| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Get rid of ugly SanitizerOptions class thrust into LangOptions:
* Make SanitizeAddressFieldPadding a regular language option,
and rely on default behavior to initialize/reset it.
* Make SanitizerBlacklistFile a regular member LangOptions.
* Introduce the helper class "SanitizerSet" to represent the
set of enabled sanitizers and make it a member of LangOptions.
It is exactly the entity we want to cache and modify in CodeGenFunction,
for instance. We'd also be able to reuse SanitizerSet in
CodeGenOptions for storing the set of recoverable sanitizers,
and in the Driver to represent the set of sanitizers
turned on/off by the commandline flags.
No functionality change.
llvm-svn: 221653
|
| |
|
|
| |
llvm-svn: 221623
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a new form of expression of the form:
(expr op ... op expr)
where one of the exprs is a parameter pack. It expands into
(expr1 op (expr2onwards op ... op expr))
(and likewise if the pack is on the right). The non-pack operand can be
omitted; in that case, an empty pack gives a fallback value or an error,
depending on the operator.
llvm-svn: 221573
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Use the bitmask to store the set of enabled sanitizers instead of a
bitfield. On the negative side, it makes syntax for querying the
set of enabled sanitizers a bit more clunky. On the positive side, we
will be able to use SanitizerKind to eventually implement the
new semantics for -fsanitize-recover= flag, that would allow us
to make some sanitizers recoverable, and some non-recoverable.
No functionality change.
llvm-svn: 221558
|
| |
|
|
| |
llvm-svn: 221344
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The most complex aspect of the convention is the handling of homogeneous
vector and floating point aggregates. Reuse the homogeneous aggregate
classification code that we use on PPC64 and ARM for this.
This convention also has a C mangling, and we apparently implement that
in both Clang and LLVM.
Reviewed By: majnemer
Differential Revision: http://reviews.llvm.org/D6063
llvm-svn: 221006
|
| |
|
|
| |
llvm-svn: 220974
|
| |
|
|
|
|
|
|
|
|
| |
Rather than executing this code only needed for an assertion even in a
non-asserts build, just roll the function into the assert. The assertion
text literally describes the two cases so it doesn't seem like this
benefits much from having a separate function (& have to hassle about
ifndef NDEBUG it out, etc)
llvm-svn: 220970
|
| |
|
|
|
|
| |
rather than simply pretty-printing it.
llvm-svn: 220942
|
| |
|
|
| |
llvm-svn: 220940
|
| |
|
|
|
|
|
|
|
|
|
| |
Instead of manually maintaining a flag indicating whether we're about to print
out the last child of the parent node (to determine whether we print "`" or
"|"), capture a callable to print that child and defer printing it until we
either see a next child or finish the parent.
No functionality change intended.
llvm-svn: 220930
|
| |
|
|
|
|
| |
[-Wunused-function]
llvm-svn: 220853
|
| |
|
|
|
|
|
|
| |
An updated implemnentation of VLA types capturing based on previously committed solution for Lambdas.
This version captures the whole VLA type instead of particular variables which are part of VLA size expression and allows to use previusly calculated size of VLA type in captured regions. Required for OpenMP.
Differential Revision: http://reviews.llvm.org/D5099
llvm-svn: 220850
|
| |
|
|
| |
llvm-svn: 220812
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
We should avoid a tail padding not only if the last field
has zero size but also if the last field is a struct with a flexible array.
If/when http://reviews.llvm.org/D5478 is committed,
this will also handle the case of structs with zero-sized arrays.
Reviewers: majnemer, rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D5924
llvm-svn: 220708
|
| |
|
|
| |
llvm-svn: 220692
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Template template parameters weren't added to the list of substitutions.
This would make the substitution map contain inaccurate mappings,
leading to Clang violating the Itanium ABI and breaking compatibility
with GCC.
This fixes PR21351.
Differential Revision: http://reviews.llvm.org/D5959
llvm-svn: 220588
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Wire it through everywhere we have support for fastcall, essentially.
This allows us to parse the MSVC "14" CTP headers, but we will
miscompile them because LLVM doesn't support __vectorcall yet.
Reviewed By: Aaron Ballman
Differential Revision: http://reviews.llvm.org/D5808
llvm-svn: 220573
|
| |
|
|
|
|
|
|
|
|
|
| |
This fixes a crash in the RecursiveASTVisitor on such code
__typeof__(struct F*) var[invalid];
The UnderlyingTInfo of a TypeOfTypeLoc was left uninitialized when
created from ASTContext::getTrivialTypeSourceInfo
This lead to a crash in RecursiveASTVisitor when trying to access it.
llvm-svn: 220562
|
| |
|
|
|
|
| |
their only use was with the AST reader, and friendship can be used to handle that. Drive-by rename of "Brac" to "Brace" for the private data members. NFC.
llvm-svn: 220428
|
| |
|
|
|
|
|
|
|
|
|
| |
It's not clear how this would be tested - I imagine we should have an
ASTImporter test that RAVs the new AST and checks that all the elements
in it are from this ASTContext and not the foreign one... but I know
little about the ASTImporter and how/where that testing might be done.
(post-commit review feedback from Richard Smith on r219900)
llvm-svn: 220411
|
| |
|
|
|
|
|
|
| |
complete object to a pointer to the start of another complete object does
not evaluate to the constant 'false'. All other comparisons between the
addresses of subobjects of distinct complete objects still do.
llvm-svn: 220343
|
| |
|
|
|
|
|
| |
This patch generates some helper variables which used as a private copies of the corresponding original variables inside an OpenMP 'parallel' directive. These generated variables are initialized by default (with the default constructor, if any). In outlined function references to original variables are replaced by the references to these private helper variables. At the end of the initialization of the private variables and implicit barier is set by calling __kmpc_barrier(...) runtime function to be sure that all threads were initialized using original values of the variables.
Differential Revision: http://reviews.llvm.org/D4752
llvm-svn: 220262
|
| |
|
|
|
|
|
| |
template specialization type dependent, even if it has no dependent template
arguments. I've filed a corresponding bug against the C++ standard.
llvm-svn: 220088
|
| |
|
|
|
|
| |
Code review feedback from Richard Smith on r219900.
llvm-svn: 220060
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
r218053). These were"
It broke some builders. I guess it'd be reproducible with --vg.
Failing Tests (3):
Clang :: CXX/except/except.spec/p1.cpp
Clang :: SemaTemplate/instantiate-exception-spec-cxx11.cpp
Clang :: SemaTemplate/instantiate-exception-spec.cpp
llvm-svn: 220038
|
| |
|
|
|
|
|
|
|
|
|
| |
RecordType->getDecl() which maps to TagType::getDecl() is not a simple
accessor but a loop on redecls in getInterestingTagDecl.
isStructureOrClassType() was calling getDecl() three times performing
three times the work actually required. It is optimized by calling
RT->getDecl() once and reusing the result three times.
llvm-svn: 220033
|
| |
|
|
|
|
| |
Patch by Evgeny Astigeevich!
llvm-svn: 220031
|
| |
|
|
|
|
|
| |
non-dependent types, in CXXScalarValueInitExprs and in the
nested-name-specifier or template arguments of a DeclRefExpr in particular.
llvm-svn: 220028
|
| |
|
|
|
|
| |
No functionality change intended.
llvm-svn: 220005
|
| |
|
|
| |
llvm-svn: 219993
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
reverted in r218058 because they triggered a rejects-valid bug in MSVC.
Original commit message from r217995:
Instantiate exception specifications when instantiating function types (other
than the type of a function declaration). We previously didn't instantiate
these at all! This also covers the pathological case where the only mention of
a parameter pack is within the exception specification; this gives us a second
way (other than alias templates) to reach the horrible state where a type
contains an unexpanded pack, but its canonical type does not.
llvm-svn: 219977
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
AddressSanitizer can find intra-object-overflow bugs
Summary:
The general approach is to add extra paddings after every field
in AST/RecordLayoutBuilder.cpp, then add code to CTORs/DTORs that poisons the paddings
(CodeGen/CGClass.cpp).
Everything is done under the flag -fsanitize-address-field-padding.
The blacklist file (-fsanitize-blacklist) allows to avoid the transformation
for given classes or source files.
See also https://code.google.com/p/address-sanitizer/wiki/IntraObjectOverflow
Test Plan: run SPEC2006 and some of the Chromium tests with -fsanitize-address-field-padding
Reviewers: samsonov, rnk, rsmith
Reviewed By: rsmith
Subscribers: majnemer, cfe-commits
Differential Revision: http://reviews.llvm.org/D5687
llvm-svn: 219961
|
| |
|
|
| |
llvm-svn: 219929
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
reference-ness, etc) for non-type template parameters
Plumb through the full QualType of the TemplateArgument::Declaration, as
it's insufficient to only know whether the type is a reference or
pointer (that was necessary for mangling, but insufficient for debug
info). This shouldn't increase the size of TemplateArgument as
TemplateArgument::Integer is still longer by another 32 bits.
Several bits of code were testing that the reference-ness of the
parameters matched, but this seemed to be insufficient (various other
features of the type could've mismatched and wouldn't've been caught)
and unnecessary, at least insofar as removing those tests didn't cause
anything to fail.
(Richard - perchaps you can hypothesize why any of these checks might
need to test reference-ness of the parameters (& explain why
reference-ness is part of the mangling - I would've figured that for the
reference-ness to be different, a prior template argument would have to
be different). I'd be happy to add them in/beef them up and add test
cases if there's a reason for them)
llvm-svn: 219900
|
| |
|
|
|
|
|
|
| |
Soon we'll need to have access to blacklist before the CodeGen
phase (see http://reviews.llvm.org/D5687), so parse and construct
the blacklist earlier.
llvm-svn: 219857
|
| |
|
|
|
|
| |
struct/union fields. This fixes PR20930.
llvm-svn: 219807
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
The size of the ID field in CommandInfo was narrow, leading to potential
wrap-around of command IDs, causing misinterpretation later on.
The patch does the following:
- It extends the ID bitfield from 8 to 20 bits.
- It provides a DRY definition of the number of bits for the field to
avoid using literal numbers in different files.
- It introduces a new assertion that checks for the wrap-around.
- It adds the testcase from PR21254.
llvm-svn: 219802
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This moves some code from SemaType.cpp's hasVisibleDefinition() into
DeclCXX.cpp so that it can be used elsewhere. I found one other instance
of code trying to do the same thing, there are probably more. Search for
getInstantiatedFrom() to try to find more.
No functionality change.
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D5783
llvm-svn: 219714
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Mangling for blocks defined within blocks in an ObjectiveC context were also
broken by SVN r219393. Because the code in mangleName assumed that the code was
either C or C++, we would trigger assertions when trying to mangle the inner
blocks in an ObjectiveC context.
Add a test and use the ObjectiveC specific mangling when dealing with an
ObjectiveC method declaration.
llvm-svn: 219697
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This addresses a regression introduced with SVN r219393. A block may be
contained within another block. In such a scenario, we would end up within a
BlockDecl, which is not a NamedDecl (as the names are synthesised). The cast to
a NamedDecl of the DeclContext would then assert as the types are unrelated.
Restore the mangling behaviour to that prior to SVN r219393. If the current
block is contained within a BlockDecl, walk up to the parent DeclContext,
recursively, until we have a non-BlockDecl. This is expected to be a NamedDecl.
Add in a couple of asserts to ensure that the assumption that we only encounter
a block within a NamedDecl or a BlockDecl.
llvm-svn: 219696
|
| |
|
|
|
|
|
|
| |
Objective-C pointer types. In this case, checker incorrectly
claims incompatible pointer types if redundant protocol conformance
is specified. rdar://18491222
llvm-svn: 219630
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adds codegen for 'if' clause. Currently only for 'if' clause used with the 'parallel' directive.
If condition evaluates to true, the code executes parallel version of the code by calling __kmpc_fork_call(loc, 1, microtask, captured_struct/*context*/), where loc - debug location, 1 - number of additional parameters after "microtask" argument, microtask - is outlined finction for the code associated with the 'parallel' directive, captured_struct - list of variables captured in this outlined function.
If condition evaluates to false, the code executes serial version of the code by executing the following code:
global_thread_id.addr = alloca i32
store i32 global_thread_id, global_thread_id.addr
zero.addr = alloca i32
store i32 0, zero.addr
kmpc_serialized_parallel(loc, global_thread_id);
microtask(global_thread_id.addr, zero.addr, captured_struct/*context*/);
kmpc_end_serialized_parallel(loc, global_thread_id);
Where loc - debug location, global_thread_id - global thread id, returned by __kmpc_global_thread_num() call or passed as a first parameter in microtask() call, global_thread_id.addr - address of the variable, where stored global_thread_id value, zero.addr - implicit bound thread id (should be set to 0 for serial call), microtask() and captured_struct are the same as in parallel call.
Also this patch checks if the condition is constant and if it is constant it evaluates its value and then generates either parallel version of the code (if the condition evaluates to true), or the serial version of the code (if the condition evaluates to false).
Differential Revision: http://reviews.llvm.org/D4716
llvm-svn: 219597
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
and !=) to support mixed complex and real operand types.
This requires removing an assert from SemaChecking, and adding support
both to the constant evaluator and the code generator to synthesize the
imaginary part when needed. This seemed somewhat cleaner than having
just the comparison operators force real-to-complex conversions.
I've added test cases for these operations. I'm really terrified that
there were *no* tests in-tree which exercised this.
This turned up when trying to build R after my change to the complex
type lowering.
llvm-svn: 219570
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
operators where one type is a C complex type, and to emit both the
efficient and correct implementation for complex arithmetic according to
C11 Annex G using this extra information.
For both multiply and divide the old code was writing a long-hand
reduced version of the math without any of the special handling of inf
and NaN recommended by the standard here. Instead of putting more
complexity here, this change does what GCC does which is to emit
a libcall for the fully general case.
However, the old code also failed to do the proper minimization of the
set of operations when there was a mixed complex and real operation. In
those cases, C provides a spec for much more minimal operations that are
valid. Clang now emits the exact suggested operations. This change isn't
*just* about performance though, without minimizing these operations, we
again lose the correct handling of infinities and NaNs. It is critical
that this happen in the frontend based on assymetric type operands to
complex math operations.
The performance implications of this change aren't trivial either. I've
run a set of benchmarks in Eigen, an open source mathematics library
that makes heavy use of complex. While a few have slowed down due to the
libcall being introduce, most sped up and some by a huge amount: up to
100% and 140%.
In order to make all of this work, also match the algorithm in the
constant evaluator to the one in the runtime library. Currently it is
a broken port of the simplifications from C's Annex G to the long-hand
formulation of the algorithm.
Splitting this patch up is very hard because none of this works without
the AST change to preserve non-complex operands. Sorry for the enormous
change.
Follow-up changes will include support for sinking the libcalls onto
cold paths in common cases and fastmath improvements to allow more
aggressive backend folding.
Differential Revision: http://reviews.llvm.org/D5698
llvm-svn: 219557
|
| |
|
|
|
|
| |
This bug break compilation with precompiled headers and predefined expressions in dependent context.
llvm-svn: 219525
|
| |
|
|
|
|
|
|
| |
initializers, and captured VLA types so that we can
answer questions like "is this a bit-field" without
looking at the enclosing DeclContext. NFC.
llvm-svn: 219522
|
| |
|
|
| |
llvm-svn: 219504
|
| |
|
|
|
|
|
|
| |
Assertion failed: "Computed __func__ length differs from type!"
Reworked PredefinedExpr representation with internal StringLiteral field for function declaration.
Differential Revision: http://reviews.llvm.org/D5365
llvm-svn: 219393
|
| |
|
|
|
|
| |
Includes parsing and semantic analysis for 'omp teams' directive support from OpenMP 4.0. Adds additional analysis to 'omp target' directive with 'omp teams' directive.
llvm-svn: 219385
|