| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The extension has the following syntax:
__builtin_call_with_static_chain(Call, Chain)
where Call must be a function call expression and Chain must be of pointer type
This extension performs a function call Call with a static chain pointer
Chain passed to the callee in a designated register. This is useful for
calling foreign language functions whose ABI uses static chain pointers
(e.g. to implement closures).
Differential Revision: http://reviews.llvm.org/D6332
llvm-svn: 224167
|
|
|
|
|
|
| |
Match LLVM API changes from r223802.
llvm-svn: 223803
|
|
|
|
|
|
|
| |
This is a performance hint that can be applied to kernels
to attempt to limit the number of used registers.
llvm-svn: 223384
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ARM ABI specifies that all the libcalls use soft FP ABI
(even hard FP binaries). These days clang emits _mulsc3 / _muldc3
calls with default (C) calling convention which would be translated
into AAPCS_VFP LLVM calling and thus the result of complex
multiplication will be bogus.
Introduce a way for a target to specify explicitly calling
convention for libcalls. Right now this is temporary correctness
fix. Ultimately, we'll end with intrinsic for complex
multiplication and all calling convention decisions for libcalls
will be put into backend.
llvm-svn: 223123
|
|
|
|
|
|
|
|
|
|
|
| |
Richard rejected my Sema change to interpret an integer literal zero in
a varargs context as a null pointer, so -Wsentinel sees an integer
literal zero and fires off a warning. Only CodeGen currently knows that
it promotes integer literal zeroes in this context to pointer size on
Windows. I didn't want to teach -Wsentinel about that compatibility
hack. Therefore, I'm migrating to C++11 nullptr.
llvm-svn: 223079
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that LLVM can count the registers needed to implement AAPCS rules, we don't
need to duplicate that logic here. This means we can drop the explicit padding
and also use more natural types in many cases (e.g. "struct { float arr[3]; }"
used to end up as "[2 x double]" to avoid holes on the stack.
The one wrinkle is that AAPCS va_arg was also using the register counting
machinery. But the local replacement isn't too bad.
llvm-svn: 222904
|
|
|
|
|
|
|
|
| |
All supported environments on x86 Windows return structs in EAX:EDX.
This removes code added in r204978 that had to get updated in r222680.
We should now have the same behavior we had before r204978.
llvm-svn: 222697
|
|
|
|
|
|
|
| |
The itanium environment follows the system calling convention for structures.
Pass small aggregates via registers.
llvm-svn: 222680
|
|
|
|
|
|
|
|
| |
Cygwin and MinGW fail to conform to the underlying system's structure passing
ABI. Make the check more precise to ensure that we correctly generate code for
the itanium environment.
llvm-svn: 222626
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
issues for Mips.
Summary:
With this patch, passing a va_list to another function and reading 10 int's from
it works correctly on a big-endian target.
Based on a pair of patches by David Chisnall, one of which I've reworked
for the current trunk.
Reviewers: theraven, atanasyan
Reviewed By: theraven, atanasyan
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D6248
llvm-svn: 222339
|
|
|
|
|
|
|
|
|
| |
We have had a test for this for a long time with a FIXME saying what we
should be doing. This just does it.
Fixes PR21573.
llvm-svn: 222074
|
|
|
|
| |
llvm-svn: 222024
|
|
|
|
|
|
|
|
|
|
|
|
| |
Homogeneous aggregates on AAPCS_VFP ARM need to be passed *without* being
flattened (e.g. [2 x float] rather than "float, float") for various weird ABI
reasons. However, this isn't the case for anything else; further, we know at
the ABIArgInfo::getDirect callsites whether this flattening is allowed.
So, we can get more unified ARM code, with a simpler Clang, by just using that
knowledge directly.
llvm-svn: 221559
|
|
|
|
|
|
| |
is supported. Complex numbers are not.
llvm-svn: 221170
|
|
|
|
|
|
| |
[-Winconsistent-missing-override]
llvm-svn: 221039
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The most complex aspect of the convention is the handling of homogeneous
vector and floating point aggregates. Reuse the homogeneous aggregate
classification code that we use on PPC64 and ARM for this.
This convention also has a C mangling, and we apparently implement that
in both Clang and LLVM.
Reviewed By: majnemer
Differential Revision: http://reviews.llvm.org/D6063
llvm-svn: 221006
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reuse the PPC64 HVA detection algorithm for ARM and AArch64. This is a
nice code deduplication, since they are roughly identical. A few virtual
method extension points are needed to understand how big an HVA can be
and what element types it can have for a given architecture.
Also make the record expansion code work in the presence of non-virtual
bases.
Reviewed By: uweigand, asl
Differential Revision: http://reviews.llvm.org/D6045
llvm-svn: 220972
|
|
|
|
|
|
|
|
|
|
|
| |
Following the NVVM IR specifications, arguments of aggregate type should be
passed on the stack without splitting (byval).
http://reviews.llvm.org/D6020
Patch by Jacques Pienaar.
llvm-svn: 220854
|
|
|
|
|
|
|
|
| |
As discussed in bug 21398, PowerPC ABI code needs to consider C++ base
classes when classifying a class as homogeneous aggregate (or not) for
ABI purposes.
llvm-svn: 220852
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This allows us to easily identify them in the backend which in turn allows us
to handle them correctly for big-endian targets (where they must be shifted
into the upper bits of the register).
Depends on D5961
Reviewers: atanasyan
Reviewed By: atanasyan
Subscribers: cfe-commits, theraven
Differential Revision: http://reviews.llvm.org/D5962
llvm-svn: 220566
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Ensure all integral/enumeration types are appropriately annotated with
signext/zeroext. In particular, i32 now has these attributes when using the
N32/N64 ABI. This paves the way for accurately representing the way the
N32/N64 ABI's promotes integer arguments to i64.
Reviewers: atanasyan
Reviewed By: atanasyan
Subscribers: cfe-commits, theraven
Differential Revision: http://reviews.llvm.org/D5961
llvm-svn: 220563
|
|
|
|
|
|
|
| |
Callers of DataLayout::RoundUpAlignment should switch to
RoundUpToAlignment.
llvm-svn: 220188
|
|
|
|
|
|
|
|
|
|
|
|
| |
When the aligned clause of an OpenMP simd pragma is not provided with an
explicit alignment, a target-dependent default must be used. This adds such a
default of PPC targets.
This will become slightly more complicated when BG/Q support is added (because
then it will depend on the type). For now, 16 is a correct value for all
systems, and covers Altivec and VSX vectors.
llvm-svn: 218994
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Currently, with struct my_struct { int x; method_ptr y; };
a call to foo(my_struct s) may end up dropping the last 4 bytes
of the method pointer for x86_64 NaCl and x32.
When checking Has64BitPointers, also check if the method pointer
straddles an eightbyte boundary and classify Hi as well as Lo if needed.
Test Plan: test/CodeGenCXX/x86_64-arguments-nacl-x32.cpp
Reviewers: dschuff, pavel.v.chupin
Subscribers: jfb
Differential Revision: http://reviews.llvm.org/D5555
llvm-svn: 218889
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D5499
llvm-svn: 218660
|
|
|
|
|
|
| |
Save the callers from necessity to special-case on variadic functions.
llvm-svn: 218625
|
|
|
|
|
|
|
|
|
| |
On further investigation, COMDATs should work with .ctors, and the issue
I was hitting probably reproduces with .init_array.
This reverts commit r218287.
llvm-svn: 218313
|
|
|
|
|
|
|
|
|
| |
In particular, pre-.init_array ELF uses the .ctors section mechanism.
MinGW COFF also uses .ctors, now that I think about it. Therefore,
restrict this optimization to the two platforms that are currently known
to work: ELF with .init_array and COFF with .CRT$XCU.
llvm-svn: 218287
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Vectors are normally 16-byte aligned, however the O32 ABI enforces a
maximum alignment of 8-bytes since the base of the stack is 8-byte aligned.
Previously, this was enforced on the caller side, but not on the callee side.
This fixes the output of OpenCL's printf when given vectors.
Reviewers: atanasyan
Reviewed By: atanasyan
Subscribers: llvm-commits, pekka.jaaskelainen
Differential Revision: http://reviews.llvm.org/D5433
llvm-svn: 218248
|
|
|
|
|
|
|
|
|
|
| |
The field is defined as:
If the third field is present, non-null, and points to a global variable or function, the initializer function will only run if the associated data from the current module is not discarded.
And without COMDATs we can't implement that.
llvm-svn: 218097
|
|
|
|
|
|
|
| |
This reverts commit r218089.
It looks like it was causing issues on COFF.
llvm-svn: 218094
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Clang can already handle
-------------------------------------------
struct S {
static const int x;
};
template<typename T> struct U {
static const int k;
};
template<typename T> const int U<T>::k = T::x;
const int S::x = 42;
extern const int *f();
const int *g() { return &U<S>::k; }
int main() {
return *f() + U<S>::k;
}
const int *f() { return &U<S>::k; }
-------------------------------------------
since r217264 which puts the .inint_array section in the same COMDAT
as the variable.
This patch allows the linker to more easily delete some dead code and data by
putting the guard variable and init function in the same COMDAT.
llvm-svn: 218089
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If control falls off the end of a function after an __asm block, MSVC
assumes that the inline assembly filled the EAX and possibly EDX
registers with an appropriate return value. This functionality is used
in inline functions returning 64-bit integers in system headers, so we
need some amount of compatibility.
This is implemented in Clang by adding extra output constraints to every
inline asm block, and storing the resulting output registers into the
return value slot. If we see an asm block somewhere in the function
body, we emit a normal epilogue instead of marking the end of the
function with a return type unreachable.
Normal returns in functions not using this functionality will overwrite
the return value slot, and in most cases LLVM should be able to
eliminate the dead stores.
Fixes PR17201.
Reviewed By: majnemer
Differential Revision: http://reviews.llvm.org/D5177
llvm-svn: 217187
|
|
|
|
| |
llvm-svn: 217161
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This allows us to easily find them in the backend after the aggregates have
been lowered to other types. This is important on big-endian targets using
the N32/N64 ABI's since these ABI's must shift small structures into the
upper bits of the register.
Reviewers: atanasyan
Reviewed By: atanasyan
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5005
llvm-svn: 217160
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
MipsABIInfo::classifyReturnType() for O32
Summary:
They are returned indirectly which causes the other arguments to move to
the next argument slot.
With this, utils/ABITest does not discover any failing cases in the first
500 attempts on big/little endian for O32. Previously some of these failed.
Also tested N32/N64 little endian (big endian has other known issues) with
no issues.
Reviewers: atanasyan
Reviewed By: atanasyan
Subscribers: atanasyan, cfe-commits
Differential Revision: http://reviews.llvm.org/D4811
llvm-svn: 217147
|
|
|
|
|
|
|
|
|
|
|
| |
ACLE 2.0 allows __fp16 to be used as a function argument or return
type. This enables this for AArch64.
This also fixes an existing bug that causes clang to not allow
homogeneous floating-point aggregates with a base type of __fp16. This
is valid for AAPCS64, but not for AAPCS-VFP.
llvm-svn: 216558
|
|
|
|
|
|
|
|
|
| |
This tidies up some ARM-specific code added by r208417 to move it out
of the target-independent parts of clang into TargetInfo.cpp. This
also has the advantage that we can now flatten struct arguments to
variadic AAPCS functions.
llvm-svn: 216535
|
|
|
|
|
|
|
|
|
| |
This time though, preserve the extension for bool types since that's compatible
with what MSVC expects.
See http://reviews.llvm.org/D4380
llvm-svn: 216507
|
|
|
|
| |
llvm-svn: 216496
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
MSVC doesn't extend integer types smaller than 64bit, so to preserve
binary compatibility, clang shouldn't either.
For example, the following C code built with MSVC:
unsigned test(unsigned v);
unsigned foobar(unsigned short);
int main() { return test(0xffffffff) + foobar(28); }
Produces the following:
0000000000000004: B9 FF FF FF FF mov ecx,0FFFFFFFFh
0000000000000009: E8 00 00 00 00 call test
000000000000000E: 89 44 24 20 mov dword ptr [rsp+20h],eax
0000000000000012: 66 B9 1C 00 mov cx,1Ch
0000000000000016: E8 00 00 00 00 call foobar
And as you can see, when setting up the call to foobar, only cx is overwritten.
If foobar is compiled with clang, then the zero extension added by clang means
the rest of the register, which contains garbage, could be used.
For example if foobar is:
unsigned foobar(unsigned short v) {
return v;
}
Compiled with clang -fomit-frame-pointer -O3 gives the following assembly:
foobar:
0000000000000000: 89 C8 mov eax,ecx
0000000000000002: C3 ret
And that function would return garbage because the 16 most significant bits of
ecx still contain garbage from the first call.
With this change, the code for that function is now:
foobar:
0000000000000000: 0F B7 C1 movzx eax,cx
0000000000000003: C3 ret
Reviewers: chapuni, rnk
Reviewed By: rnk
Subscribers: majnemer, cfe-commits
Differential Revision: http://reviews.llvm.org/D4380
llvm-svn: 216491
|
|
|
|
|
|
| |
No functionality change.
llvm-svn: 216183
|
|
|
|
|
|
| |
auroraux.org is not resolving.
llvm-svn: 215644
|
|
|
|
|
|
|
|
| |
It appears that the backend does not handle all cases that were handled by clang.
In particular, it does not handle structs as used in
SingleSource/UnitTests/2003-05-07-VarArgs.
llvm-svn: 214512
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch causes clang to emit va_arg instructions to the backend instead of
expanding them into an implementation itself. The backend already implements
va_arg since this is necessary for NaCl so this patch is removing redundant
code.
Together with the llvm patch (D4556) that accounts for the effect of endianness
on the expansion of va_arg, this fixes PR19612.
Depends on D4556
Reviewers: sstankovic, dsanders
Reviewed By: dsanders
Subscribers: rnk, cfe-commits
Differential Revision: http://reviews.llvm.org/D4742
llvm-svn: 214497
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
While Clang now supports both ELFv1 and ELFv2 ABIs, their use is currently
hard-coded via the target triple: powerpc64-linux is always ELFv1, while
powerpc64le-linux is always ELFv2.
These are of course the most common scenarios, but in principle it is
possible to support the ELFv2 ABI on big-endian or the ELFv1 ABI on
little-endian systems (and GCC does support that), and there are some
special use cases for that (e.g. certain Linux kernel versions could
only be built using ELFv1 on LE).
This patch implements the Clang side of supporting this, based on the
LLVM commit 214072. The command line options -mabi=elfv1 or -mabi=elfv2
select the desired ABI if present. (If not, Clang uses the same default
rules as now.)
Specifically, the patch implements the following changes based on the
presence of the -mabi= option:
In the driver:
- Pass the appropiate -target-abi flag to the back-end
- Select the correct dynamic loader version (/lib64/ld64.so.[12])
In the preprocessor:
- Define _CALL_ELF to the appropriate value (1 or 2)
In the compiler back-end:
- Select the correct ABI in TargetInfo.cpp
- Select the desired ABI for LLVM via feature (elfv1/elfv2)
llvm-svn: 214074
|
|
|
|
|
|
|
|
|
| |
Previously we were building up the inalloca struct in the usual pattern
of return type followed by arguments. However, on Windows, 'this'
always precedes the 'sret' parameter, so we need to insert it into the
struct first as a special case.
llvm-svn: 213990
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The main subtlety here is that the Darwin tools still need to be given "-arch
arm64" rather than "-arch aarch64". Fortunately this already goes via a custom
function to handle weird edge-cases in other architectures, and it tested.
I removed a few arm64_be tests because that really isn't an interesting thing
to worry about. No-one using big-endian is also referring to the target as
arm64 (at least as far as toolchains go). Mostly they date from when arm64 was
a separate target and we *did* need a parallel name simply to test it at all.
Now aarch64_be is sufficient.
llvm-svn: 213744
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In addition to enabling ELFv2 homogeneous aggregate handling,
LLVM support to pass array types directly also enables a performance
enhancement. We can now pass (non-homogeneous) aggregates that fit
fully in registers as direct integer arrays, using an element type
to encode the alignment requirement (that would otherwise go to the
"byval align" field).
This is preferable since "byval" forces the back-end to write the
aggregate out to the stack, even if it could be passed fully in
registers. This is particularly annoying on ELFv2, if there is
no parameter save area available, since we then need to allocate
space on the callee's stack just to hold those aggregates.
Note that to implement this optimization, this patch does not attempt
to fully anticipate register allocation rules as (defined in the
ABI and) implemented in the back-end. Instead, the patch is simply
passing *any* aggregate passed by value using the array mechanism
if its size is up to 64 bytes. This means that some of those will
end up being passed in stack slots anyway, but the generated code
shouldn't be any worse either. (*Large* aggregates remain passed
using "byval" to enable optimized copying via memcpy etc.)
llvm-svn: 213495
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements clang support for the PowerPC ELFv2 ABI.
Together with a series of companion patches in LLVM, this makes
clang/LLVM fully usable on powerpc64le-linux.
Most of the ELFv2 ABI changes are fully implemented on the LLVM side.
On the clang side, we only need to implement some changes in how
aggregate types are passed by value. Specifically, we need to:
- pass (and return) "homogeneous" floating-point or vector aggregates in
FPRs and VRs (this is similar to the ARM homogeneous aggregate ABI)
- return aggregates of up to 16 bytes in one or two GPRs
The second piece is trivial to implement in any case. To implement
the first piece, this patch makes use of infrastructure recently
enabled in the LLVM PowerPC back-end to support passing array types
directly, where the array element type encodes properties needed to
handle homogeneous aggregates correctly.
Specifically, the array element type encodes:
- whether the parameter should be passed in FPRs, VRs, or just
GPRs/stack slots (for float / vector / integer element types,
respectively)
- what the alignment requirements of the parameter are when passed in
GPRs/stack slots (8 for float / 16 for vector / the element type
size for integer element types) -- this corresponds to the
"byval align" field
With this support in place, the clang part simply needs to *detect*
whether an aggregate type implements a float / vector homogeneous
aggregate as defined by the ELFv2 ABI, and if so, pass/return it
as array type using the appropriate float / vector element type.
llvm-svn: 213494
|