| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
| |
In {CG,}ExprConstant.cpp, we weren't treating vector splats properly.
This patch makes us treat splats more properly.
Additionally, this patch adds a new cast kind which allows a bool->int
cast to result in -1 or 0, instead of 1 or 0 (for true and false,
respectively), so we can sanely model OpenCL bool->int casts in the AST.
Differential Revision: http://reviews.llvm.org/D14877
llvm-svn: 257559
|
|
|
|
| |
llvm-svn: 255314
|
|
|
|
|
|
|
|
|
|
|
| |
for the root cause. The 'using llvm::isa;' declaration in Basic/LLVM.h only
pulls the declarations of llvm::isa that were declared prior to it into
namespace clang. In a modules build, this is a hermetic set of just the
declarations from LLVM. In a non-modules build, we happened to also pull the
declaration from lib/CodeGen/Address.h into namespace clang, which made the
code in question accidentally compile.
llvm-svn: 252211
|
|
|
|
| |
llvm-svn: 251713
|
|
|
|
|
|
|
| |
Currently debug info for types used in explicit cast only is not emitted. It happened after a patch for better alignment handling. This patch fixes this bug.
Differential Revision: http://reviews.llvm.org/D13582
llvm-svn: 250795
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
|
|
|
|
| |
llvm-svn: 240382
|
|
|
|
| |
llvm-svn: 240353
|
|
|
|
|
|
|
|
|
|
|
|
| |
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Based on previous discussion on the mailing list, clang currently lacks support
for C99 partial re-initialization behavior:
Reference: http://lists.cs.uiuc.edu/pipermail/cfe-dev/2013-April/029188.html
Reference: http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_253.htm
This patch attempts to fix this problem.
Given the following code snippet,
struct P1 { char x[6]; };
struct LP1 { struct P1 p1; };
struct LP1 l = { .p1 = { "foo" }, .p1.x[2] = 'x' };
// this example is adapted from the example for "struct fred x[]" in DR-253;
// currently clang produces in l: { "\0\0x" },
// whereas gcc 4.8 produces { "fox" };
// with this fix, clang will also produce: { "fox" };
Differential Review: http://reviews.llvm.org/D5789
llvm-svn: 239446
|
|
|
|
|
|
|
|
| |
The first named data member is the field used to default initialize the
union. An IndirectFieldDecl can introduce the first named data member
of a union.
llvm-svn: 238649
|
|
|
|
|
|
|
|
|
|
| |
Types can be classified as being zero-initializable or
non-zero-initializable. We used to classify array types by giving them
the classification of their base element type. However, incomplete
array types are never initialized directly and thus are always
zero-initializable.
llvm-svn: 238256
|
|
|
|
| |
llvm-svn: 235682
|
|
|
|
|
|
|
|
|
|
| |
Now the GEP constant utility functions require the type to be explicitly
passed (since eventually the pointer type will be opaque and not convey
the required type information). For now callers can still pass nullptr
(though none were needed here in Clang, which is nice) if
convenienc/necessary, but eventually that will be disallowed as well.
llvm-svn: 233937
|
|
|
|
|
|
|
|
| |
It is possible to construct an initializer for a bitfield which is not
constant. Instead of emitting code to initialize the field before the
execution of main, clang would crash.
llvm-svn: 232285
|
|
|
|
|
|
|
|
|
| |
Create an ConstantAggregateZero upfront if we see that it is viable.
This saves us from having to manually push_back each and every
initializer and then looping back over them to determine if they are
'null'.
llvm-svn: 224908
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CodeGen assumed that a compound literal with array type should have a
corresponding LLVM IR array type.
We had two bugs in this area:
- Zero sized arrays in compound literals would lead to the creation of
an opaque type. This is unnecessary, we should just create an array
type with a bound of zero.
- Funny record types (like unions) lead to exotic IR types for compound
literals. In this case, CodeGen must be prepared to deal with the
possibility that it might not have an array IR type.
This fixes PR21912.
llvm-svn: 224219
|
|
|
|
|
|
|
|
|
|
|
| |
Richard rejected my Sema change to interpret an integer literal zero in
a varargs context as a null pointer, so -Wsentinel sees an integer
literal zero and fires off a warning. Only CodeGen currently knows that
it promotes integer literal zeroes in this context to pointer size on
Windows. I didn't want to teach -Wsentinel about that compatibility
hack. Therefore, I'm migrating to C++11 nullptr.
llvm-svn: 223079
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit r220169 which reverted r220153. However, it also
contains additional changes:
- We may need to add padding *after* we've packed the struct. This
occurs when the aligned next field offset is greater than the new
field's offset. When this occurs, we make the struct packed.
*However*, once packed the next field offset might be less than the
new feild's offset. It is in this case that we might further pad the
struct.
- We would pad structs which were perfectly sized! This behavior is
immensely old. This behavior came from blindly subtracting
NextFieldOffsetInChars from RecordSize. This doesn't take into
account the fact that the struct might have a greater overall
alignment than the last field.
llvm-svn: 220175
|
|
|
|
|
|
|
|
|
|
| |
after padding"
This commit caused two tests in LNT to regress. I'm able to reproduce on
any platform and will send reproduction steps to the original commit
log. This should restore the LNT bots that have been failing.
llvm-svn: 220169
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before, ConstStructBuilder::AppendBytes would check packed constraints
prior to padding being added before the field's offset. However, adding
this padding might force our struct to be packed. Because we wouldn't
check *after* adding padding, ConstStructBuilder would be in an
inconsistent state leading to a crash.
This fixes PR21300.
llvm-svn: 220153
|
|
|
|
|
|
|
| |
It exists to handle the case where base subobjects are character arrays.
This never happens.
llvm-svn: 220006
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously CodeGen assumed that static locals were emitted before they
could be accessed, which is true for automatic storage duration locals.
However, it is possible to have CodeGen emit a nested function that uses
a static local before emitting the function that defines the static
local, breaking that assumption.
Fix it by creating the static local upon access and ensuring that the
deferred function body gets emitted. We may not be able to emit the
initializer properly from outside the function body, so don't try.
Fixes PR18020. See also previous attempts to fix static locals in
PR6769 and PR7101.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4787
llvm-svn: 219265
|
|
|
|
|
|
|
|
|
|
|
| |
ACLE 2.0 allows __fp16 to be used as a function argument or return
type. This enables this for AArch64.
This also fixes an existing bug that causes clang to not allow
homogeneous floating-point aggregates with a base type of __fp16. This
is valid for AAPCS64, but not for AAPCS-VFP.
llvm-svn: 216558
|
|
|
|
|
|
|
| |
or a class derived from T. We already supported this when initializing
_Atomic(T) from T for most (and maybe all) other reasonable values of T.
llvm-svn: 214390
|
|
|
|
| |
llvm-svn: 209272
|
|
|
|
|
|
|
| |
'typeof' to extract type of an @encode expression used
in an initializer. // rdar://16655340
llvm-svn: 207004
|
|
|
|
|
|
|
| |
Getting a pointer into a struct at a non-zero offset would try to
use the default address space.
llvm-svn: 206478
|
|
|
|
|
|
| |
with iterator_range vbases(). Updating all of the usages of the iterators with range-based for loops.
llvm-svn: 203808
|
|
|
|
|
|
| |
iterator_range bases(). Updating all of the usages of the iterators with range-based for loops.
llvm-svn: 203803
|
|
|
|
|
|
| |
iterator_range fields(). Updating all of the usages of the iterators with range-based for loops.
llvm-svn: 203355
|
|
|
|
|
|
|
|
| |
This better describes what the function does.
Cleanup only.
llvm-svn: 198127
|
|
|
|
|
|
|
|
|
|
| |
With the introduction of explicit address space casts into LLVM, there's
a need to provide a new cast kind the front-end can create for C/OpenCL/CUDA
and code to produce address space casts from those kinds when appropriate.
Patch by Michele Scandale!
llvm-svn: 197036
|
|
|
|
|
|
|
|
| |
when using -cxx-abi microsoft
Reviewed at http://llvm-reviews.chandlerc.com/D1532
llvm-svn: 191523
|
|
|
|
|
|
|
|
|
|
|
|
| |
The intent of getTypeOperand() was to yield an unqualified type.
However QualType::getUnqualifiedType() does not strip away qualifiers on
arrays.
N.B. This worked fine when typeid() was applied to an expression
because we would inject as implicit cast to the unqualified array type
in the AST.
llvm-svn: 191487
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the same way GenericSelectionExpr works, and it's generally a
more consistent approach.
A large part of this patch is devoted to caching the value of the condition
of a ChooseExpr; it's needed to avoid threading an ASTContext into
IgnoreParens().
Fixes <rdar://problem/14438917>.
llvm-svn: 186738
|
|
|
|
|
|
|
|
|
|
| |
Sema needs to be able to accurately determine what will be
emitted as a constant initializer and what will not, so
we get accurate errors in C and accurate -Wglobal-constructors
warnings in C++. This makes Expr::isConstantInitializer match
CGExprConstant as closely as possible.
llvm-svn: 186464
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The old implementation of ms_struct in RecordLayoutBuilder was a
complete mess: it depended on complicated conditionals which didn't
really reflect the underlying logic, and placed a burden on users of
the resulting RecordLayout. This commit rips out almost all of the
old code, and replaces it with simple checks in
RecordLayoutBuilder::LayoutBitField.
This commit also fixes <rdar://problem/14252115>, a bug where class
inheritance would cause us to lay out bitfields incorrectly.
llvm-svn: 185018
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce CXXStdInitializerListExpr node, representing the implicit
construction of a std::initializer_list<T> object from its underlying array.
The AST representation of such an expression goes from an InitListExpr with a
flag set, to a CXXStdInitializerListExpr containing a MaterializeTemporaryExpr
containing an InitListExpr (possibly wrapped in a CXXBindTemporaryExpr).
This more detailed representation has several advantages, the most important of
which is that the new MaterializeTemporaryExpr allows us to directly model
lifetime extension of the underlying temporary array. Using that, this patch
*drastically* simplifies the IR generation of this construct, provides IR
generation support for nested global initializer_list objects, fixes several
bugs where the destructors for the underlying array would accidentally not get
invoked, and provides constant expression evaluation support for
std::initializer_list objects.
llvm-svn: 183872
|
|
|
|
|
|
|
|
|
| |
handle temporaries which have been lifetime-extended to static storage duration
within constant expressions. This correctly handles nested lifetime extension
(through reference members of aggregates in aggregate initializers) but
non-constant-expression emission hasn't yet been updated to do the same.
llvm-svn: 183283
|
|
|
|
|
|
|
|
|
|
|
| |
Add a CXXDefaultInitExpr, analogous to CXXDefaultArgExpr, and use it both in
CXXCtorInitializers and in InitListExprs to represent a default initializer.
There's an additional complication here: because the default initializer can
refer to the initialized object via its 'this' pointer, we need to make sure
that 'this' points to the right thing within the evaluation.
llvm-svn: 179958
|
|
|
|
|
|
| |
trivial constructors and non-trivial destructors. Test that such objects are ignored by init-order checker.
llvm-svn: 178856
|
|
|
|
|
|
| |
No functionality change.
llvm-svn: 176469
|
|
|
|
|
|
|
|
| |
operations (as opposed to storage only half/fp16).
Also add some semantic checks for OpenCL half types.
llvm-svn: 173254
|
|
|
|
|
|
| |
OpenCL restrictions (OpenCL 1.2 spec 6.9)
llvm-svn: 172973
|
|
|
|
|
|
| |
brought into 'clang' namespace by clang/Basic/LLVM.h
llvm-svn: 172323
|
|
|
|
|
|
|
|
|
|
| |
storage and thus is implicitly zero-initialized, no need to
do C++11 memory model. This patch unconditionally detects
such condition and zeroinitializer's the variable.
Patch has been commented on and OKed by Doug off-line.
// rdar://12897704
llvm-svn: 172144
|
|
|
|
|
|
| |
static local variable from the parent scope. PR14773.
llvm-svn: 171433
|
|
|
|
|
|
|
|
| |
reflect the migration in r171366.
Re-sort the #include lines to reflect the new paths.
llvm-svn: 171369
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
|