| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
| |
We correctly canonicalized (add (sext x), (sext y)) to (sext (add x, y))
where possible. However, we didn't perform the same canonicalization
for zexts or for muls.
llvm-svn: 290733
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Fixes PR 31344
Authored by Anmol P. Paralkar
Reviewers: dylanmckay
Subscribers: fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D28121
llvm-svn: 290732
|
|
|
|
|
|
|
| |
I'm preparing to add some pattern matching code here, so simplify the
code before I do. NFC
llvm-svn: 290731
|
|
|
|
| |
llvm-svn: 290730
|
|
|
|
|
|
|
|
|
|
|
| |
This moves the exit block and insertion point computation to be eager,
instead of after seeing the first scalar we can promote.
The cost is relatively small (the computation happens anyway, see discussion
on D28147), and the code is easier to follow, and can bail out earlier
if there's a catchswitch present.
llvm-svn: 290729
|
|
|
|
|
|
|
|
|
|
| |
We would check whether we have a prehader *or* dedicated exit blocks,
and go into the promotion loop. Then, for each alias set we'd check
if we have a preheader *and* dedicated exit blocks, and bail if not.
Instead, bail immediately if we don't have both.
llvm-svn: 290728
|
|
|
|
| |
llvm-svn: 290727
|
|
|
|
|
|
|
|
|
|
|
|
| |
We want to recompute LCSSA only when we actually promoted a value.
This means we only need to look at changes made by promotion when
deciding whether to recompute it or not, not at regular sinking/hoisting.
(This was what the code was documented as doing, just not what it did)
Hopefully NFC.
llvm-svn: 290726
|
|
|
|
|
|
|
|
| |
This patch is to implement sema and parsing for 'target teams distribute parallel for’ pragma.
Differential Revision: https://reviews.llvm.org/D28160
llvm-svn: 290725
|
|
|
|
|
|
| |
Change to one based numbering so we can assert we don't cause the same bug again.
llvm-svn: 290724
|
|
|
|
| |
llvm-svn: 290723
|
|
|
|
|
|
| |
Use two-space indentation like the rest of the file.
llvm-svn: 290722
|
|
|
|
| |
llvm-svn: 290721
|
|
|
|
|
|
|
|
| |
Edit for voice, and also add examples. In particular, add an
explanation for why you might want to specialize IntrusiveRefCntPtrInfo,
which is not obvious.
llvm-svn: 290720
|
|
|
|
|
|
|
| |
This makes it comply with the LLVM style guide, and also makes it
consistent with ThreadSafeRefCountedBase below.
llvm-svn: 290719
|
|
|
|
|
|
|
|
|
| |
This file had some strange indentation.
Also remove some unnecessary whitespace between one-line member
functions.
llvm-svn: 290718
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This class is unnecessary.
Its comment indicated that it was a compile error to allocate an
instance of a class that inherits from RefCountedBaseVPTR on the stack.
This may have been true at one point, but it's not today.
Moreover you really do not want to allocate *any* refcounted object on
the stack, vptrs or not, so if we did have a way to prevent these
objects from being stack-allocated, we'd want to apply it to regular
RefCountedBase too, obviating the need for a separate RefCountedBaseVPTR
class.
It seems that the main way RefCountedBaseVPTR provides safety is by
making its subclass's destructor virtual. This may have been helpful at
one point, but these days clang will emit an error if you define a class
with virtual functions that inherits from RefCountedBase but doesn't
have a virtual destructor.
Reviewers: compnerd, dblaikie
Subscribers: cfe-commits, klimek, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D28162
llvm-svn: 290717
|
|
|
|
|
|
|
|
|
|
| |
`utils/update_{llc_test,test}_checks` ought to be able to handle RUN commands
that span multiple lines, as shown in the example at
http://llvm.org/docs/CommandGuide/FileCheck.html#the-filecheck-check-prefix-option
Differential Revision: https://reviews.llvm.org/D26523
llvm-svn: 290716
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Previously we type-punned through a union, which is not safe.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28161
llvm-svn: 290715
|
|
|
|
|
|
|
|
| |
This reverts commit r290694. It broke sanitizer tests on Win64. I'll
probably bring this back, but the jump tables will just live in .text
like they do for MSVC.
llvm-svn: 290714
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes the issue exposed in PR31393, where we weren't trying
sufficiently hard to diagnose bad TBAA metadata.
This does reduce the variety in the error messages we print out, but I
think the tradeoff of verifying more, simply and quickly overrules the
need for more helpful error messags here.
llvm-svn: 290713
|
|
|
|
| |
llvm-svn: 290712
|
|
|
|
| |
llvm-svn: 290711
|
|
|
|
|
|
|
|
|
|
|
| |
Among other stuff, this allows to use predefined .option.machine_version_major
/minor/stepping symbols in the directive.
Relevant test expanded at once (also file renamed for clarity).
Differential Revision: https://reviews.llvm.org/D28140
llvm-svn: 290710
|
|
|
|
| |
llvm-svn: 290709
|
|
|
|
|
|
|
|
|
|
| |
This change adds a new intrinsic which is intended to provide memcpy functionality
with additional atomicity guarantees. Please refer to the review thread
or language reference for further details.
Differential Revision: https://reviews.llvm.org/D27133
llvm-svn: 290708
|
|
|
|
|
|
| |
VectorType and calling getNumElements. NFC
llvm-svn: 290707
|
|
|
|
| |
llvm-svn: 290706
|
|
|
|
|
|
| |
elements in VectorType for a ShuffleVector. While there getVectorNumElements to avoid an explicit cast. NFC
llvm-svn: 290705
|
|
|
|
|
|
|
|
| |
make sure we add it to the worklist so we can DCE it sooner.
We bypassed the intrinsic and returned the passthru operand, but we should also add the intrinsic to the worklist since its now dead. This can allow DCE to find it sooner and remove it. Similar was done for InsertElement when the inserted element isn't demanded.
llvm-svn: 290704
|
|
|
|
| |
llvm-svn: 290703
|
|
|
|
|
|
|
|
| |
better job of testing what they intended to test.
The accidentally had trivially dead code. Also needed to adjust the rounding mode to not CUR_DIRECTION so the intrinsics don't get converted to native operations before going through SimplifyDemandedVectorElts.
llvm-svn: 290702
|
|
|
|
| |
llvm-svn: 290701
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Apparently GCC targeting Windows breaks bitfields on static data members:
struct Foo {
unsigned X : 16;
static const int M = 42;
unsigned Y : 16;
};
static_assert(sizeof(Foo) == 4, "asdf"); // fails
Who knew.
llvm-svn: 290700
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The optimal iteration order for this problem is RPO order. We want to
process as many preds of a backedge as we can before we process the
backedge.
At the same time, as we add predicate handling, we want to be able to
touch instructions that are dominated by a given block by
ranges (because a change in value numbering a predicate possibly
affects all users we dominate that are using that predicate).
If we don't do it this way, we can't do value inference over
backedges (the paper covers this in depth).
The newgvn branch currently overshoots the last part, and guarantees
that it will touch *at least* the right set of instructions, but it
does touch more. This is because the bitvector instruction ranges are
currently generated in RPO order (so we take the max and the min of
the ranges of dominated blocks, which means there are some in the
middle we didn't have to touch that we did).
We can do better by sorting the dominator tree, and then just using
dominator tree order.
As a preliminary, the dominator tree has some RPO guarantees, but not
enough. It guarantees that for a given node, your idom must come
before you in the RPO ordering. It guarantees no relative RPO ordering
for siblings. We add siblings in whatever order they appear in the module.
So that is what we fix.
We sort the children array of the domtree into RPO order, and then use
the dominator tree for ordering, instead of RPO, since the dominator
tree is now a valid RPO ordering.
Note: This would help any other pass that iterates a forward problem
in dominator tree order. Most of them are single pass. It will still
maximize whatever result they compute. We could also build the
dominator tree in this order, but our incremental updates would still
put it out of sort order, and recomputing the sort order is almost as
hard as general incremental updates of the domtree.
Also note that the sorting does not affect any tests, etc. Nothing
depends on domtree order, including the verifier, the equals
functions for domtree nodes, etc.
How much could this matter, you ask?
Here are the current numbers.
This is generated by running NewGVN over all files in LLVM.
Note that once we propagate equalities, the differences go up by an
order of magnitude or two (IE instead of 29, the max ends up in the
thousands, since the worst case we add a factor of N, where N is the
number of branch predicates). So while it doesn't look that stark for
the default ordering, it gets *much much* worse. There are also
programs in the wild where the difference is already pretty stark
(2 iterations vs hundreds).
RPO ordering:
759040 Number of iterations is 1
112908 Number of iterations is 2
Default dominator tree ordering:
755081 Number of iterations is 1
116234 Number of iterations is 2
603 Number of iterations is 3
27 Number of iterations is 4
2 Number of iterations is 5
1 Number of iterations is 7
Dominator tree sorted:
759040 Number of iterations is 1
112908 Number of iterations is 2
<yay!>
Really bad ordering (sort domtree siblings in postorder. not quite the
worst possible, but yeah):
754008 Number of iterations is 1
21 Number of iterations is 10
8 Number of iterations is 11
6 Number of iterations is 12
5 Number of iterations is 13
2 Number of iterations is 14
2 Number of iterations is 15
3 Number of iterations is 16
1 Number of iterations is 17
2 Number of iterations is 18
96642 Number of iterations is 2
1 Number of iterations is 20
2 Number of iterations is 21
1 Number of iterations is 22
1 Number of iterations is 29
17266 Number of iterations is 3
2598 Number of iterations is 4
798 Number of iterations is 5
273 Number of iterations is 6
186 Number of iterations is 7
80 Number of iterations is 8
42 Number of iterations is 9
Reviewers: chandlerc, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28129
llvm-svn: 290699
|
|
|
|
|
|
|
|
| |
I added one for Value back in r262045, and I'm starting to think we
should have these for any class with bitfields whose memory efficiency
really matters.
llvm-svn: 290698
|
|
|
|
| |
llvm-svn: 290697
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Follow-up to r290691, where I introduced HasLLVMReservedName. rnk
pointed out that that patch added an extra word to GlobalValue on MSVC,
because it doesn't pack bitfields with different types.
This patch moves HasLLVMReservedName into the existing bitfield, where
we appear to have plenty of bits to spare.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28149
llvm-svn: 290696
|
|
|
|
|
|
| |
It involves a hashtable lookup when the Value has a name.
llvm-svn: 290695
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
We were already using 32-bit jump table entries, but this was a
consequence of the default PIC model on Win64, and not an intentional
design decision. This patch ensures that we always use 32-bit label
difference jump table entries on Win64 regardless of the PIC model. This
is a good idea because it saves executable size and object file size.
Moving the jump tables to .rdata cleans up the disassembled object code
and reduces the available ROP targets, but it requires adding one more
RIP-relative lea to the code. COFF doesn't have relocations to express
the difference between two arbitrary symbols, so we can't use the jump
table label in the label difference like we do elsewhere.
Fixes PR31488
Reviewers: majnemer, compnerd
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28141
llvm-svn: 290694
|
|
|
|
|
|
|
|
|
|
| |
placeholder
The Bitstream reader and writer are limited to handle a "size_t" at
most, which means that we can't backpatch and read back a 64bits
value on 32 bits platform.
llvm-svn: 290693
|
|
|
|
| |
llvm-svn: 290692
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously isIntrinsic() called getName(). This involves a hashtable
lookup, so is nontrivially expensive. And isIntrinsic() is called
frequently, particularly by dyn_cast<IntrinsicInstr>.
This patch steals a bit of IntID and uses that to store whether or not
getName() starts with "llvm."
Reviewers: bogner, arsenm, joker-eph
Subscribers: sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D22949
llvm-svn: 290691
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This index record the position for each metadata record in
the bitcode, so that the reader will be able to lazy-load
on demand each individual record.
We also make sure that every abbrev is emitted upfront so
that the block can be skipped while reading.
I don't plan to commit this before having the reader
counterpart, but I figured this can be reviewed mostly
independently.
Recommit r290684 (was reverted in r290686 because a test
was broken) after adding a threshold to avoid emitting
the index when unnecessary (little amount of metadata).
This optimization "hides" a limitation of the ability
to backpatch in the bitstream: we can only backpatch
safely when the position has been flushed. So if we emit
an index for one metadata, it is possible that (part of)
the offset placeholder hasn't been flushed and the backpatch
will fail.
Differential Revision: https://reviews.llvm.org/D28083
llvm-svn: 290690
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Make kLargeMalloc big enough to be handled by secondary allocator
and small enough to fit into quarantine for all configurations.
It become too big to fit into quarantine on Android after D27873.
Reviewers: eugenis
Patch by Alex Shlyapnikov.
Subscribers: danalbert, llvm-commits, kubabrecka
Differential Revision: https://reviews.llvm.org/D28142
llvm-svn: 290689
|
|
|
|
|
|
| |
children change will update correctly. Previously the variable view would update the children once and not change. If you were stepping through code where the dynamic type of a variable would change the value and its children, or a synthetic type (like say for a std::vector<int>), the variable view wouldn't update. Now it caches the children and uses the process stop ID to tell when the children need to be updated.
llvm-svn: 290688
|
|
|
|
| |
llvm-svn: 290687
|
|
|
|
|
|
|
| |
This reverts commit a0ca6ae2d38339e4ede0dfa588086fc23d87e836. Revert at
Mehdi's request as it is breaking bots.
llvm-svn: 290686
|
|
|
|
|
|
|
|
| |
emplace_back is not faster if it is equivalent to push_back. In this cases emplaced value had the
same type that the one stored in container. It is ugly and it might be even slower (see
Scott Meyers presentation about emplacement).
llvm-svn: 290685
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This index record the position for each metadata record in
the bitcode, so that the reader will be able to lazy-load
on demand each individual record.
We also make sure that every abbrev is emitted upfront so
that the block can be skipped while reading.
I don't plan to commit this before having the reader
counterpart, but I figured this can be reviewed mostly
independently.
Reviewers: pcc, tejohnson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28083
llvm-svn: 290684
|