| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
'distribute parallel for'
http://reviews.llvm.org/D21564
This patch is an initial implementation for #distribute parallel for.
The main differences that affect other pragmas are:
The implementation of 'distribute parallel for' requires blocking of the associated loop, where blocks are "distributed" to different teams and iterations within each block are scheduled to parallel threads within each team. To implement blocking, sema creates two additional worksharing directive fields that are used to pass the team assigned block lower and upper bounds through the outlined function resulting from 'parallel'. In this way, scheduling for 'for' to threads can use those bounds.
As a consequence of blocking, the stride of 'distribute' is not 1 but it is equal to the blocking size. This is returned by the runtime and sema prepares a DistIncrExpr variable to hold that value.
As a consequence of blocking, the global upper bound (EnsureUpperBound) expression of the 'for' is not the original loop upper bound (e.g. in for(i = 0 ; i < N; i++) this is 'N') but it is the team-assigned block upper bound. Sema creates a new expression holding the calculation of the actual upper bound for 'for' as UB = min(UB, PrevUB), where UB is the loop upper bound, and PrevUB is the team-assigned block upper bound.
llvm-svn: 273705
|
|
|
|
| |
llvm-svn: 273602
|
|
|
|
|
|
|
|
| |
in template"
This reverts commit 0253605771b8bd9d414aba74fe2742c730d6fd1a.
llvm-svn: 272776
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
classes.
MSVC actively uses unqualified lookup in dependent bases, lookup at the
instantiation point (non-dependent names may be resolved on things
declared later) etc. and all this stuff is the main cause of
incompatibility between clang and MSVC.
Clang tries to emulate MSVC behavior but it may fail in many cases.
clang could store lexed tokens for member functions definitions within
ClassTemplateDecl for later parsing during template instantiation.
It will allow resolving many possible issues with lookup in dependent
base classes and removing many already existing MSVC-specific
hacks/workarounds from the clang code.
llvm-svn: 272774
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is particularly important because a some convergent CUDA intrinsics
(e.g. __shfl_down) are implemented in terms of inline asm.
Reviewers: tra
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D20836
llvm-svn: 271336
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch is to add parsing and sema support for `target update` directive. Support for the `to` and `from` clauses will be added by a different patch. This patch also adds support for other clauses that are already implemented upstream and apply to `target update`, e.g. `device` and `if`.
This patch is based on the original post by Kelvin Li.
Reviewers: hfinkel, carlo.bertolli, kkwli0, arpith-jacob, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: http://reviews.llvm.org/D15944
llvm-svn: 270878
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Getting accurate locations for loops is important, because those locations are
used by the frontend to generate optimization remarks. Currently, optimization
remarks for loops often appear on the wrong line, often the first line of the
loop body instead of the loop itself. This is confusing because that line might
itself be another loop, or might be somewhere else completely if the body was
an inlined function call. This happens because of the way we find the loop's
starting location. First, we look for a preheader, and if we find one, and its
terminator has a debug location, then we use that. Otherwise, we look for a
location on an instruction in the loop header.
The fallback heuristic is not bad, but will almost always find the beginning of
the body, and not the loop statement itself. The preheader location search
often fails because there's often not a preheader, and even when there is a
preheader, depending on how it was formed, it sometimes carries the location of
some preceeding code.
I don't see any good theoretical way to fix this problem. On the other hand,
this seems like a straightforward solution: Put the debug location in the
loop's llvm.loop metadata. When emitting debug information, this commit causes
us to add the debug location as an operand to each loop's llvm.loop metadata.
Thus, we now generate this metadata for all loops (not just loops with
optimization hints) when we're otherwise generating debug information.
The remark test case changes depend on the companion LLVM commit r270771.
llvm-svn: 270772
|
|
|
|
| |
llvm-svn: 266765
|
|
|
|
|
|
| |
loops to differ.
llvm-svn: 263895
|
|
|
|
|
|
|
|
|
| |
As part of this, make the function-arrangement interfaces
a little simpler and more semantic.
NFC.
llvm-svn: 263191
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch changes cc1 option -fprofile-instr-generate to an enum option
-fprofile-instrument={clang|none}. It also changes cc1 options
-fprofile-instr-generate= to -fprofile-instrument-path=.
The driver level option -fprofile-instr-generate and -fprofile-instr-generate=
remain intact. This change will pave the way to integrate new PGO
instrumentation in IR level.
Review: http://reviews.llvm.org/D16730
llvm-svn: 259811
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch adds parsing + sema for the target parallel for directive along with testcases.
Reviewers: ABataev
Differential Revision: http://reviews.llvm.org/D16759
llvm-svn: 259654
|
|
|
|
| |
llvm-svn: 259063
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch adds parsing + sema for the target parallel directive and its clauses along with testcases.
Reviewers: ABataev
Differential Revision: http://reviews.llvm.org/D16553
Rebased to current trunk and updated test cases.
llvm-svn: 258832
|
|
|
|
|
|
| |
Patch by Arpith Jacob. Thanks!
llvm-svn: 258177
|
|
|
|
|
|
| |
Patch by Arpith Jacob. Thanks!
llvm-svn: 258165
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Clang doesn’t support a use of “this” pointer inside inline asm.
When I tried to compile a class or a struct (see example) with an inline asm that contains "this" pointer.
Clang returns with an error.
This patch fixes that.
error: expected unqualified-id
For example:
'''
struct A {
void f() {
__asm mov eax, this
// error: expected unqualified-id
}
};
'''
Differential Revision: http://reviews.llvm.org/D15115
llvm-svn: 255645
|
|
|
|
|
|
| |
dist_schedule
llvm-svn: 255498
|
|
|
|
|
|
|
|
| |
Duplicating it can lead to labels being defined twice.
Differential revision: http://reviews.llvm.org/D15399
llvm-svn: 255201
|
|
|
|
|
|
|
|
|
|
| |
implicitly-concatenated string literals. When looking for the start of a token
in the inline assembly, start from the end of the previous token, not the start
of the entire string.
Patch by Yunlian Jiang!
llvm-svn: 255198
|
|
|
|
|
|
|
|
| |
its clauses excluding dist_schedule."
It causes memory leak. Some tests in test/OpenMP would fail.
llvm-svn: 255094
|
|
|
|
|
|
| |
excluding dist_schedule.
llvm-svn: 255001
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Constructors and destructors may be represented by several functions
in IR. Only base structors correspond to source code, others are
small pieces of code and eventually call the base variant. In this
case instrumentation of non-base structors has little sense, this
fix remove it. Now profile data of a declaration corresponds to
exactly one function in IR, it agrees with the current logic of the
profile data loading.
This change fixes PR24996.
Differential Revision: http://reviews.llvm.org/D15158
llvm-svn: 254876
|
|
|
|
|
|
| |
OpenMP 4.5 adds directive 'taskloop simd'. Patch adds parsing/sema analysis for 'taskloop simd' directive and its clauses.
llvm-svn: 254597
|
|
|
|
|
|
| |
Adds initial parsing and semantic analysis for 'taskloop' directive.
llvm-svn: 254367
|
|
|
|
|
|
|
| |
Make ilist iterator conversions explicit in clangCodeGen. Eventually
I'll remove them everywhere.
llvm-svn: 252358
|
|
|
|
|
|
| |
of await_* calls, and AST representation for same.
llvm-svn: 251387
|
|
|
|
| |
llvm-svn: 250876
|
|
|
|
| |
llvm-svn: 247203
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
|
|
|
|
|
|
|
|
| |
When ‘#pragma clang loop vectorize(assume_safety)’ was specified on a loop other loop hints were lost. The problem is that CGLoopInfo attaches metadata differently than EmitCondBrHints in CGStmt. For do-loops CGLoopInfo attaches metadata to the br in the body block and for while and for loops, the inc block. EmitCondBrHints on the other hand always attaches data to the br in the cond block. When specifying assume_safety CGLoopInfo emits an empty llvm.loop metadata shadowing the metadata in the cond block. Loop transformations like rotate and unswitch would then eliminate the cond block and its non-empty metadata.
This patch unifies both approaches for adding metadata and modifies the existing safety tests to include non-assume_safety loop hints.
llvm-svn: 243315
|
|
|
|
|
|
|
| |
for OpenMP 4 target data directive parsing and sema.
This commit is on behalf of Kelvin Li.
llvm-svn: 242785
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some const-correctness changes snuck in here too, since they were in the
area of code I was modifying.
This seems to make Clang actually work without Bus Error on
32bit-sparc.
Follow-up patches will factor out a trailing-object helper class, to
make classes using the idiom of appending objects to other objects
easier to understand, and to ensure (with static_assert) that required
alignment guarantees continue to hold.
Differential Revision: http://reviews.llvm.org/D10272
llvm-svn: 242554
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, clang/llvm treated inline-asm instructions conservatively,
choosing not to eliminate the instructions or hoisting them out of a loop
even when it was safe to do so. This commit makes changes to attach a
readonly or readnone attribute to an inline-asm instruction, which enables
passes such as LICM and EarlyCSE to move or optimize away the instruction.
rdar://problem/11358192
Differential Revision: http://reviews.llvm.org/D10546
llvm-svn: 241930
|
|
|
|
|
|
| |
Implemented parsing/sema analysis + (de)serialization.
llvm-svn: 241253
|
|
|
|
|
|
| |
Add parsing and sema analysis for 'omp cancellation point' directive.
llvm-svn: 241145
|
|
|
|
|
|
| |
Added special RAII class for proper values changing/restoring in CodeGenFunction::CapturedStmtInfo.
llvm-svn: 240517
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Added parsing, sema analysis and codegen for '#pragma omp taskgroup' directive (OpenMP 4.0).
The code for directive is generated the following way:
#pragma omp taskgroup
<body>
void __kmpc_taskgroup(<loc>, thread_id);
<body>
void __kmpc_end_taskgroup(<loc>, thread_id);
llvm-svn: 240011
|
|
|
|
|
|
|
|
|
|
|
| |
Instead, just EvaluateAsInt().
Follow-up to r239549: rsmith points out that isICE() is expensive;
seems like it's not the right concept anyway, as it fails on
`static const' in C, and will actually trigger the assert below on:
test/Sema/inline-asm-validate-x86.c
llvm-svn: 239651
|
|
|
|
|
|
|
|
| |
Specifying #pragma clang loop vectorize(assume_safety) on a loop adds the
mem.parallel_loop_access metadata to each load/store operation in the loop. This
metadata tells loop access analysis (LAA) to skip memory dependency checking.
llvm-svn: 239572
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For inline assembly immediate constraints, we currently always use
EmitScalarExpr, instead of directly emitting the constant. When the
overflow sanitizer is enabled, this generates overflow intrinsics
instead of constants.
Instead, emit a constant for constraints that either require an
immediate (e.g. 'I' on X86), or only accepts constants (immediate
or symbolic; i.e., don't accept registers or memory).
Fixes PR19763.
Differential Revision: http://reviews.llvm.org/D10255
llvm-svn: 239549
|
|
|
|
|
|
|
|
| |
The fact that PGO has a say in how these branch weights are determined
isn't interesting to most of CodeGen, so it makes more sense for this
API to be accessible via CodeGenFunction rather than CodeGenPGO.
llvm-svn: 236380
|
|
|
|
|
|
|
|
|
| |
The RegionCounter type does a lot of legwork, but most of it is only
meaningful within the implementation of CodeGenPGO. The uses elsewhere
in CodeGen generally just want to increment or read counters, so do
that directly.
llvm-svn: 235664
|
|
|
|
|
|
|
| |
The frameescape intrinsic cannot be inlined, so I fixed the inliner in
r234937. This should address PR23216.
llvm-svn: 234942
|
|
|
|
| |
llvm-svn: 234789
|
|
|
|
| |
llvm-svn: 234787
|
|
|
|
| |
llvm-svn: 234786
|
|
|
|
|
|
|
|
|
|
| |
Even though these symbols are in a comdat group, the Microsoft linker
really wants them to have internal linkage.
I'm planning to tweak the mangling in a follow-up change. This is a
straight revert with a 1-line fix.
llvm-svn: 234613
|
|
|
|
| |
llvm-svn: 234563
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
WinEHPrepare was going to have to pattern match the control flow merge
and split that the old lowering used, and that wasn't really feasible.
Now we can teach WinEHPrepare to pattern match this, which is much
simpler:
%fp = call i8* @llvm.frameaddress(i32 0)
call void @func(iN [01], i8* %fp)
This prototype happens to match the prototype used by the Win64 SEH
personality function, so this is really simple.
llvm-svn: 234532
|