicit int -> float
conversion, where the float type ha a narrower significant than the
float type.
The new warning is controlled by flag -Wimplicit-int-float-conversion,
under -Wimplicit-float-conversion and -Wconversion.
Differential Revision: https://reviews.llvm.org/D64666
llvm-svn: 366972
|
| |
|
|
| |
llvm-svn: 366823
|
| |
|
|
|
|
|
| |
This re-applies r366422 with a fix for Bug PR42665 and a new regression
test.
llvm-svn: 366670
|
| |
|
|
|
|
| |
Move a couple of variables inside the block where they are actually needed.
llvm-svn: 366635
|
| |
|
|
| |
llvm-svn: 366630
|
| |
|
|
|
|
|
|
| |
[[nodiscard]] attribute.
This also bumps the attribute feature test value and introduces the notion of a C++2a extension warning.
llvm-svn: 366626
|
| |
|
|
|
|
|
|
| |
PS4 now only allows "cdecl", and its equivalent on PS4, "sysv_abi".
Differential Revision: https://reviews.llvm.org/D64780
llvm-svn: 366617
|
| |
|
|
|
|
|
|
|
| |
If the threadprivate variable is used in the copyin clause on inner
parallel directive with TLS support, we capture this variable in all
outer OpenMP scopes. It leads to the fact that in all scopes we're
working with the original variable, not the threadprivate copies.
llvm-svn: 366483
|
| |
|
|
|
|
|
|
|
|
|
|
| |
variables.
Loop control variables are private in loop-based constructs and we shall
take this into account when generate the code for inner constructs.
Currently, those variables are reported as shared in many cases. Moved
the analysis of the data-sharing attributes of the loop control variable
to an early semantic stage to correctly handle their attributes.
llvm-svn: 366474
|
| |
|
|
|
|
|
|
| |
Reason: this commit causes crashes in the clang compiler when building
LLVM Support with libc++, see https://bugs.llvm.org/show_bug.cgi?id=42665
for details.
llvm-svn: 366429
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch does mainly three things:
1. It fixes a false positive error detection in Sema that is similar to
D62156. The error happens when explicitly calling an overloaded
destructor for different address spaces.
2. It selects the correct destructor when multiple overloads for
address spaces are available.
3. It inserts the expected address space cast when invoking a
destructor, if needed, and therefore fixes a crash due to the unmet
assertion in llvm::CastInst::Create.
The following is a reproducer of the three issues:
struct MyType {
~MyType() {}
~MyType() __constant {}
};
__constant MyType myGlobal{};
kernel void foo() {
myGlobal.~MyType(); // 1 and 2.
// 1. error: cannot initialize object parameter of type
// '__generic MyType' with an expression of type '__constant MyType'
// 2. error: no matching member function for call to '~MyType'
}
kernel void bar() {
// 3. The implicit call to the destructor crashes due to:
// Assertion `castIsValid(op, S, Ty) && "Invalid cast!"' failed.
// in llvm::CastInst::Create.
MyType myLocal;
}
The added test depends on D62413 and covers a few more things than the
above reproducer.
Subscribers: yaxunl, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64569
llvm-svn: 366422
|
| |
|
|
|
|
|
|
|
| |
Clang doesn't implement OpenCL C++, change the comments to
reflect that.
Differential Revision: https://reviews.llvm.org/D64867
llvm-svn: 366421
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If dependent types appear in pointers or references we allow addr
space deduction because the addr space in template argument will
belong to the pointee and not the pointer or reference itself.
We also don't diagnose addr space on a function return type after
template instantiation. If any addr space for the return type was
provided on a template parameter this will be diagnosed during the
parsing of template definition.
Differential Revision: https://reviews.llvm.org/D62584
llvm-svn: 366417
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
in r342528
Summary:
The problem is the default LoadExternal with no completer, which happens when
loading global results.
Reviewers: ilya-biryukov, nik
Subscribers: arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64864
llvm-svn: 366409
|
| |
|
|
|
|
|
|
| |
As discussed in D64780 the wording of this warning message is being
changed to say 'is not supported' instead of 'ignored', and the
diag ID itself is being changed to warn_cconv_not_supported.
llvm-svn: 366368
|
| |
|
|
|
|
| |
This reverts r366322 (git commit 4b8da3a503e434ddbc08ecf66582475765f449bc)
llvm-svn: 366355
|
| |
|
|
|
|
|
|
|
|
| |
checkDecl is only valid for VarDecls or FieldDecls, since getCanonicalDecl
expects only these. Prevent other Decl kinds (such as CXXMethodDecls and
EnumConstantDecls) from entering and asserting.
Differential Revision: https://reviews.llvm.org/D64842
llvm-svn: 366336
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TME is a future architecture technology, documented in
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/docs/ddi0601/a
More about the future architectures:
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/new-technologies-for-the-arm-a-profile-architecture
This patch adds support for the TME instructions TSTART, TTEST, TCOMMIT, and
TCANCEL and the target feature/arch extension "tme".
It also implements TME builtin functions, defined in ACLE Q2 2019
(https://developer.arm.com/docs/101028/latest)
Patch by Javed Absar and Momchil Velikov
Differential Revision: https://reviews.llvm.org/D64416
llvm-svn: 366322
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Simplify code a bit and add assertion to address post-landing comments
from D64083.
Subscribers: yaxunl, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64804
llvm-svn: 366306
|
| |
|
|
|
|
|
|
| |
Allow conversions between integer and sampler type.
Differential Revision: https://reviews.llvm.org/D64791
llvm-svn: 366212
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This case is particularly important for clangd, as it is triggered after
inserting the snippet for variadic functions.
Reviewers: kadircet, ilya-biryukov
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64677
llvm-svn: 366200
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch applies clang-tidy's bugprone-argument-comment tool
to LLVM, clang and lld source trees. Here is how I created this
patch:
$ git clone https://github.com/llvm/llvm-project.git
$ cd llvm-project
$ mkdir build
$ cd build
$ cmake -GNinja -DCMAKE_BUILD_TYPE=Debug \
-DLLVM_ENABLE_PROJECTS='clang;lld;clang-tools-extra' \
-DCMAKE_EXPORT_COMPILE_COMMANDS=On -DLLVM_ENABLE_LLD=On \
-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ../llvm
$ ninja
$ parallel clang-tidy -checks='-*,bugprone-argument-comment' \
-config='{CheckOptions: [{key: StrictMode, value: 1}]}' -fix \
::: ../llvm/lib/**/*.{cpp,h} ../clang/lib/**/*.{cpp,h} ../lld/**/*.{cpp,h}
llvm-svn: 366177
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: Pierre, Anastasia
Reviewed By: Anastasia
Subscribers: yaxunl, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64608
llvm-svn: 366143
|
| |
|
|
|
|
|
|
|
|
| |
Since pointee doesn't require context sensitive addr space deduction
it's easier to handle pointee of dependent types during templ
instantiation.
Differential Revision: https://reviews.llvm.org/D64400
llvm-svn: 366063
|
| |
|
|
| |
llvm-svn: 366029
|
| |
|
|
|
|
| |
- Plus extra style formatting.
llvm-svn: 366010
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
non-trivial C union types
This patch diagnoses uses of non-trivial C unions and structs/unions
containing non-trivial C unions in the following contexts, which require
default-initialization, destruction, or copying of the union objects,
instead of disallowing fields of non-trivial types in C unions, which is
what we currently do:
- function parameters.
- function returns.
- assignments.
- compound literals.
- block captures except capturing of `__block` variables by non-escaping
blocks.
- local and global variable definitions.
- lvalue-to-rvalue conversions of volatile types.
See the discussion in https://reviews.llvm.org/D62988 for more background.
rdar://problem/50679094
Differential Revision: https://reviews.llvm.org/D63753
llvm-svn: 365985
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch series adds support for the next-generation arch13
CPU architecture to the SystemZ backend.
This includes:
- Basic support for the new processor and its features.
- Support for low-level builtins mapped to new LLVM intrinsics.
- New high-level intrinsics in vecintrin.h.
- Indicate support by defining __VEC__ == 10303.
Note: No currently available Z system supports the arch13
architecture. Once new systems become available, the
official system name will be added as supported -march name.
llvm-svn: 365933
|
| |
|
|
| |
llvm-svn: 365901
|
| |
|
|
|
|
|
|
|
| |
Fixed the processing of the unsupported VLAs in the reduction clauses.
Used targetDiag if the diagnostics can be delayed and emit it
immediately if the target does not support VLAs and we're parsing target
directive with the reduction clauses.
llvm-svn: 365821
|
| |
|
|
|
|
|
| |
First in a series of patches to land C++2a Concepts support.
This patch adds AST and parsing support for concept-declarations.
llvm-svn: 365699
|
| |
|
|
|
|
|
|
|
| |
I would like to add some pragma handling here, but couldn't resist a little NFC
and tidy up first.
Differential Revision: https://reviews.llvm.org/D64471
llvm-svn: 365629
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The CCCR_Ignore action is only used for Microsoft calling conventions,
mainly because MSVC does not warn when a calling convention would be
ignored by the current target. This behavior is actually somewhat
important, since windows.h uses WINAPI (which expands to __stdcall)
widely. This distinction didn't matter much before the introduction of
__vectorcall to x64 and the ability to make that the default calling
convention with /Gv. Now, we can't just ignore __stdcall for x64, we
have to treat it as an explicit __cdecl annotation.
Fixes PR42531
llvm-svn: 365579
|
| |
|
|
|
|
|
|
|
|
| |
value to BOOL
rdar://51954400
Differential revision: https://reviews.llvm.org/D63912
llvm-svn: 365518
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch ensures that the following code is compiled identically with
-cl-std=CL2.0 and -fblocks -cl-std=c++.
kernel void test(void) {
void (^const block_A)(void) = ^{
return;
};
}
A new test is not added because cl20-device-side-enqueue.cl will cover
this once blocks are further improved for C++ for OpenCL.
The changes to Sema::PerformImplicitConversion are based on
the parts of Sema::CheckAssignmentConstraints on block pointer
conversions.
Reviewers: rjmccall, Anastasia
Subscribers: yaxunl, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64083
llvm-svn: 365500
|
| |
|
|
|
|
|
|
|
|
|
| |
This patch ensures built-in functions are rewritten using the proper
parent declaration.
Existing tests are modified to run in C++ mode to ensure the
functionality works also with C++ for OpenCL while not increasing the
testing runtime.
llvm-svn: 365499
|
| |
|
|
|
|
|
|
| |
Ignore trailing NullStmts in compound expressions when determining the result type and value. This is to match the GCC behavior which ignores semicolons at the end of compound expressions.
Patch by Dominic Ferreira.
llvm-svn: 365498
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For background of BPF CO-RE project, please refer to
http://vger.kernel.org/bpfconf2019.html
In summary, BPF CO-RE intends to compile bpf programs
adjustable on struct/union layout change so the same
program can run on multiple kernels with adjustment
before loading based on native kernel structures.
In order to do this, we need keep track of GEP(getelementptr)
instruction base and result debuginfo types, so we
can adjust on the host based on kernel BTF info.
Capturing such information as an IR optimization is hard
as various optimization may have tweaked GEP and also
union is replaced by structure it is impossible to track
fieldindex for union member accesses.
Three intrinsic functions, preserve_{array,union,struct}_access_index,
are introducted.
addr = preserve_array_access_index(base, index, dimension)
addr = preserve_union_access_index(base, di_index)
addr = preserve_struct_access_index(base, gep_index, di_index)
here,
base: the base pointer for the array/union/struct access.
index: the last access index for array, the same for IR/DebugInfo layout.
dimension: the array dimension.
gep_index: the access index based on IR layout.
di_index: the access index based on user/debuginfo types.
If using these intrinsics blindly, i.e., transforming all GEPs
to these intrinsics and later on reducing them to GEPs, we have
seen up to 7% more instructions generated. To avoid such an overhead,
a clang builtin is proposed:
base = __builtin_preserve_access_index(base)
such that user wraps to-be-relocated GEPs in this builtin
and preserve_*_access_index intrinsics only apply to
those GEPs. Such a buyin will prevent performance degradation
if people do not use CO-RE, even for programs which use
bpf_probe_read().
For example, for the following example,
$ cat test.c
struct sk_buff {
int i;
int b1:1;
int b2:2;
union {
struct {
int o1;
int o2;
} o;
struct {
char flags;
char dev_id;
} dev;
int netid;
} u[10];
};
static int (*bpf_probe_read)(void *dst, int size, const void *unsafe_ptr)
= (void *) 4;
#define _(x) (__builtin_preserve_access_index(x))
int bpf_prog(struct sk_buff *ctx) {
char dev_id;
bpf_probe_read(&dev_id, sizeof(char), _(&ctx->u[5].dev.dev_id));
return dev_id;
}
$ clang -target bpf -O2 -g -emit-llvm -S -mllvm -print-before-all \
test.c >& log
The generated IR looks like below:
...
define dso_local i32 @bpf_prog(%struct.sk_buff*) #0 !dbg !15 {
%2 = alloca %struct.sk_buff*, align 8
%3 = alloca i8, align 1
store %struct.sk_buff* %0, %struct.sk_buff** %2, align 8, !tbaa !45
call void @llvm.dbg.declare(metadata %struct.sk_buff** %2, metadata !43, metadata !DIExpression()), !dbg !49
call void @llvm.lifetime.start.p0i8(i64 1, i8* %3) #4, !dbg !50
call void @llvm.dbg.declare(metadata i8* %3, metadata !44, metadata !DIExpression()), !dbg !51
%4 = load i32 (i8*, i32, i8*)*, i32 (i8*, i32, i8*)** @bpf_probe_read, align 8, !dbg !52, !tbaa !45
%5 = load %struct.sk_buff*, %struct.sk_buff** %2, align 8, !dbg !53, !tbaa !45
%6 = call [10 x %union.anon]* @llvm.preserve.struct.access.index.p0a10s_union.anons.p0s_struct.sk_buffs(
%struct.sk_buff* %5, i32 2, i32 3), !dbg !53, !llvm.preserve.access.index !19
%7 = call %union.anon* @llvm.preserve.array.access.index.p0s_union.anons.p0a10s_union.anons(
[10 x %union.anon]* %6, i32 1, i32 5), !dbg !53
%8 = call %union.anon* @llvm.preserve.union.access.index.p0s_union.anons.p0s_union.anons(
%union.anon* %7, i32 1), !dbg !53, !llvm.preserve.access.index !26
%9 = bitcast %union.anon* %8 to %struct.anon.0*, !dbg !53
%10 = call i8* @llvm.preserve.struct.access.index.p0i8.p0s_struct.anon.0s(
%struct.anon.0* %9, i32 1, i32 1), !dbg !53, !llvm.preserve.access.index !34
%11 = call i32 %4(i8* %3, i32 1, i8* %10), !dbg !52
%12 = load i8, i8* %3, align 1, !dbg !54, !tbaa !55
%13 = sext i8 %12 to i32, !dbg !54
call void @llvm.lifetime.end.p0i8(i64 1, i8* %3) #4, !dbg !56
ret i32 %13, !dbg !57
}
!19 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "sk_buff", file: !3, line: 1, size: 704, elements: !20)
!26 = distinct !DICompositeType(tag: DW_TAG_union_type, scope: !19, file: !3, line: 5, size: 64, elements: !27)
!34 = distinct !DICompositeType(tag: DW_TAG_structure_type, scope: !26, file: !3, line: 10, size: 16, elements: !35)
Note that @llvm.preserve.{struct,union}.access.index calls have metadata llvm.preserve.access.index
attached to instructions to provide struct/union debuginfo type information.
For &ctx->u[5].dev.dev_id,
. The "%6 = ..." represents struct member "u" with index 2 for IR layout and index 3 for DI layout.
. The "%7 = ..." represents array subscript "5".
. The "%8 = ..." represents union member "dev" with index 1 for DI layout.
. The "%10 = ..." represents struct member "dev_id" with index 1 for both IR and DI layout.
Basically, traversing the use-def chain recursively for the 3rd argument of bpf_probe_read() and
examining all preserve_*_access_index calls, the debuginfo struct/union/array access index
can be achieved.
The intrinsics also contain enough information to regenerate codes for IR layout.
For array and structure intrinsics, the proper GEP can be constructed.
For union intrinsics, replacing all uses of "addr" with "base" should be enough.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D61809
llvm-svn: 365438
|
| |
|
|
|
|
|
|
|
| |
This reverts commit r365435.
Forgot adding the Differential Revision link. Will add to the
commit message and resubmit.
llvm-svn: 365436
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For background of BPF CO-RE project, please refer to
http://vger.kernel.org/bpfconf2019.html
In summary, BPF CO-RE intends to compile bpf programs
adjustable on struct/union layout change so the same
program can run on multiple kernels with adjustment
before loading based on native kernel structures.
In order to do this, we need keep track of GEP(getelementptr)
instruction base and result debuginfo types, so we
can adjust on the host based on kernel BTF info.
Capturing such information as an IR optimization is hard
as various optimization may have tweaked GEP and also
union is replaced by structure it is impossible to track
fieldindex for union member accesses.
Three intrinsic functions, preserve_{array,union,struct}_access_index,
are introducted.
addr = preserve_array_access_index(base, index, dimension)
addr = preserve_union_access_index(base, di_index)
addr = preserve_struct_access_index(base, gep_index, di_index)
here,
base: the base pointer for the array/union/struct access.
index: the last access index for array, the same for IR/DebugInfo layout.
dimension: the array dimension.
gep_index: the access index based on IR layout.
di_index: the access index based on user/debuginfo types.
If using these intrinsics blindly, i.e., transforming all GEPs
to these intrinsics and later on reducing them to GEPs, we have
seen up to 7% more instructions generated. To avoid such an overhead,
a clang builtin is proposed:
base = __builtin_preserve_access_index(base)
such that user wraps to-be-relocated GEPs in this builtin
and preserve_*_access_index intrinsics only apply to
those GEPs. Such a buyin will prevent performance degradation
if people do not use CO-RE, even for programs which use
bpf_probe_read().
For example, for the following example,
$ cat test.c
struct sk_buff {
int i;
int b1:1;
int b2:2;
union {
struct {
int o1;
int o2;
} o;
struct {
char flags;
char dev_id;
} dev;
int netid;
} u[10];
};
static int (*bpf_probe_read)(void *dst, int size, const void *unsafe_ptr)
= (void *) 4;
#define _(x) (__builtin_preserve_access_index(x))
int bpf_prog(struct sk_buff *ctx) {
char dev_id;
bpf_probe_read(&dev_id, sizeof(char), _(&ctx->u[5].dev.dev_id));
return dev_id;
}
$ clang -target bpf -O2 -g -emit-llvm -S -mllvm -print-before-all \
test.c >& log
The generated IR looks like below:
...
define dso_local i32 @bpf_prog(%struct.sk_buff*) #0 !dbg !15 {
%2 = alloca %struct.sk_buff*, align 8
%3 = alloca i8, align 1
store %struct.sk_buff* %0, %struct.sk_buff** %2, align 8, !tbaa !45
call void @llvm.dbg.declare(metadata %struct.sk_buff** %2, metadata !43, metadata !DIExpression()), !dbg !49
call void @llvm.lifetime.start.p0i8(i64 1, i8* %3) #4, !dbg !50
call void @llvm.dbg.declare(metadata i8* %3, metadata !44, metadata !DIExpression()), !dbg !51
%4 = load i32 (i8*, i32, i8*)*, i32 (i8*, i32, i8*)** @bpf_probe_read, align 8, !dbg !52, !tbaa !45
%5 = load %struct.sk_buff*, %struct.sk_buff** %2, align 8, !dbg !53, !tbaa !45
%6 = call [10 x %union.anon]* @llvm.preserve.struct.access.index.p0a10s_union.anons.p0s_struct.sk_buffs(
%struct.sk_buff* %5, i32 2, i32 3), !dbg !53, !llvm.preserve.access.index !19
%7 = call %union.anon* @llvm.preserve.array.access.index.p0s_union.anons.p0a10s_union.anons(
[10 x %union.anon]* %6, i32 1, i32 5), !dbg !53
%8 = call %union.anon* @llvm.preserve.union.access.index.p0s_union.anons.p0s_union.anons(
%union.anon* %7, i32 1), !dbg !53, !llvm.preserve.access.index !26
%9 = bitcast %union.anon* %8 to %struct.anon.0*, !dbg !53
%10 = call i8* @llvm.preserve.struct.access.index.p0i8.p0s_struct.anon.0s(
%struct.anon.0* %9, i32 1, i32 1), !dbg !53, !llvm.preserve.access.index !34
%11 = call i32 %4(i8* %3, i32 1, i8* %10), !dbg !52
%12 = load i8, i8* %3, align 1, !dbg !54, !tbaa !55
%13 = sext i8 %12 to i32, !dbg !54
call void @llvm.lifetime.end.p0i8(i64 1, i8* %3) #4, !dbg !56
ret i32 %13, !dbg !57
}
!19 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "sk_buff", file: !3, line: 1, size: 704, elements: !20)
!26 = distinct !DICompositeType(tag: DW_TAG_union_type, scope: !19, file: !3, line: 5, size: 64, elements: !27)
!34 = distinct !DICompositeType(tag: DW_TAG_structure_type, scope: !26, file: !3, line: 10, size: 16, elements: !35)
Note that @llvm.preserve.{struct,union}.access.index calls have metadata llvm.preserve.access.index
attached to instructions to provide struct/union debuginfo type information.
For &ctx->u[5].dev.dev_id,
. The "%6 = ..." represents struct member "u" with index 2 for IR layout and index 3 for DI layout.
. The "%7 = ..." represents array subscript "5".
. The "%8 = ..." represents union member "dev" with index 1 for DI layout.
. The "%10 = ..." represents struct member "dev_id" with index 1 for both IR and DI layout.
Basically, traversing the use-def chain recursively for the 3rd argument of bpf_probe_read() and
examining all preserve_*_access_index calls, the debuginfo struct/union/array access index
can be achieved.
The intrinsics also contain enough information to regenerate codes for IR layout.
For array and structure intrinsics, the proper GEP can be constructed.
For union intrinsics, replacing all uses of "addr" with "base" should be enough.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 365435
|
| |
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D64349
llvm-svn: 365411
|
| |
|
|
|
|
|
|
|
|
|
|
| |
On macOS, BOOL is a typedef for signed char, but it should never hold a value
that isn't 1 or 0. Any code that expects a different value in their BOOL should
be fixed.
rdar://51954400
Differential revision: https://reviews.llvm.org/D63856
llvm-svn: 365408
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
default-constructible and assignable.
This is a fix for rG864949 which only disabled default construction and
assignment for lambdas with capture-defaults, where the C++2a draft
disables them for lambdas with any lambda-capture at all.
Patch by Logan Smith!
Differential Revision: https://reviews.llvm.org/D64058
llvm-svn: 365406
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
spurious `-Warc-repeated-use-of-weak` warnings
This reverts r365382 (git commit 8b1becf2e31d9170ee356a19c7b6ea991d3a520f)
Appears to regress this semi-reduced fragment of valid code from windows
SDK headers:
#define InterlockedIncrement64 _InterlockedIncrement64
extern "C" __int64 InterlockedIncrement64(__int64 volatile *Addend);
#pragma intrinsic(_InterlockedIncrement64)
unsigned __int64 InterlockedIncrement(unsigned __int64 volatile *Addend) {
return (unsigned __int64)(InterlockedIncrement64)((volatile __int64 *)Addend);
}
Found on a buildbot here, but no mail was sent due to it already being
red:
http://lab.llvm.org:8011/builders/sanitizer-windows/builds/48067
llvm-svn: 365393
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
spurious `-Warc-repeated-use-of-weak` warnings
The spurious -Warc-repeated-use-of-weak warnings are issued when an
initializer expression uses a weak ObjC pointer.
My first attempt to silence the warnings (r350917) caused clang to
reject code that is legal in C++17. The patch is based on the feedback I
received from Richard when the patch was reverted.
http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20190422/268945.html
http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20190422/268943.html
Differential Revision: https://reviews.llvm.org/D62645
llvm-svn: 365382
|
| |
|
|
|
|
|
| |
Provide more data to the user in the error message about unsupported
type for device compilation.
llvm-svn: 365374
|
| |
|
|
|
|
| |
llvm::partition_point. NFC
llvm-svn: 365006
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Currently HeaderSearch only looks at SearchDir's passed into it, but in
addition to those paths headers can be relative to including file's directory.
This patch makes sure that is taken into account.
Reviewers: gribozavr
Subscribers: jkorous, arphaman, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63295
llvm-svn: 365005
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds a new builtin, __builtin_bit_cast(T, v), which performs a
bit_cast from a value v to a type T. This expression can be evaluated at
compile time under specific circumstances.
The compile time evaluation currently doesn't support bit-fields, but I'm
planning on fixing this in a follow up (some of the logic for figuring this out
is in CodeGen). I'm also planning follow-ups for supporting some more esoteric
types that the constexpr evaluator supports, as well as extending
__builtin_memcpy constexpr evaluation to use the same infrastructure.
rdar://44987528
Differential revision: https://reviews.llvm.org/D62825
llvm-svn: 364954
|