| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes a bug in CGRecordLowering::accumulateBitFields where it
unconditionally starts a new run and emits a storage field when it sees
a zero-sized bitfield, which causes an assertion in insertPadding to
fail when -fno-bitfield-type-align is used.
It shouldn't emit new storage if UseZeroLengthBitfieldAlignment and
UseBitFieldTypeAlignment are both false.
rdar://problem/36762205
llvm-svn: 323943
|
|
|
|
|
|
|
| |
Previously, friend function definitions within class templates slipped through
the gaps and caused the MS mangler to assert.
llvm-svn: 323935
|
|
|
|
|
|
|
|
| |
This reverts commit r294872.
Although this patch is correct, it caused the objc_autoreleaseRValue/objc_retainAutoreleasedReturnValue
llvm-svn: 323814
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change is step three in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API.
Step 4) Update Polly to use the new IRBuilder API.
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment()
and getSourceAlignment() instead.
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
Reviewers: rjmccall
Subscribers: jyknight, nemanjai, nhaehnle, javed.absar, sbc100, aheejin, kbarton, fedor.sergeev, cfe-commits
Differential Revision: https://reviews.llvm.org/D41677
llvm-svn: 323617
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
constructor.
Previously, clang would emit an over-aligned (16-byte) store to
initialize B::x in B's base constructor when compiling the following
code:
struct A {
__attribute__((aligned(16))) double data1;
};
struct B : public virtual A {
B() : x(123) {}
double a;
int x;
};
struct C : public virtual B {};
void test() { B b; C c; }
This was happening because the code in IRGen that does member
initialization was using the alignment of a complete object instead of
the non-virtual alignment.
This commit fixes the bug.
rdar://problem/36382481
Differential Revision: https://reviews.llvm.org/D42521
llvm-svn: 323578
|
|
|
|
|
|
| |
"in in" -> "in", "on on" -> "on" etc.
llvm-svn: 323509
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D41539
llvm-svn: 323421
|
|
|
|
|
|
|
|
|
| |
The MSVC runtime library does not provide a definition of wmemcmp,
so we need an inline implementation.
Differential Revision: https://reviews.llvm.org/D42441
llvm-svn: 323362
|
|
|
|
|
|
|
|
| |
Hidden visibility is almost the opposite of dllimport. We were
producing them before (dllimport wins in the existing llvm
implementation), but now the llvm verifier produces an error.
llvm-svn: 323361
|
|
|
|
|
|
|
|
|
| |
These symbols are supposed to be preserved even by the linker. Use the
`llvm.used` to ensure that the symbols are not removed by DCE in the
linker. This should be a no-op change on MachO since the symbols are
annotated as `no_dead_strip`.
llvm-svn: 323247
|
|
|
|
|
|
|
| |
Replace calls of EmitLoadOfLValue() by EmitLoadOfScalar() functions if
it is known that the value is scalar.
llvm-svn: 323236
|
|
|
|
|
|
|
| |
Removed more empty SourceLocations() from the OpenMP code and replaced
with the correct locations for better debug info emission.
llvm-svn: 323232
|
|
|
|
|
|
|
| |
This corresponds to r323222 in LLVM. The new names are not yet
finalized, so use them at your own risk.
llvm-svn: 323224
|
|
|
|
|
|
|
|
|
|
|
|
| |
Pass and return _Float16 as if it were an int or float for ARM, but with the
top 16 bits unspecified, similarly like we already do for __fp16.
We will implement proper half-precision function argument lowering in the ARM
backend soon, but want to use this workaround in the mean time.
Differential Revision: https://reviews.llvm.org/D42318
llvm-svn: 323185
|
|
|
|
|
|
|
| |
Using a new extension point in the new PM, register GCOV at the start of
the pipeline rather than the end.
llvm-svn: 323167
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
redeclared."
When a function taking transparent union is declared as taking one of
union members earlier in the translation unit, clang would hit an
"Invalid cast" assertion during EmitFunctionProlog. This case
corresponds to function f1 in test/CodeGen/transparent-union-redecl.c.
We decided to cast i32 to union because after merging function
declarations function parameter type becomes int,
CGFunctionInfo::ArgInfo type matches with ABIArgInfo type, so we decide
it is a trivial case. But these types should also be castable to
parameter declaration type which is not the case here.
Now the fix is in converting from ABIArgInfo type to VarDecl type and using
argument demotion when necessary.
Additional tests in Sema/transparent-union.c capture current behavior and make
sure there are no regressions.
rdar://problem/34949329
Reviewers: rjmccall, rafael
Reviewed By: rjmccall
Subscribers: aemerson, cfe-commits, kristof.beyls, ahatanak
Differential Revision: https://reviews.llvm.org/D41311
llvm-svn: 323156
|
|
|
|
|
|
| |
https://reviews.llvm.org/D41792
llvm-svn: 323006
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The standard says:
[expr.static.cast] p11: "If the prvalue of type “pointer to cv1 B” points to a B
that is actually a subobject of an object of type D, the resulting pointer points
to the enclosing object of type D. Otherwise, the behavior is undefined."
Therefore, the GEP must be inbounds.
This should solve the failure to optimize away a null check shown in PR35909:
https://bugs.llvm.org/show_bug.cgi?id=35909
Differential Revision: https://reviews.llvm.org/D42249
llvm-svn: 322950
|
|
|
|
|
|
|
|
|
|
|
| |
Firstly, each offloading entry must have a unique name or the
linker will complain if there are multiple files with target
regions. Secondly, the compiler must not introduce padding so
mark the struct with a PackedAttr.
Differential Revision: https://reviews.llvm.org/D42168
llvm-svn: 322858
|
|
|
|
|
|
|
|
| |
The old StringSwitch use was also broken. It assumed that a
StringSwitch returns Optional<T> instead of T and was missing a
.Default.
llvm-svn: 322792
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When parsing C++ type construction expressions with list initialization,
forward the locations of the braces to Sema.
Without these locations, the code coverage pass crashes on the given test
case, because the pass relies on getLocEnd() returning a valid location.
Here is what this patch does in more detail:
- Forwards init-list brace locations to Sema (ParseExprCXX),
- Builds an InitializationKind with these locations (SemaExprCXX), and
- Uses these locations for constructor initialization (SemaInit).
The remaining changes fall out of introducing a new overload for
creating direct-list InitializationKinds.
Testing: check-clang, and a stage2 coverage-enabled build of clang with
asserts enabled.
Differential Revision: https://reviews.llvm.org/D41921
llvm-svn: 322729
|
|
|
|
|
|
|
| |
`multiVersionSortPriority` expects features to have no prefix. We
currently carry them around in the format "+${feature}".
llvm-svn: 322618
|
|
|
|
|
|
|
|
|
|
| |
As reported here: https://bugs.llvm.org/show_bug.cgi?id=35921
The resolver functions should be in their own
COMDAT regions. This patch sets that up.
Differential Revision: https://reviews.llvm.org/D42110
llvm-svn: 322592
|
|
|
|
|
|
|
|
|
| |
simd`.
Added host codegen + codegen for devices with default codegen for
`#pragma omp target teams distribute parallel for simd` directive.
llvm-svn: 322515
|
|
|
|
|
|
|
| |
Added basic support for codegen of `depend` clauses on `target`
directive.
llvm-svn: 322501
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
RISCVABIInfo is implemented in terms of XLen, supporting both RV32 and RV64.
Unfortunately we need to count argument registers in the frontend in order to
determine when to emit signext and zeroext attributes. Integer scalars are
extended according to their type up to 32-bits and then sign-extended to XLen
when passed in registers, but are anyext when passed on the stack. This patch
only implements the base integer (soft float) ABIs.
For more information on the RISC-V ABI, see [the ABI
doc](https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md),
my [golden model](https://github.com/lowRISC/riscv-calling-conv-model), and
the [LLVM RISC-V calling convention
patch](https://reviews.llvm.org/D39898#2d1595b4) (specifically the comment
documenting frontend expectations).
Differential Revision: https://reviews.llvm.org/D40023
llvm-svn: 322494
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
integer shift/and/or
Summary:
kunpck intrinsics were removed in favor of native IR a few months ago. The implementation lowers them as by operation on the integer types passed to the intrinsic and then just shifting, masking, and oring them together. A special X86 DAG combine was added to recognize this patter and turn it into a concat_vector operation.
I think it makes more sense to keep the IR implementation closer to vector operations on vXi1. Given that we expect these builtins to be used around other builtins that operate on k-registers which we try to represent in IR with vXi1. InstCombine should be able to get rid of the bitcasts between integers and vXi1 leaving only the vector operations.
Reviewers: RKSimon, spatel, zvi, jina.nahias
Reviewed By: RKSimon
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D42016
llvm-svn: 322461
|
|
|
|
| |
llvm-svn: 322427
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D42011
llvm-svn: 322413
|
|
|
|
|
|
|
|
|
| |
This alignment can be less than 4 on certain embedded targets, which may
not even be able to deal with 4-byte alignment on the stack.
Patch by Jacob Young!
llvm-svn: 322406
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As @rjmccall suggested in D40023, we can get rid of
ABIInfo::shouldSignExtUnsignedType (used to handle cases like the Mips calling
convention where 32-bit integers are always sign extended regardless of the
sign of the type) by adding a SignExt field to ABIArgInfo. In the common case,
this new field is set automatically by ABIArgInfo::getExtend based on the sign
of the type. For targets that want greater control, they can use
ABIArgInfo::getSignExtend or ABIArgInfo::getZeroExtend when necessary. This
change also cleans up logic in CGCall.cpp.
There is no functional change intended in this patch, and all tests pass
unchanged. As noted in D40023, Mips might want to sign-extend unsigned 32-bit
integer return types. A future patch might modify
MipsABIInfo::classifyReturnType to use MipsABIInfo::extendType.
Differential Revision: https://reviews.llvm.org/D41999
llvm-svn: 322396
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
getAssociatedStmt() returns the outermost captured statement for the
OpenMP directive. It may return incorrect region in case of combined
constructs. Reworked the code to reduce the number of calls of
getAssociatedStmt() and used getInnermostCapturedStmt() and
getCapturedStmt() functions instead.
In case of firstprivate variables it may lead to an extra allocas
generation for private copies even if the variable is passed by value
into outlined function and could be used directly as private copy.
llvm-svn: 322393
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
While updating clang tests for having clang set dso_local I noticed
that:
- There are *a lot* of tests to update.
- Many of the updates are redundant.
They are redundant because a GV is "obviously dso_local". This patch
starts formalizing that a bit by requiring that internal and private
GVs be dso_local too. Since they all are, we don't have to print
dso_local to the textual representation, making it a bit more compact
and easier to read.
llvm-svn: 322318
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adds option /guard:cf to clang-cl and -cfguard to cc1 to emit function IDs
of functions that have their address taken into a section named .gfids$y for
compatibility with Microsoft's Control Flow Guard feature.
The original patch didn't have the lit.local.cfg file that restricts the new
test to x86, thus the new test was failing on the non-x86 bots.
Differential Revision: https://reviews.llvm.org/D40531
The reverts r322008, which was a revert of r322005.
This reverts commit a05b89f9aca70597dc79fe97bc49b50b51f525ba.
llvm-svn: 322136
|
|
|
|
|
|
|
|
|
|
| |
GCOV in the old pass manager also strips debug info (if debug info is
disabled/only produced for profiling anyway) after the GCOV pass runs.
I think the strip pass hasn't been ported to the new pass manager, so it
might take me a little while to wire that up.
llvm-svn: 322126
|
|
|
|
| |
llvm-svn: 322112
|
|
|
|
|
|
| |
then use that logic when evaluating constant expressions and emitting codegen.
llvm-svn: 322074
|
|
|
|
|
|
|
|
|
|
| |
Cf-protection is a target independent flag that instructs the back-end to instrument control flow mechanisms like: Branch, Return, etc.
For example in X86 this flag will be used to instrument Indirect Branch Tracking instructions.
Differential Revision: https://reviews.llvm.org/D40478
Change-Id: I5126e766c0e6b84118cae0ee8a20fe78cc373dea
llvm-svn: 322063
|
|
|
|
|
|
|
|
|
|
|
| |
r322028 attempted to remove something from the "Manglings"
list when it was no longer valid, and did so with 'erase'.
However, StringRefs to these were stored, so these became
dangling references. This patch changes to using 'remove' instead
of 'erase' to keep the strings valid.
llvm-svn: 322052
|
|
|
|
|
|
| |
zeroinitializer.
llvm-svn: 322038
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GCC's attribute 'target', in addition to being an optimization hint,
also allows function multiversioning. We currently have the former
implemented, this is the latter's implementation.
This works by enabling functions with the same name/signature to coexist,
so that they can all be emitted. Multiversion state is stored in the
FunctionDecl itself, and SemaDecl manages the definitions.
Note that it ends up having to permit redefinition of functions so
that they can all be emitted. Additionally, all versions of the function
must be emitted, so this also manages that.
Note that this includes some additional rules that GCC does not, since
defining something as a MultiVersion function after a usage has been made illegal.
The only 'history rewriting' that happens is if a function is emitted before
it has been converted to a multiversion'ed function, at which point its name
needs to be changed.
Function templates and virtual functions are NOT yet supported (not supported
in GCC either).
Additionally, constructors/destructors are disallowed, but the former is
planned.
llvm-svn: 322028
|
|
|
|
|
|
|
| |
Fixed name of emitted outlined functions in NVPTX target + extra tests
for the debug info.
llvm-svn: 322022
|
|
|
|
|
|
|
|
|
|
| |
The new test fails on the Hexagon bot. Reverting while I investigate.
This reverts https://reviews.llvm.org/rL322005
This reverts commit b7e0026b4385180c378edc658ec91a39566f2942.
llvm-svn: 322008
|
|
|
|
|
|
|
|
|
|
| |
Adds option /guard:cf to clang-cl and -cfguard to cc1 to emit function IDs
of functions that have their address taken into a section named .gfids$y for
compatibility with Microsoft's Control Flow Guard feature.
Differential Revision: https://reviews.llvm.org/D40531
llvm-svn: 322005
|
|
|
|
|
|
|
|
|
|
|
| |
Resolves:
Bug 35724 - regression (r315984): fatal error: error in backend:
Broken function found (Did not see access type in access path!)
https://bugs.llvm.org/show_bug.cgi?id=35724
Differential Revision: https://reviews.llvm.org/D41547
llvm-svn: 321999
|
|
|
|
|
|
|
|
|
|
| |
r319430
Adds the -fstack-size-section flag to enable the .stack_sizes section. The flag defaults to on for the PS4 triple.
Differential Revision: https://reviews.llvm.org/D40712
llvm-svn: 321992
|
|
|
|
|
|
| |
indirectly and expose that API externally.
llvm-svn: 321957
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These just overloads for _Float128. They're supported by GCC 7 and used
by glibc. APFloat support is already there so just add the overloads.
__builtin_copysignf128
__builtin_fabsf128
__builtin_huge_valf128
__builtin_inff128
__builtin_nanf128
__builtin_nansf128
This is the same support that GCC has, according to the documentation,
but limited to _Float128.
llvm-svn: 321948
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
non-noexcept pointer in C++17
As discussed in the mail thread <https://groups.google.com/a/isocpp.org/forum/
#!topic/std-discussion/T64_dW3WKUk> "Calling noexcept function throug non-
noexcept pointer is undefined behavior?", such a call should not be UB.
However, Clang currently warns about it.
This change removes exception specifications from the function types recorded
for -fsanitize=function, both in the functions themselves and at the call sites.
That means that calling a non-noexcept function through a noexcept pointer will
also not be flagged as UB. In the review of this change, that was deemed
acceptable, at least for now. (See the "TODO" in compiler-rt
test/ubsan/TestCases/TypeCheck/Function/function.cpp.)
To remove exception specifications from types, the existing internal
ASTContext::getFunctionTypeWithExceptionSpec was made public, and some places
otherwise unrelated to this change have been adapted to call it, too.
This is the cfe part of a patch covering both cfe and compiler-rt.
Differential Revision: https://reviews.llvm.org/D40720
llvm-svn: 321859
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the DWARF 5 feature described at
http://www.dwarfstd.org/ShowIssue.php?issue=141215.1
This allows a consumer to understand whether a composite data type is
trivially copyable and thus should be passed by value instead of by
reference. The canonical example is being able to distinguish the
following two types:
// S is not trivially copyable because of the explicit destructor.
struct S {
~S() {}
};
// T is a POD type.
struct T {
~T() = default;
};
<rdar://problem/36034993>
Differential Revision: https://reviews.llvm.org/D41039
llvm-svn: 321845
|