| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
| |
(or operator-function-id) as a template, but the context is actually
non-dependent or the current instantiation, allow us to use knowledge
of what kind of template it is, e.g., type template vs. function
template, for further syntactic disambiguation. This allows us to
parse properly in the presence of stray "template" keywords, which is
necessary in C++0x and it's good recovery in C++98/03.
llvm-svn: 106167
|
| |
|
|
|
|
|
|
|
| |
disambiguation keywords outside of templates in C++98/03. Previously,
the warning would fire when the associated nested-name-specifier was
not dependent, but that was a misreading of the C++98/03 standard:
now, we complain only when we're outside of any template.
llvm-svn: 106161
|
| |
|
|
|
|
| |
type-parameter within a template parameter list. Found by inspection.
llvm-svn: 105462
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
the required "template" keyword, using the same heuristics we do for
dependent template names in member access expressions, e.g.,
test/SemaTemplate/dependent-template-recover.cpp:11:8: error: use 'template'
keyword to treat 'getAs' as a dependent template name
T::getAs<U>();
^
template
Fixes PR5404.
llvm-svn: 104409
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
that is missing the 'template' keyword, e.g.,
t->getAs<T>()
where getAs is a member of an unknown specialization. C++ requires
that we treat "getAs" as a value, but that would fail to parse since T
is the name of a type. We would then fail at the '>', since a type
cannot be followed by a '>'.
This is a very common error for C++ programmers to make, especially
since GCC occasionally allows it when it shouldn't (as does Visual
C++). So, when we are in this case, we use tentative parsing to see if
the tokens starting at "<" can only be parsed as a template argument
list. If so, we produce a diagnostic with a fix-it that states that
the 'template' keyword is needed:
test/SemaTemplate/dependent-template-recover.cpp:5:8: error: 'template' keyword
is required to treat 'getAs' as a dependent template name
t->getAs<T>();
^
template
This is just a start of this patch; I'd like to apply the same
approach to everywhere that a template-id with dependent template name
can be parsed.
llvm-svn: 104406
|
| |
|
|
|
|
| |
Fixes <rdar://problem/7987650>.
llvm-svn: 104376
|
| |
|
|
|
|
| |
the C-only "optimization".
llvm-svn: 100022
|
| |
|
|
| |
llvm-svn: 100018
|
| |
|
|
|
|
|
| |
term "fix-it" everywhere and even *I* get tired of long names
sometimes. No functionality change.
llvm-svn: 100008
|
| |
|
|
|
|
| |
sure that the new token's range extends to the end of the old token. Assert that in AnnotateCachedTokens. Fixes PR6248.
llvm-svn: 95555
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
that name constructors, the endless joys of out-of-line constructor
definitions, and various other corner cases that the previous hack
never imagined. Fixes PR5688 and tightens up semantic analysis for
constructor names.
Additionally, fixed a problem where we wouldn't properly enter the
declarator scope of a parenthesized declarator. We were entering the
scope, then leaving it when we saw the ")"; now, we re-enter the
declarator scope before parsing the parameter list.
Note that we are forced to perform some tentative parsing within a
class (call it C) to tell the difference between
C(int); // constructor
and
C (f)(int); // member function
which is rather unfortunate. And, although it isn't necessary for
correctness, we use the same tentative-parsing mechanism for
out-of-line constructors to improve diagnostics in icky cases like:
C::C C::f(int); // error: C::C refers to the constructor name, but
// we complain nicely and recover by treating it as
// a type.
llvm-svn: 93322
|
| |
|
|
| |
llvm-svn: 92177
|
| |
|
|
| |
llvm-svn: 91024
|
| |
|
|
|
|
| |
of dirty data around.
llvm-svn: 91002
|
| |
|
|
| |
llvm-svn: 90044
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
The following attributes are currently supported in C++0x attribute
lists (and in GNU ones as well):
- align() - semantics believed to be conformant to n3000, except for
redeclarations and what entities it may apply to
- final - semantics believed to be conformant to CWG issue 817's proposed
wording, except for redeclarations
- noreturn - semantics believed to be conformant to n3000, except for
redeclarations
- carries_dependency - currently ignored (this is an optimization hint)
llvm-svn: 89543
|
| |
|
|
|
|
|
| |
"typename" parameter to distinguish between non-type and type template
parameters. Fixes the actual bug in PR5559.
llvm-svn: 89532
|
| |
|
|
|
|
| |
definition of a member template (or a member thereof). Fixes PR5566.
llvm-svn: 89512
|
| |
|
|
|
|
|
|
|
|
|
| |
annotation token, because some of the tokens we're annotating might
not be in the set of cached tokens (we could have consumed them
unconditionally).
Also, move the tentative parsing from ParseTemplateTemplateArgument
into the one caller that needs it, improving recovery.
llvm-svn: 86904
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
parameters. Rather than storing them as either declarations (for the
non-dependent case) or expressions (for the dependent case), we now
(always) store them as TemplateNames.
The primary change here is to add a new kind of TemplateArgument,
which stores a TemplateName. However, making that change ripples to
every switch on a TemplateArgument's kind, also affecting
TemplateArgumentLocInfo/TemplateArgumentLoc, default template
arguments for template template parameters, type-checking of template
template arguments, etc.
This change is light on testing. It should fix several pre-existing
problems with template template parameters, such as:
- the inability to use dependent template names as template template
arguments
- template template parameter default arguments cannot be
instantiation
However, there are enough pieces missing that more implementation is
required before we can adequately test template template parameters.
llvm-svn: 86777
|
| |
|
|
| |
llvm-svn: 86719
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
handling template template parameters properly. This refactoring:
- Parses template template arguments as id-expressions, representing
the result of the parse as a template name (Action::TemplateTy)
rather than as an expression (lame!).
- Represents all parsed template arguments via a new parser-specific
type, ParsedTemplateArgument, which stores the kind of template
argument (type, non-type, template) along with all of the source
information about the template argument. This replaces an ad hoc
set of 3 vectors (one for a void*, which was either a type or an
expression; one for a bit telling whether the first was a type or
an expression; and one for a single source location pointing at
the template argument).
- Moves TemplateIdAnnotation into the new Parse/Template.h. It never
belonged in the Basic library anyway.
llvm-svn: 86708
|
| |
|
|
|
|
| |
single typename annotation token when backtracing. Fixes PR5350.
llvm-svn: 86034
|
| |
|
|
|
|
|
|
|
|
|
|
| |
appears in a deprecated context. In the new strategy, we emit the warnings
as usual unless we're currently parsing a declaration, where "declaration" is
restricted to mean a decl group or a few special cases in Objective C. If
we *are* parsing a declaration, we queue up the deprecation warnings until
the declaration has been completely parsed, and then emit them only if the
decl is not deprecated.
We also standardize the bookkeeping for deprecation so as to avoid special cases.
llvm-svn: 85998
|
| |
|
|
|
|
|
|
| |
overloaded operators, e.g.,
p->template operator+<T>()
llvm-svn: 85989
|
| |
|
|
|
|
| |
partial specializations and explicit instantiations of non-templates.
llvm-svn: 85620
|
| |
|
|
| |
llvm-svn: 81346
|
| |
|
|
|
|
| |
then drop it on the floor.
llvm-svn: 80989
|
| |
|
|
|
|
|
|
|
|
| |
member templates declared inside other templates. This allows us to
match out-of-line definitions of member function templates within
class templates to the declarations within the class template. We
still can't handle out-of-line definitions for member class templates,
however.
llvm-svn: 79955
|
| |
|
|
| |
llvm-svn: 79570
|
| |
|
|
| |
llvm-svn: 79558
|
| |
|
|
| |
llvm-svn: 77656
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
templates, e.g.,
template<typename T>
struct Outer {
struct Inner;
};
template<typename T>
struct Outer<T>::Inner {
// ...
};
Implementing this feature required some extensions to ActOnTag, which
now takes a set of template parameter lists, and is the precursor to
removing the ActOnClassTemplate function from the parser Action
interface. The reason for this approach is simple: the parser cannot
tell the difference between a class template definition and the
definition of a member of a class template; both have template
parameter lists, and semantic analysis determines what that template
parameter list means.
There is still some cleanup to do with ActOnTag and
ActOnClassTemplate. This commit provides the basic functionality we
need, however.
llvm-svn: 76820
|
| |
|
|
|
|
|
|
| |
this case
but at least we don't crash :)
llvm-svn: 74264
|
| |
|
|
|
|
| |
ActOnFunctionDeclarator for function template definitions
llvm-svn: 74040
|
| |
|
|
|
|
|
| |
handle function templates. There's no actual code for function
templates yet, but at least we complain about typedef templates.
llvm-svn: 74021
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
compilation, and (hopefully) introduce RAII objects for changing the
"potentially evaluated" state at all of the necessary places within
Sema and Parser. Other changes:
- Set the unevaluated/potentially-evaluated context appropriately
during template instantiation.
- We now recognize three different states while parsing or
instantiating expressions: unevaluated, potentially evaluated, and
potentially potentially evaluated (for C++'s typeid).
- When we're in a potentially potentially-evaluated context, queue
up MarkDeclarationReferenced calls in a stack. For C++ typeid
expressions that are potentially evaluated, we will play back
these MarkDeclarationReferenced calls when we exit the
corresponding potentially potentially-evaluated context.
- Non-type template arguments are now parsed as constant
expressions, so they are not potentially-evaluated.
llvm-svn: 73899
|
| |
|
|
| |
llvm-svn: 73267
|
| |
|
|
| |
llvm-svn: 73247
|
| |
|
|
|
|
|
|
| |
redundant functionality. The result (ASTOwningVector) lives in
clang/Parse/Ownership.h and is used by both the parser and semantic
analysis. No intended functionality change.
llvm-svn: 72214
|
| |
|
|
| |
llvm-svn: 72210
|
| |
|
|
|
|
|
|
|
| |
template class X<int>;
This also cleans up the propagation of template information through
declaration parsing, which is used to improve some diagnostics.
llvm-svn: 71608
|
| |
|
|
|
|
|
|
|
|
| |
parse just a single declaration and provide a reasonable diagnostic
when the "only one declarator per template declaration" rule is
violated. This eliminates some ugly, ugly hackery where we used to
require thatn the layout of a DeclGroup of a single element be the
same as the layout of a single declaration.
llvm-svn: 71596
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
of the range is now the ';' location. For something like this:
$ cat t2.c
#define bool int
void f(int x, int y) {
bool b = !x && y;
}
We used to produce:
$ clang-cc t2.c -ast-dump
typedef char *__builtin_va_list;
void f(int x, int y)
(CompoundStmt 0x2201f10 <t2.c:3:22, line:5:1>
(DeclStmt 0x2201ef0 <line:2:14> <----
0x2201a20 "int b =
(BinaryOperator 0x2201ed0 <line:4:10, col:16> 'int' '&&'
(UnaryOperator 0x2201e90 <col:10, col:11> 'int' prefix '!'
(DeclRefExpr 0x2201c90 <col:11> 'int' ParmVar='x' 0x2201a50))
(DeclRefExpr 0x2201eb0 <col:16> 'int' ParmVar='y' 0x2201e10))")
Now we produce:
$ clang-cc t2.c -ast-dump
typedef char *__builtin_va_list;
void f(int x, int y)
(CompoundStmt 0x2201f10 <t2.c:3:22, line:5:1>
(DeclStmt 0x2201ef0 <line:2:14, line:4:17> <------
0x2201a20 "int b =
(BinaryOperator 0x2201ed0 <col:10, col:16> 'int' '&&'
(UnaryOperator 0x2201e90 <col:10, col:11> 'int' prefix '!'
(DeclRefExpr 0x2201c90 <col:11> 'int' ParmVar='x' 0x2201a50))
(DeclRefExpr 0x2201eb0 <col:16> 'int' ParmVar='y' 0x2201e10))")
llvm-svn: 68288
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
failures that involve malformed types, e.g., "typename X::foo" where
"foo" isn't a type, or "std::vector<void>" that doens't instantiate
properly.
Similarly, be a bit smarter in our handling of ambiguities that occur
in Sema::getTypeName, to eliminate duplicate error messages about
ambiguous name lookup.
This eliminates two XFAILs in test/SemaCXX, one of which was crying
out to us, trying to tell us that we were producing repeated error
messages.
llvm-svn: 68251
|
| |
|
|
|
|
|
|
|
|
|
| |
within nested-name-specifiers, e.g., for the "apply" in
typename MetaFun::template apply<T1, T2>::type
At present, we can't instantiate these nested-name-specifiers, so our
testing is sketchy.
llvm-svn: 68081
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
representation handles the various ways in which one can name a
template, including unqualified references ("vector"), qualified
references ("std::vector"), and dependent template names
("MetaFun::template apply").
One immediate effect of this change is that the representation of
nested-name-specifiers in type names for class template
specializations (e.g., std::vector<int>) is more accurate. Rather than
representing std::vector<int> as
std::(vector<int>)
we represent it as
(std::vector)<int>
which more closely follows the C++ grammar.
Additionally, templates are no longer represented as declarations
(DeclPtrTy) in Parse-Sema interactions. Instead, I've introduced a new
OpaquePtr type (TemplateTy) that holds the representation of a
TemplateName. This will simplify the handling of dependent
template-names, once we get there.
llvm-svn: 68074
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
productions (except the already broken ObjC cases like @class X,Y;) in
the parser that can produce more than one Decl return a DeclGroup instead
of a Decl, etc.
This allows elimination of the Decl::NextDeclarator field, and exposes
various clients that should look at all decls in a group, but which were
only looking at one (such as the dumper, printer, etc). These have been
fixed.
Still TODO:
1) there are some FIXME's in the code about potentially using
DeclGroup for better location info.
2) ParseObjCAtDirectives should return a DeclGroup due to @class etc.
3) I'm not sure what is going on with StmtIterator.cpp, or if it can
be radically simplified now.
4) I put a truly horrible hack in ParseTemplate.cpp.
I plan to bring up #3/4 on the mailing list, but don't plan to tackle
#1/2 in the short term.
llvm-svn: 68002
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
pointer. Its purpose in life is to be a glorified void*, but which does not
implicitly convert to void* or other OpaquePtr's with a different UID.
Introduce Action::DeclPtrTy which is a typedef for OpaquePtr<0>. Change the
entire parser/sema interface to use DeclPtrTy instead of DeclTy*. This
makes the C++ compiler enforce that these aren't convertible to other opaque
types.
We should also convert ExprTy, StmtTy, TypeTy, AttrTy, BaseTy, etc,
but I don't plan to do that in the short term.
The one outstanding known problem with this patch is that we lose the
bitmangling optimization where ActionResult<DeclPtrTy> doesn't know how to
bitmangle the success bit into the low bit of DeclPtrTy. I will rectify
this with a subsequent patch.
llvm-svn: 67952
|
| |
|
|
|
|
|
|
| |
all the way down to ActOnClassTemplate.
Doug, Sebastian: Plz review! :)
llvm-svn: 67723
|