| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
|
|
|
|
|
|
|
|
| |
representation.
Add a type (ObjCObjectPointerType) and remove a type (ObjCQualifiedIdType).
This large/tedious patch is just a first step. Next step is to remove ObjCQualifiedInterfaceType. After that, I will remove the magic TypedefType for 'id' (installed by Sema). This work will enable various simplifications throughout clang (when dealing with ObjC types).
No functionality change.
llvm-svn: 73649
|
| |
|
|
|
|
| |
thereof. Patch by Anders Johnsen!
llvm-svn: 73641
|
| |
|
|
| |
llvm-svn: 73452
|
| |
|
|
| |
llvm-svn: 73391
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implement support for C++ Substitution Failure Is Not An Error
(SFINAE), which says that errors that occur during template argument
deduction do *not* produce diagnostics and do not necessarily make a
program ill-formed. Instead, template argument deduction silently
fails. This is currently implemented for template argument deduction
during matching of class template partial specializations, although
the mechanism will also apply to template argument deduction for
function templates. The scheme is simple:
- If we are in a template argument deduction context, any diagnostic
that is considered a SFINAE error (or warning) will be
suppressed. The error will be propagated up the call stack via the
normal means.
- By default, all warnings and errors are SFINAE errors. Add the
NoSFINAE class to a diagnostic in the .td file to make it a hard
error (e.g., for access-control violations).
Note that, to make this fully work, every place in Sema that emits an
error *and then immediately recovers* will need to check
Sema::isSFINAEContext() to determine whether it must immediately
return an error rather than recovering.
llvm-svn: 73332
|
| |
|
|
|
|
|
|
| |
I'm not completely sure this is the right way to fix this issue, but it seems
reasonable, and it's consistent with the non-template code for this
construct.
llvm-svn: 73285
|
| |
|
|
|
|
| |
use it.
llvm-svn: 73264
|
| |
|
|
|
|
| |
specializations; add comments and update the C++ status page
llvm-svn: 73263
|
| |
|
|
| |
llvm-svn: 73260
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
argument deduction failed. For example, given
template<typename T> struct is_same<T, T> { ... };
template argument deduction will fail for is_same<int, float>, and now
reports enough information
Right now, we don't do anything with this extra information, but it
can be used for informative diagnostics that say, e.g., "template
argument deduction failed because T was deduced to 'int' in one
context and 'float' in another".
llvm-svn: 73237
|
| |
|
|
| |
llvm-svn: 73232
|
| |
|
|
|
|
|
|
|
|
|
|
| |
partial specialization, substitute those template arguments back into
the template arguments of the class template partial specialization to
see if the results still match the original template arguments.
This code is more general than it needs to be, since we don't yet
diagnose C++ [temp.class.spec]p9. However, it's likely to be needed
for function templates.
llvm-svn: 73196
|
| |
|
|
|
|
| |
functionality change.
llvm-svn: 73176
|
| |
|
|
|
|
|
| |
Also, introduced some of the framework for performing instantiation as
part of template argument deduction.
llvm-svn: 73175
|
| |
|
|
|
|
| |
T::*) and implement template instantiation for member pointer types.
llvm-svn: 73151
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Once we have deduced template arguments for a class template partial
specialization, we use exactly those template arguments for instantiating
the definition of the class template partial specialization.
- Added template argument deduction for non-type template parameters.
- Added template argument deduction for dependently-sized array types.
With these changes, we can now implement, e.g., the remove_reference
type trait. Also, Daniel's Ackermann template metaprogram now compiles
properly.
llvm-svn: 72909
|
| |
|
|
|
|
|
|
|
|
| |
deductions of the same template parameter are equivalent. This allows
us to implement the is_same type trait (!).
Also, move template argument deduction into its own file and update a
few build systems with this change (grrrr).
llvm-svn: 72819
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
we have the basics of declaring and storing class template partial
specializations, matching class template partial specializations at
instantiation time via (limited) template argument deduction, and
using the class template partial specialization's pattern for
instantiation.
This patch is enough to make a simple is_pointer type trait work, but
not much else.
llvm-svn: 72662
|
| |
|
|
|
|
|
|
|
| |
printing logic to help customize the output. For now, we use this
rather than a special flag to suppress the "struct" when printing
"struct X" and to print the Boolean type as "bool" in C++ but "_Bool"
in C.
llvm-svn: 72590
|
| |
|
|
|
|
|
| |
template instantiation. This helps reduce our stack footprint when
performing deep template instantiations.
llvm-svn: 72582
|
| |
|
|
|
|
|
|
|
|
|
| |
declaration references. The key realization is that dependent Decls,
which actually require instantiation, can only refer to the current
instantiation or members thereof. And, since the current context
during instantiation contains all of those members of the current
instantiation, we can simply find the real instantiate that matches up
with the "current instantiation" template.
llvm-svn: 72486
|
| |
|
|
|
|
|
|
|
|
|
|
| |
instantiation of a declaration from the template version (or version
that lives in a template) and a given set of template arguments. This
needs much, much more testing, but it suffices for simple examples
like
typedef T* iterator;
iterator begin();
llvm-svn: 72461
|
| |
|
|
| |
llvm-svn: 72440
|
| |
|
|
| |
llvm-svn: 72433
|
| |
|
|
| |
llvm-svn: 72210
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
template, introduce that member function into the template
instantiation stack. Also, add diagnostics showing the member function
within the instantiation stack and clean up the qualified-name
printing so that we get something like:
note: in instantiation of member function 'Switch1<int, 2, 2>::f'
requested here
in the template instantiation backtrace.
llvm-svn: 72015
|
| |
|
|
| |
llvm-svn: 71936
|
| |
|
|
|
|
|
| |
functions of class templates. Only compound statements and expression
statements are currently implemented.
llvm-svn: 71814
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
template<typename T>
struct X {
struct Inner;
};
template struct X<int>::Inner;
This change is larger than it looks because it also fixes some
a problem with nested-name-specifiers and tags. We weren't requiring
the DeclContext associated with the scope specifier of a tag to be
complete. Therefore, when looking for something like "struct
X<int>::Inner", we weren't instantiating X<int>.
This, naturally, uncovered a problem with member pointers, where we
were requiring the left-hand side of a member pointer access
expression (e.g., x->*) to be a complete type. However, this is wrong:
the semantics of this expression does not require a complete type (EDG
agrees).
Stuart vouched for me. Blame him.
llvm-svn: 71756
|
| |
|
|
|
|
|
|
| |
of class members (recursively). Only member classes are actually
instantiated; the instantiation logic for member functions and
variables are just stubs.
llvm-svn: 71713
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
templates. In particular:
- An explicit instantiation can follow an implicit instantiation (we
were improperly diagnosing this as an error, previously).
- In C++0x, an explicit instantiation that follows an explicit
specialization of the same template specialization is ignored. In
C++98, we just emit an extension warning.
- In C++0x, an explicit instantiation must be in a namespace
enclosing the original template. C++98 has no such requirement.
Also, fixed a longstanding FIXME regarding the integral type that is
used for the size of a constant array type when it is being instantiated.
llvm-svn: 71689
|
| |
|
|
|
|
|
|
| |
still aren't instantiating the definitions of class template members,
and core issues 275 and 259 will both affect the checking that we do
for explicit instantiations (but are not yet implemented).
llvm-svn: 71613
|
| |
|
|
|
|
|
|
| |
TemplateArgumentList. This avoids the need to pass around
pointer/length pairs of template arguments lists, and will eventually
make it easier to introduce member templates and variadic templates.
llvm-svn: 71517
|
| |
|
|
| |
llvm-svn: 70567
|
| |
|
|
| |
llvm-svn: 70566
|
| |
|
|
| |
llvm-svn: 69783
|
| |
|
|
|
|
| |
No functionality change (really).
llvm-svn: 68726
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
specifiers that terminate in a simple-template-id, e.g.,
typename MetaFun::template apply<T1, T2>
Also, implement template instantiation for dependent
nested-name-specifiers that involve unresolved identifiers, e.g.,
typename T::type::type
llvm-svn: 68166
|
| |
|
|
| |
llvm-svn: 68140
|
| |
|
|
|
|
|
|
|
|
|
| |
template template parameters and dependent template names. For
example, the oft-mentioned
typename MetaFun::template apply<T1, T2>::type
can now be instantiated, with the appropriate name lookup for "apply".
llvm-svn: 68128
|
| |
|
|
|
|
|
|
|
|
|
| |
within nested-name-specifiers, e.g., for the "apply" in
typename MetaFun::template apply<T1, T2>::type
At present, we can't instantiate these nested-name-specifiers, so our
testing is sketchy.
llvm-svn: 68081
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
representation handles the various ways in which one can name a
template, including unqualified references ("vector"), qualified
references ("std::vector"), and dependent template names
("MetaFun::template apply").
One immediate effect of this change is that the representation of
nested-name-specifiers in type names for class template
specializations (e.g., std::vector<int>) is more accurate. Rather than
representing std::vector<int> as
std::(vector<int>)
we represent it as
(std::vector)<int>
which more closely follows the C++ grammar.
Additionally, templates are no longer represented as declarations
(DeclPtrTy) in Parse-Sema interactions. Instead, I've introduced a new
OpaquePtr type (TemplateTy) that holds the representation of a
TemplateName. This will simplify the handling of dependent
template-names, once we get there.
llvm-svn: 68074
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
pointer. Its purpose in life is to be a glorified void*, but which does not
implicitly convert to void* or other OpaquePtr's with a different UID.
Introduce Action::DeclPtrTy which is a typedef for OpaquePtr<0>. Change the
entire parser/sema interface to use DeclPtrTy instead of DeclTy*. This
makes the C++ compiler enforce that these aren't convertible to other opaque
types.
We should also convert ExprTy, StmtTy, TypeTy, AttrTy, BaseTy, etc,
but I don't plan to do that in the short term.
The one outstanding known problem with this patch is that we lose the
bitmangling optimization where ActionResult<DeclPtrTy> doesn't know how to
bitmangle the success bit into the low bit of DeclPtrTy. I will rectify
this with a subsequent patch.
llvm-svn: 67952
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
instantiation for C++ typename-specifiers such as
typename T::type
The parsing of typename-specifiers is relatively easy thanks to
annotation tokens. When we see the "typename", we parse the
typename-specifier and produce a typename annotation token. There are
only a few places where we need to handle this. We currently parse the
typename-specifier form that terminates in an identifier, but not the
simple-template-id form, e.g.,
typename T::template apply<U, V>
Parsing of nested-name-specifiers has a similar problem, since at this
point we don't have any representation of a class template
specialization whose template-name is unknown.
Semantic analysis is only partially complete, with some support for
template instantiation that works for simple examples.
llvm-svn: 67875
|
| |
|
|
|
|
|
|
|
|
|
| |
uniqued representation that should both save some memory and make it
far easier to properly build canonical types for types involving
dependent nested-name-specifiers, e.g., "typename T::Nested::type".
This approach will greatly simplify the representation of
CXXScopeSpec. That'll be next.
llvm-svn: 67799
|
| |
|
|
| |
llvm-svn: 67708
|
| |
|
|
|
|
|
|
|
|
|
| |
the declarations of member classes are instantiated when the owning
class template is instantiated. The definitions of such member classes
are instantiated when a complete type is required.
This change also introduces the injected-class-name into a class
template specialization.
llvm-svn: 67707
|
| |
|
|
| |
llvm-svn: 67660
|
| |
|
|
|
|
|
| |
variant of DiagnosticBuilder that emits the template instantiation
backtrace when needed.
llvm-svn: 67413
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
dependent qualified-ids such as
Fibonacci<N - 1>::value
where N is a template parameter. These references are "unresolved"
because the name is dependent and, therefore, cannot be resolved to a
declaration node (as we would do for a DeclRefExpr or
QualifiedDeclRefExpr). UnresolvedDeclRefExprs instantiate to
DeclRefExprs, QualifiedDeclRefExprs, etc.
Also, be a bit more careful about keeping only a single set of
specializations for a class template, and instantiating from the
definition of that template rather than a previous declaration. In
general, we need a better solution for this for all TagDecls, because
it's too easy to accidentally look at a declaration that isn't the
definition.
We can now process a simple Fibonacci computation described as a
template metaprogram.
llvm-svn: 67308
|