| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
|
|
|
|
| |
This should reduce the binary size penalty of ASan on Windows. After
r334313, ASan will add red zones to globals in comdats, so we will still
find OOB accesses to string literals.
llvm-svn: 334417
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to implement expandload/compressstore builtins.
Summary: We've had these target independent intrinsics for at least a year and a half. Looks like they do exactly what we need here and the backend already supports them.
Reviewers: RKSimon, delena, spatel, GBuella
Reviewed By: RKSimon
Subscribers: cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D47693
llvm-svn: 334366
|
| |
|
|
|
|
|
|
|
| |
We currently support them only in AArch64. The NEON Reference,
however, says they are 'ARMv7, ARMv8' intrinsics.
Differential Revision: https://reviews.llvm.org/D47446
llvm-svn: 334362
|
| |
|
|
|
|
|
|
| |
SmallSet forwards to SmallPtrSet for pointer types. SmallPtrSet supports iteration, but a normal SmallSet doesn't. So if it wasn't for the forwarding, this wouldn't work.
These places were found by hiding the begin/end methods in the SmallSet forwarding.
llvm-svn: 334339
|
| |
|
|
|
|
|
|
|
|
| |
others.
I'd like to make the select builtins require an avx512f, avx512bw, or avx512vl fature to match what is normally required to get masking. Truncate is special in that there are instructions with a 128/256-bit masked result even without avx512vl.
By using special buitlins we can emit a select without using the 128/256-bit select builtins.
llvm-svn: 334331
|
| |
|
|
|
|
|
|
| |
I'm looking into making the select builtins require avx512f, avx512bw, or avx512vl since masking operations generally require those features.
The extract builtins are funny because the 512-bit versions return a 128 or 256 bit vector with masking even when avx512vl is not supported.
llvm-svn: 334330
|
| |
|
|
|
|
| |
checking.
llvm-svn: 334311
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CGM.GetAddrOfConstantCString() sets the adress of the created GlobalValue
to unnamed. When emitting the object file LLVM will mark the surrounding
section as SHF_MERGE iff the string is nul-terminated and contains no
other nuls (see IsNullTerminatedString). This results in problems when
saving temporaries because LLVM doesn't set an EntrySize, so reading in
the serialized assembly file fails.
This never happened for the GPU binaries because they usually contain
a nul-character somewhere. Instead this only affected the module ID
when compiling relocatable device code.
However, this points to a potentially larger problem: If we put a
constant string into a named section, we really want the data to end
up in that section in the object file. To avoid LLVM merging sections
this patch unmarks the GlobalVariable's address as unnamed which also
fixes the problem of invalid serialized assembly files when saving
temporaries.
Differential Revision: https://reviews.llvm.org/D47902
llvm-svn: 334281
|
| |
|
|
|
|
| |
immediate range checking.
llvm-svn: 334266
|
| |
|
|
|
|
| |
and immediate range checking.
llvm-svn: 334265
|
| |
|
|
|
|
|
|
| |
checking and immediate range checking.
Test changes are due to differences in how we generate undef elements now. We also changed the types used for extractf128_si256/insertf128_si256 to match the signature of the builtin that previously existed which this patch resurrects. This also matches gcc.
llvm-svn: 334261
|
| |
|
|
|
|
| |
checking.
llvm-svn: 334256
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The windows-msvc target is meant to be ABI compatible with MSVC,
including the exception handling. Ensure that a windows-msvc triple
always equates to the MSVC personality being used.
This mostly affects the GNUStep and ObjFW Obj-C runtimes. To the best of
my knowledge, those are normally not used with windows-msvc triples. I
believe WinObjC is based on GNUStep (or it at least uses libobjc2), but
that also takes the approach of wrapping Obj-C exceptions in C++
exceptions, so the MSVC personality function is the right one to use
there as well.
Differential Revision: https://reviews.llvm.org/D47862
llvm-svn: 334253
|
| |
|
|
|
|
| |
feature requirements and check immediate range.
llvm-svn: 334249
|
| |
|
|
|
|
| |
target feature checking and immediate range checking.
llvm-svn: 334244
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adds support for these intrinsics, which are ARM and ARM64 only:
_interlockedbittestandreset_acq
_interlockedbittestandreset_rel
_interlockedbittestandreset_nf
_interlockedbittestandset_acq
_interlockedbittestandset_rel
_interlockedbittestandset_nf
Refactor the bittest intrinsic handling to decompose each intrinsic into
its action, its width, and its atomicity.
llvm-svn: 334239
|
| |
|
|
|
|
|
|
| |
We still emit shufflevector instructions we just do it from CGBuiltin.cpp now. This ensures the intrinsics that use this are only available on CPUs that support the feature.
I also added range checking to the immediate, but only checked it is 8 bits or smaller. We should maybe be stricter since we never use all 8 bits, but gcc doesn't seem to do that.
llvm-svn: 334237
|
| |
|
|
|
|
|
|
|
|
| |
intrinsics.
We still lower them to native shuffle IR, but we do it in CGBuiltin.cpp now. This allows us to check the target feature and ensure the immediate fits in 8 bits.
This also improves our -O0 codegen slightly because we're able to see the zeroinitializer in the shuffle. It looks like it got lost behind a store+load previously.
llvm-svn: 334208
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
When requirement imposed by __target__ attributes on functions
are not satisfied, prefer printing those requirements, which
are explicitly mentioned in the attributes.
This makes such messages more useful, e.g. printing avx512f instead of avx2
in the following scenario:
```
$ cat foo.c
static inline void __attribute__((__always_inline__, __target__("avx512f")))
x(void)
{
}
int main(void)
{
x();
}
$ clang foo.c
foo.c:7:2: error: always_inline function 'x' requires target feature 'avx2', but would be inlined into function 'main' that is compiled without support for 'avx2'
x();
^
1 error generated.
```
bugzilla: https://bugs.llvm.org/show_bug.cgi?id=37338
Reviewers: craig.topper, echristo, dblaikie
Reviewed By: craig.topper, echristo
Differential Revision: https://reviews.llvm.org/D46541
llvm-svn: 334174
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
fmadd/fmsub/fmaddsub/fmsubadd builtins.
Summary:
We recently switch to using a selects in the intrinsics header files for FMA instructions. But the 512-bit versions support flavors with rounding mode which must be an Integer Constant Expression. This has forced those intrinsics to be implemented as macros. As it stands now the mask and mask3 intrinsics evaluate one of their macro arguments twice. If that argument itself is another intrinsic macro, we can end up over expanding macros. Or if its something we can CSE later it would show up multiple times when it shouldn't.
I tried adding __extension__ around the macro and making it an expression statement and declaring a local variable. But whatever name you choose for the local variable can never be used as the name of an input to the macro in user code. If that happens you would end up with the same name on the LHS and RHS of an assignment after expansion. We might be safe if we use __ in front of the variable names because those names are reserved and user code shouldn't use that, but I wasn't sure I wanted to make that claim.
The other option which I've chosen here, is to add back _mask, _maskz, and _mask3 flavors of the builtin which we will expand in CGBuiltin.cpp to replicate the argument as needed and insert any fneg needed on the third operand to make a subtract. The _maskz isn't truly necessary if we have an unmasked version or if we use the masked version with a -1 mask and wrap a select around it. But I've chosen to make things more uniform.
I separated out the scalar builtin handling to avoid too many things going on in EmitX86FMAExpr. It was different enough due to the extract and insert that the minor duplication of the CreateCall was probably worth it.
Reviewers: tkrupa, RKSimon, spatel, GBuella
Reviewed By: tkrupa
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D47724
llvm-svn: 334159
|
| |
|
|
|
|
|
|
|
|
|
|
| |
libvcruntime.lib
Factor out the common setjmp call emission code.
Based on a patch by Chris January
Differential Revision: https://reviews.llvm.org/D47784
llvm-svn: 334112
|
| |
|
|
| |
llvm-svn: 334060
|
| |
|
|
|
|
|
|
|
|
| |
I tested these locally on an x86 machine by disabling the inline asm
codepath and confirming that it does the same bitflips as we do with the
inline asm.
Addresses code review feedback.
llvm-svn: 334059
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
and 256 bit vector types. Use them to implement the extract and insert intrinsics.
Previously we were just using extended vector operations in the header file.
This unfortunately allowed non-constant indices to be used with the intrinsics. This is incompatible with gcc, icc, and MSVC. It also introduces a different performance characteristic because non-constant index gets lowered to a vector store and an element sized load.
By adding the builtins we can check for the index to be a constant and ensure its in range of the vector element count.
User code still has the option to use extended vector operations themselves if they need non-constant indexing.
llvm-svn: 334057
|
| |
|
|
|
|
|
|
| |
use it with an index of 0.
This builtin takes an index as its second operand, but the codegen hardcodes an index of 0 and doesn't use the operand. The only use of the builtin in the header file passes 0 to the operand so this works for that usage. But its more correct to use the real operand.
llvm-svn: 334054
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
CUDA/HIP does not support RTTI on device side, therefore there
is no point of emitting type info when compiling for device.
Emitting type info for device not only clutters the IR with useless
global variables, but also causes undefined symbol at linking
since vtable for cxxabiv1::class_type_info has external linkage.
Differential Revision: https://reviews.llvm.org/D47694
llvm-svn: 334021
|
| |
|
|
|
|
|
|
|
|
|
| |
We need to implement _interlockedbittestandset as a builtin for
windows.h, so we might as well do the whole family. It reduces code
duplication anyway.
Fixes PR33188, a long standing bug in our bittest implementation
encountered by Chakra.
llvm-svn: 333978
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
platforms."
Adding __attribute__((aligned(32))) to __m256 breaks the implementation
of _mm256_loadu_ps on Windows. On Windows, alignment attributes have
higher precedence than packing attributes.
We also might want to carefully consider the consequences of changing
our vector typedefs, since many users copy them and invent their own
new, non-Intel specific vector type names.
llvm-svn: 333958
|
| |
|
|
| |
llvm-svn: 333955
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Because `llvm::Triple` can be derived from `TargetInfo`, it is simpler
to take only `TargetInfo` argument.
Reviewers: sbc100
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D47620
llvm-svn: 333938
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
// Primary fixed point types
signed short _Accum s_short_accum;
signed _Accum s_accum;
signed long _Accum s_long_accum;
unsigned short _Accum u_short_accum;
unsigned _Accum u_accum;
unsigned long _Accum u_long_accum;
// Aliased fixed point types
short _Accum short_accum;
_Accum accum;
long _Accum long_accum;
This diff only allows for declaration of the fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches. The saturated versions of these types and the equivalent _Fract types will also be added in future patches.
The tests included are for asserting that we can declare these types.
Fixed the test that was failing by not checking for dso_local on some
targets.
Differential Revision: https://reviews.llvm.org/D46084
llvm-svn: 333923
|
| |
|
|
|
|
| |
__builtin_ia32_vbroadcastf128_ps256 with an unaligned load intrinsics and a __builtin_shufflevector call.
llvm-svn: 333853
|
| |
|
|
|
|
| |
functions. NFC
llvm-svn: 333851
|
| |
|
|
|
|
|
|
| |
builtin helper functions. NFC"
Looks like I missed some changes to make this work.
llvm-svn: 333850
|
| |
|
|
|
|
| |
functions. NFC
llvm-svn: 333848
|
| |
|
|
|
|
|
|
| |
This seems like a premature optimization. It's unlikely a user would pass something the frontend can tell is all ones to the masked load/store intrinsics.
We do this optimization for emitting select for masking because we have builtin calls in header files that pass an all ones mask in. Though at this point we may not longer have any builtins that emit some IR and a select. We may only have the select builtins so maybe we can remove that optimization too.
llvm-svn: 333847
|
| |
|
|
|
|
|
|
|
| |
We currently support them only in AArch64. The NEON Reference,
however, says they are 'ARMv7, ARMv8' intrinsics.
Differential Revision: https://reviews.llvm.org/D47121
llvm-svn: 333829
|
| |
|
|
|
|
|
| |
This reverts commit r333814, which fails for a test checking the bit
width on ubuntu.
llvm-svn: 333815
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
```
// Primary fixed point types
signed short _Accum s_short_accum;
signed _Accum s_accum;
signed long _Accum s_long_accum;
unsigned short _Accum u_short_accum;
unsigned _Accum u_accum;
unsigned long _Accum u_long_accum;
// Aliased fixed point types
short _Accum short_accum;
_Accum accum;
long _Accum long_accum;
```
This diff only allows for declaration of the fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches. The saturated versions of these types and the equivalent `_Fract` types will also be added in future patches.
The tests included are for asserting that we can declare these types.
Differential Revision: https://reviews.llvm.org/D46084
llvm-svn: 333814
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes two major problems:
- We were not capping vector alignment as desired on 32-bit ARM.
- We were using different alignments based on the AVX settings on
Intel, so we did not have a consistent ABI.
This is an ABI break, but we think we can get away with it because
vectors tend to be used mostly in inline code (which is why not having
a consistent ABI has not proven disastrous on Intel).
Intel's AVX types are specified as having 32-byte / 64-byte alignment,
so align them explicitly instead of relying on the base ABI rule.
Note that this sort of attribute is stripped from template arguments
in template substitution, so there's a possibility that code templated
over vectors will produce inadequately-aligned objects. The right
long-term solution for this is for alignment attributes to be
interpreted as true qualifiers and thus preserved in the canonical type.
llvm-svn: 333791
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
clang's current wasm EH implementation is a non-MVP feature in progress.
We had a `-mexception-handling` wasm feature but were not using it. This
patch hides the non-MVP wasm EH behind a flag, so it does not affect
other code for now.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, cfe-commits
Differential Revision: https://reviews.llvm.org/D47614
llvm-svn: 333716
|
| |
|
|
|
|
|
|
|
| |
A deferred region should end before the start of a label, and should not
extend to the start of the label sub-statement.
Fixes llvm.org/PR35867.
llvm-svn: 333715
|
| |
|
|
|
|
|
|
|
| |
The WebAssembly committee has decided on the names `memory.size` and
`memory.grow` for the memory intrinsics, so update the clang builtin
functions to follow those names, keeping both sets of old names in place
for compatibility.
llvm-svn: 333712
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Because wasm control flow needs to be structured, using WinEH
instructions to support wasm EH brings several benefits. This patch
makes wasm EH uses Windows EH instructions, with some changes:
1. Because wasm uses a single catch block to catch all C++ exceptions,
this merges all catch clauses into a single catchpad, within which we
test the EH selector as in Itanium EH.
2. Generates a call to `__clang_call_terminate` in case a cleanup
throws. Wasm does not have a runtime to handle this.
3. In case there is no catch-all clause, inserts a call to
`__cxa_rethrow` at the end of a catchpad in order to unwind to an
enclosing EH scope.
Reviewers: majnemer, dschuff
Subscribers: jfb, sbc100, jgravelle-google, sunfish, cfe-commits
Differential Revision: https://reviews.llvm.org/D44931
llvm-svn: 333703
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Ensure latest MPT decl has a MSInheritanceAttr when instantiating
templates, to avoid null MSInheritanceAttr deref in
CXXRecordDecl::getMSInheritanceModel().
See PR#37399 for repo / details.
Patch by Andrew Rogers!
Differential Revision: https://reviews.llvm.org/D46664
llvm-svn: 333680
|
| |
|
|
|
|
|
|
| |
-fthinlto-index.
Differential Revision: https://reviews.llvm.org/D47597
llvm-svn: 333677
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Discard the last uncompleted deferred region in a decl, if one exists.
This prevents lines at the end of a function containing only whitespace
or closing braces from being marked as uncovered, if they follow a
region terminator (return/break/etc).
The previous behavior was to heuristically complete deferred regions at
the end of a decl. In practice this ended up being too brittle for too
little gain. Users would complain that there was no way to reach full
code coverage because whitespace at the end of a function would be
marked uncovered.
rdar://40238228
Differential Revision: https://reviews.llvm.org/D46918
llvm-svn: 333609
|
| |
|
|
|
|
|
| |
"Type metadata" is the term that we've been using for the CFI-related
information on vtables for a while now.
llvm-svn: 333602
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch replaces all packed (and scalar without rounding
mode) fused intrinsics with fmadd/fmaddsub variations.
Then fmadd/fmaddsub are lowered to native IR.
Patch by tkrupa
Reviewers: craig.topper, sroland, spatel, RKSimon
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D47444
llvm-svn: 333555
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These intrinsics are used by MSVC's header files on AArch64 Windows as
well as AArch32, so we should support them for both targets. I've
factored them out of CodeGenFunction::EmitARMBuiltinExpr into separate
functions that EmitAArch64BuiltinExpr can call as well.
Reviewers: javed.absar, mstorsjo
Reviewed By: mstorsjo
Subscribers: kristof.beyls, cfe-commits
Differential Revision: https://reviews.llvm.org/D47476
llvm-svn: 333513
|