| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
| |
This reverts commit r313722.
It looks like compiler-rt/lib/tsan/rtl/tsan_libdispatch_mac.cc cannot be
compiled because some of the functions declared in the file do not match
the ones in the SDK headers (which are annotated with 'noescape').
llvm-svn: 313725
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The attribute informs the compiler that the annotated pointer parameter
of a function cannot escape and enables IRGen to attach attribute
'nocapture' to parameters that are annotated with the attribute. That is
the only optimization that currently takes advantage of 'noescape', but
there are other optimizations that will be added later that improves
IRGen for ObjC blocks.
rdar://problem/19886775
Differential Revision: https://reviews.llvm.org/D32210
llvm-svn: 313722
|
|
|
|
|
|
|
|
| |
This reverts r313717.
I closed the wrong phabricator review.
llvm-svn: 313721
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The attribute informs the compiler that the annotated pointer parameter
of a function cannot escape and enables IRGen to attach attribute
'nocapture' to parameters that are annotated with the attribute. That is
the only optimization that currently takes advantage of 'noescape', but
there are other optimizations that will be added later that improves
IRGen for ObjC blocks.
rdar://problem/19886775
Differential Revision: https://reviews.llvm.org/D32520
llvm-svn: 313720
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D37628
llvm-svn: 312870
|
|
|
|
|
|
|
|
| |
In a future commit AMDGPU will start passing
aggregates directly to more functions, triggering
asserts in test/CodeGenOpenCL/addr-space-struct-arg.cl
llvm-svn: 309741
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
further improvements easier
Convert attribute 'target' parsing from a 'pair' to a 'struct' to make further
improvements easier
The attribute 'target' parse function previously returned a pair. Convert
this to a 'pair' in order to add more functionality, and improve usability.
Differential Revision: https://reviews.llvm.org/D35574
llvm-svn: 308357
|
|
|
|
|
|
|
|
|
|
|
| |
Move builtins from the x86 specific scope into the global
scope. Their use is still limited to x86_64 and aarch64 though.
This allows wine on aarch64 to properly handle variadic functions.
Differential Revision: https://reviews.llvm.org/D34475
llvm-svn: 308218
|
|
|
|
| |
llvm-svn: 308209
|
|
|
|
| |
llvm-svn: 307007
|
|
|
|
|
|
|
|
|
|
| |
Clang assumes coerced function argument is in address space 0, which is not always true and results in invalid bitcasts.
This patch fixes failure in OpenCL conformance test api/get_kernel_arg_info with amdgcn---amdgizcl triple, where non-zero alloca address space is used.
Differential Revision: https://reviews.llvm.org/D34777
llvm-svn: 306721
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The assertion was failing when a method of a parameterized class was
called and the types of the argument and parameter didn't match. To fix
the failure, move the assertion in EmitCallArg to its only caller
EmitCallArgs and require the argument and parameter types match only
when the method is not parameterized.
rdar://problem/32874473
Differential Revision: https://reviews.llvm.org/D34665
llvm-svn: 306494
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch makes ubsan's nonnull return value diagnostics more precise,
which makes the diagnostics more useful when there are multiple return
statements in a function. Example:
1 |__attribute__((returns_nonnull)) char *foo() {
2 | if (...) {
3 | return expr_which_might_evaluate_to_null();
4 | } else {
5 | return another_expr_which_might_evaluate_to_null();
6 | }
7 |} // <- The current diagnostic always points here!
runtime error: Null returned from Line 7, Column 2!
With this patch, the diagnostic would point to either Line 3, Column 5
or Line 5, Column 5.
This is done by emitting source location metadata for each return
statement in a sanitized function. The runtime is passed a pointer to
the appropriate metadata so that it can prepare and deduplicate reports.
Compiler-rt patch (with more tests): https://reviews.llvm.org/D34298
Differential Revision: https://reviews.llvm.org/D34299
llvm-svn: 306163
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In C++ all variables are in default address space. Previously change has been
made to cast automatic variables to default address space. However that is
not sufficient since all temporary variables need to be casted to default
address space.
This patch casts all temporary variables to default address space except those
for passing indirect arguments since they are only used for load/store.
This patch only affects target having non-zero alloca address space.
Differential Revision: https://reviews.llvm.org/D33706
llvm-svn: 305711
|
|
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D34133
llvm-svn: 305325
|
|
|
|
| |
llvm-svn: 304649
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rationale: OpenCL kernels are called via an explicit runtime API
with arguments set with clSetKernelArg(), not as normal sub-functions.
Return SPIR_KERNEL by default as the kernel calling convention to ensure
the fingerprint is fixed such way that each OpenCL argument gets one
matching argument in the produced kernel function argument list to enable
feasible implementation of clSetKernelArg() with aggregates etc. In case
we would use the default C calling conv here, clSetKernelArg() might
break depending on the target-specific conventions; different targets
might split structs passed as values to multiple function arguments etc.
https://reviews.llvm.org/D33639
llvm-svn: 304389
|
|
|
|
|
|
|
|
|
|
| |
AttributeList"
This time, I fixed, built, and tested clang.
This reverts r301712.
llvm-svn: 301981
|
|
|
|
|
|
|
|
|
| |
Implements the Clang part for no_caller_saved_registers attribute as appears here:
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=5ed3cc7b66af4758f7849ed6f65f4365be8223be.
Differential Revision: https://reviews.llvm.org/D31871
llvm-svn: 301535
|
|
|
|
|
|
|
|
| |
This should simplify the call sites, which typically want to tweak one
attribute at a time. It should also avoid creating ephemeral
AttributeLists that live forever.
llvm-svn: 300718
|
|
|
|
| |
llvm-svn: 300628
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D32133
llvm-svn: 300487
|
|
|
|
| |
llvm-svn: 299889
|
|
|
|
|
|
|
|
| |
GCC has the alloc_align attribute, which is similar to assume_aligned, except the attribute's parameter is the index of the integer parameter that needs aligning to.
Differential Revision: https://reviews.llvm.org/D29599
llvm-svn: 299117
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
attributes.
These patches don't work because we can't currently access the parameter
information in a reliable way when building attributes. I thought this
would be relatively straightforward to fix, but it seems not to be the
case. Fixing this will requrie a substantial re-plumbing of machinery to
allow attributes to be handled in this location, and several other fixes
to the attribute machinery should probably be made at the same time. All
of this will make the patch .... substantially more complicated.
Reverting for now as there are active miscompiles caused by the current
version.
llvm-svn: 298695
|
|
|
|
| |
llvm-svn: 298657
|
|
|
|
|
|
|
|
|
|
| |
explaining why we have to ignore errors here even though in other parts
of codegen we can be more strict with builtins.
Also add a test case based on the code in a TSan test that found this
issue.
llvm-svn: 298494
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
declarations and calls instead of just definitions, and then teach it to
*not* attach such attributes even if the source code contains them.
This follows the design direction discussed on cfe-dev here:
http://lists.llvm.org/pipermail/cfe-dev/2017-January/052066.html
The idea is that for C standard library builtins, even if the library
vendor chooses to annotate their routines with __attribute__((nonnull)),
we will ignore those attributes which pertain to pointer arguments that
have an associated size. This allows the widespread (and seemingly
reasonable) pattern of calling these routines with a null pointer and
a zero size. I have only done this for the library builtins currently
recognized by Clang, but we can now trivially add to this set. This will
be controllable with -fno-builtin if anyone should care to do so.
Note that this does *not* change the AST. As a consequence, warnings,
static analysis, and source code rewriting are not impacted.
This isn't even a regression on any platform as neither Clang nor LLVM
have ever put 'nonnull' onto these arguments for declarations. All this
patch does is enable it on other declarations while preventing us from
ever accidentally enabling it on these libc functions due to a library
vendor.
It will also allow any other libraries using this annotation to gain
optimizations based on the annotation even when only a declaration is
visible.
llvm-svn: 298491
|
|
|
|
| |
llvm-svn: 298394
|
|
|
|
|
|
|
|
|
|
|
| |
This is a follow-up to r297700 (Add a nullability sanitizer).
It addresses some FIXME's re: using nullability-specific diagnostic
handlers from compiler-rt, now that the necessary handlers exist.
check-ubsan test updates to follow.
llvm-svn: 297750
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Teach UBSan to detect when a value with the _Nonnull type annotation
assumes a null value. Call expressions, initializers, assignments, and
return statements are all checked.
Because _Nonnull does not affect IRGen, the new checks are disabled by
default. The new driver flags are:
-fsanitize=nullability-arg (_Nonnull violation in call)
-fsanitize=nullability-assign (_Nonnull violation in assignment)
-fsanitize=nullability-return (_Nonnull violation in return stmt)
-fsanitize=nullability (all of the above)
This patch builds on top of UBSan's existing support for detecting
violations of the nonnull attributes ('nonnull' and 'returns_nonnull'),
and relies on the compiler-rt support for those checks. Eventually we
will need to update the diagnostic messages in compiler-rt (there are
FIXME's for this, which will be addressed in a follow-up).
One point of note is that the nullability-return check is only allowed
to kick in if all arguments to the function satisfy their nullability
preconditions. This makes it necessary to emit some null checks in the
function body itself.
Testing: check-clang and check-ubsan. I also built some Apple ObjC
frameworks with an asserts-enabled compiler, and verified that we get
valid reports.
Differential Revision: https://reviews.llvm.org/D30762
llvm-svn: 297700
|
|
|
|
|
|
|
|
|
|
| |
UBSan's nonnull argument check applies when a parameter has the
"nonnull" attribute. The check currently works for FunctionDecls, but
not for ObjCMethodDecls. This patch extends the check to work for ObjC.
Differential Revision: https://reviews.llvm.org/D30599
llvm-svn: 296996
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The goal of this is to fix a bug in modules where we'd merge
FunctionDecls that differed in their pass_object_size attributes. Since
we can overload on the presence of pass_object_size attributes, this
behavior is incorrect.
We don't represent `N` in `pass_object_size(N)` as part of
ExtParameterInfo, since it's an error to overload solely on the value of
N. This means that we have a bug if we have two modules that declare
functions that differ only in their pass_object_size attrs, like so:
// In module A, from a.h
void foo(char *__attribute__((pass_object_size(0))));
// In module B, from b.h
void foo(char *__attribute__((pass_object_size(1))));
// In module C, in main.c
#include "a.h"
#include "b.h"
At the moment, we'll merge the foo decls, when we should instead emit a
diagnostic about an invalid overload. We seem to have similar (silent)
behavior if we overload only on the return type of `foo` instead; I'll
try to find a good place to put a FIXME (or I'll just file a bug) soon.
This patch also fixes a bug where we'd not output the proper extended
parameter info for declarations with pass_object_size attrs.
llvm-svn: 296076
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch makes use of the prefix/suffix ABI argument distinction that
was introduced in r295870, so that we now emit ExtParameterInfo at the
correct offset for member calls that have added ABI arguments. I don't
see a good way to test the generated param info, since we don't actually
seem to use it in CGFunctionInfo outside of Swift. Any
suggestions/thoughts for how to better test this are welcome. :)
This patch also fixes a small bug with inheriting constructors: if we
decide not to pass args into an base class ctor, we would still
generate ExtParameterInfo as though we did. The added test-case is for
that behavior.
llvm-svn: 296024
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes an assertion failure in cases where we had expression
statements that declared variables nested inside of pass_object_size
args. Since we were emitting the same ExprStmt twice (once for the arg,
once for the @llvm.objectsize call), we were getting issues with
redefining locals.
This also means that we can be more lax about when we emit
@llvm.objectsize for pass_object_size args: since we're reusing the
arg's value itself, we don't have to care so much about side-effects.
llvm-svn: 295935
|
|
|
|
|
|
| |
This fixes a few assertion failures. Please see the added test case.
llvm-svn: 295894
|
|
|
|
| |
llvm-svn: 295183
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
modules.
Summary:
Now when you ask clang to link in a bitcode module, you can tell it to
set attributes on that module's functions to match what we would have
set if we'd emitted those functions ourselves.
This is particularly important for fast-math attributes in CUDA
compilations.
Each CUDA compilation links in libdevice, a bitcode library provided by
nvidia as part of the CUDA distribution. Without this patch, if we have
a user-function F that is compiled with -ffast-math that calls a
function G from libdevice, F will have the unsafe-fp-math=true (etc.)
attributes, but G will have no attributes.
Since F calls G, the inliner will merge G's attributes into F's. It
considers the lack of an unsafe-fp-math=true attribute on G to be
tantamount to unsafe-fp-math=false, so it "merges" these by setting
unsafe-fp-math=false on F.
This then continues up the call graph, until every function that
(transitively) calls something in libdevice gets unsafe-fp-math=false
set, thus disabling fastmath in almost all CUDA code.
Reviewers: echristo
Subscribers: hfinkel, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D28538
llvm-svn: 293097
|
|
|
|
| |
llvm-svn: 291264
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a recommit of r290149, which was reverted in r290169 due to msan
failures. msan was failing because we were calling
`isMostDerivedAnUnsizedArray` on an invalid designator, which caused us
to read uninitialized memory. To fix this, the logic of the caller of
said function was simplified, and we now have a `!Invalid` assert in
`isMostDerivedAnUnsizedArray`, so we can catch this particular bug more
easily in the future.
Fingers crossed that this patch sticks this time. :)
Original commit message:
This patch does three things:
- Gives us the alloc_size attribute in clang, which lets us infer the
number of bytes handed back to us by malloc/realloc/calloc/any user
functions that act in a similar manner.
- Teaches our constexpr evaluator that evaluating some `const` variables
is OK sometimes. This is why we have a change in
test/SemaCXX/constant-expression-cxx11.cpp and other seemingly
unrelated tests. Richard Smith okay'ed this idea some time ago in
person.
- Uniques some Blocks in CodeGen, which was reviewed separately at
D26410. Lack of uniquing only really shows up as a problem when
combined with our new eagerness in the face of const.
llvm-svn: 290297
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit fails MSan when running test/CodeGen/object-size.c in
a confusing way. After some discussion with George, it isn't really
clear what is going on here. We can make the MSan failure go away by
testing for the invalid bit, but *why* things are invalid isn't clear.
And yet, other code in the surrounding area is doing precisely this and
testing for invalid.
George is going to take a closer look at this to better understand the
nature of the failure and recommit it, for now backing it out to clean
up MSan builds.
llvm-svn: 290169
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch does three things:
- Gives us the alloc_size attribute in clang, which lets us infer the
number of bytes handed back to us by malloc/realloc/calloc/any user
functions that act in a similar manner.
- Teaches our constexpr evaluator that evaluating some `const` variables
is OK sometimes. This is why we have a change in
test/SemaCXX/constant-expression-cxx11.cpp and other seemingly
unrelated tests. Richard Smith okay'ed this idea some time ago in
person.
- Uniques some Blocks in CodeGen, which was reviewed separately at
D26410. Lack of uniquing only really shows up as a problem when
combined with our new eagerness in the face of const.
Differential Revision: https://reviews.llvm.org/D14274
llvm-svn: 290149
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a way for us to version any UBSan handler by itself.
The patch overrides D21289 for a better implementation (we're able to
rev up a single handler).
After this, then we can land a slight modification of D19667+D19668.
We probably don't want to keep all the versions in compiler-rt (maybe we
want to deprecate on one release and remove the old handler on the next
one?), but with this patch we will loudly fail to compile when mixing
incompatible handler calls, instead of silently compiling and then
providing bad error messages.
Reviewers: kcc, samsonov, rsmith, vsk
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D21695
llvm-svn: 289444
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D27157
llvm-svn: 288083
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
StartFunction enters a release cleanup for ns_consumed arguments in
ARC, so we need to balance that somehow. We could teach StartFunction
that it's emitting a delegating function, so that the cleanup is
unnecessary, but that would be invasive and somewhat fraught. We could
balance the consumed argument with an extra retain, but clearing the
original variable should be easier to optimize and avoid some extra work
at -O0. And there shouldn't be any difference as long as nothing else
uses the argument, which should always be true for the places we emit
delegate arguments.
Fixes PR 27887.
llvm-svn: 287291
|
|
|
|
|
|
|
|
|
|
| |
This patch implements the register call calling convention, which ensures
as many values as possible are passed in registers. CodeGen changes
were committed in https://reviews.llvm.org/rL284108.
Differential Revision: https://reviews.llvm.org/D25204
llvm-svn: 285849
|
|
|
|
|
|
|
|
|
|
| |
Certain OpenCL builtin functions are supposed to be executed by all threads in a work group or sub group. Such functions should not be made divergent during transformation. It makes sense to mark them with convergent attribute.
The adding of convergent attribute is based on Ettore Speziale's work and the original proposal and patch can be found at https://www.mail-archive.com/cfe-commits@lists.llvm.org/msg22271.html.
Differential Revision: https://reviews.llvm.org/D25343
llvm-svn: 285725
|
|
|
|
|
|
|
|
|
|
|
| |
abstract information about the callee. NFC.
The goal here is to make it easier to recognize indirect calls and
trigger additional logic in certain cases. That logic will come in
a later patch; in the meantime, I felt that this was a significant
improvement to the code.
llvm-svn: 285258
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This prevents clang from emitting 'invoke's and catch statements.
Things previously mostly worked thanks to TryToMarkNoThrow() in
CodeGenFunction. But this is not a proper IPO, and it doesn't properly
handle cases like mutual recursion.
Fixes bug 30593.
Reviewers: tra
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D25166
llvm-svn: 283272
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The motivation for the change is that we can't have pseudo-global settings
for codegen living in TargetOptions because that doesn't work with LTO.
Ideally, these reciprocal attributes will be moved to the instruction-level
via FMF, metadata, or something else. But making them function attributes is
at least an improvement over the current state.
I'm committing this patch ahead of the related LLVM patch to avoid bot failures,
but if that patch needs to be reverted, then this should be reverted too.
Differential Revision: https://reviews.llvm.org/D24815
llvm-svn: 283251
|