| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A subtle bug was found where attempting to copy a non-const function_ref
lvalue would actually invoke the generic forwarding constructor (as it
was a closer match - being T& rather than the const T& of the implicit
copy constructor). In the particular case this lead to a dangling
function_ref member (since it had referenced the function_ref passed by
value to its ctor, rather than the outer function_ref that was still
alive)
SFINAE the converting constructor to not be considered if the copy
constructor is available and demonstrate that this causes the copy to
refer to the original functor, not to the function_ref it was copied
from. (without the code change, the test would fail as Y would be
referencing X and Y() would see the result of the mutation to X, ie: 2)
llvm-svn: 221753
|
| |
|
|
| |
llvm-svn: 221752
|
| |
|
|
|
|
|
|
|
|
|
|
| |
With this patch MCDisassembler::getInstruction takes an ArrayRef<uint8_t>
instead of a MemoryObject.
Even on X86 there is a maximum size an instruction can have. Given
that, it seems way simpler and more efficient to just pass an ArrayRef
to the disassembler instead of a MemoryObject and have it do a virtual
call every time it wants some extra bytes.
llvm-svn: 221751
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
than the type of a function declaration). We previously didn't instantiate
these at all! This also covers the pathological case where the only mention of
a parameter pack is within the exception specification; this gives us a second
way (other than alias templates) to reach the horrible state where a type
contains an unexpanded pack, but its canonical type does not.
This is a re-commit of r219977:
r219977 was reverted in r220038 because it hit a wrong-code bug in GCC 4.7.2.
(That's gcc.gnu.org/PR56135, and affects any implicit lambda-capture of
'this' within a template.)
r219977 was a re-commit of r217995, r218011, and r218053:
r217995 was reverted in r218058 because it hit a rejects-valid bug in MSVC.
(Incorrect overload resolution in the presence of using-declarations.)
It was re-committed in r219977 with a workaround for the MSVC rejects-valid.
r218011 was a workaround for an MSVC parser bug. (Incorrect desugaring of
unbraced range-based for loop).
llvm-svn: 221750
|
| |
|
|
|
|
| |
This reverts commit r221073 to match upstream revert in r221711.
llvm-svn: 221749
|
| |
|
|
|
|
|
| |
penultimate parameter of a template parameter list, where the last parameter is
itself a pack, and build a bogus empty final pack argument.
llvm-svn: 221748
|
| |
|
|
|
|
|
|
|
|
| |
For historical reasons archives on mach-o have two possible names for the
file containing the table of contents for the archive: "__.SYMDEF SORTED"
and "__.SYMDEF". But the libObject archive reader only supported the former.
This patch fixes llvm::object::Archive to support both names.
llvm-svn: 221747
|
| |
|
|
|
|
| |
Every "real" object file implements this an ptx doesn't use it.
llvm-svn: 221746
|
| |
|
|
|
|
|
| |
static functions. Make a bunch of file-local functions static. Remove one
unused static function revealed by this.
llvm-svn: 221745
|
| |
|
|
|
|
|
| |
It's useful for out-of-tree clients to be able to query the global
Objective-C method pool, and only Sema can do that right now.
llvm-svn: 221744
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ObjectFileMachO. It's close but we seem to be missing some
of the memory region segments - not exactly sure how that's
happening. The register context writing into the LC_THREAD
load commands is working correctly though.
Slightly reordered the arm64 definitions in ArchSpec.cpp so
when we look for an arm64 core file definiton we're getting
a cpu subtype of CPU_ANY which we can't put in the mach
header of a core file. Make the first definition we find by
linear search have the currently correct '1' cpu subtype.
llvm-svn: 221743
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
function types.
Currently, we have a type parameter mechanism for intrinsics. Rather than having to specify a separate intrinsic for each combination of argument and return types, we can specify a single intrinsic with one or more type parameters. These type parameters are passed explicitly to Intrinsic::getDeclaration or can be specified implicitly in the naming of the intrinsic function in an LL file.
Today, the types are limited to integer, floating point, and pointer types. With a goal of supporting symbolic targets for patchpoints and statepoints, this change adds support for function types. The change also includes support for first class aggregate types (named structures and arrays) since these appear in function types we've encountered.
Reviewed by: atrick, ributzka
Differential Revision: http://reviews.llvm.org/D4608
llvm-svn: 221742
|
| |
|
|
|
|
| |
incompatible MS targets.
llvm-svn: 221741
|
| |
|
|
|
|
|
| |
The underlying error function already uses a Twine,
and most of the uses build up strings.
llvm-svn: 221740
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
-fsanitize-address-field-padding >= 1
Summary: If we've added poisoned paddings to a type do not emit memcpy for operator=.
Test Plan: regression tests.
Reviewers: majnemer, rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D6160
llvm-svn: 221739
|
| |
|
|
|
|
| |
Add support for FDiv, which was regressed by the previous commit.
llvm-svn: 221738
|
| |
|
|
|
|
|
|
|
|
|
| |
We currently have two ways of informing the optimizer that the result of a load is never null: metadata and assume. This change converts the second in to the former. This avoids a need to implement optimizations using both forms.
We should probably extend this basic idea to metadata of other forms; in particular, range metadata. We view is that assumes should be considered a "last resort" for when there isn't a more canonical way to represent something.
Reviewed by: Hal
Differential Revision: http://reviews.llvm.org/D5951
llvm-svn: 221737
|
| |
|
|
|
|
|
|
|
| |
code for calling CorrectTypo.
Includes a needed fix for non-C++ code to not choke on TypoExprs (which
also resolves a TODO from r220698).
llvm-svn: 221736
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
One takes an Expr* and the other is a simple wrapper that takes an
ExprResult instead, and handles checking whether the ExprResult is
invalid.
Additionally, allow an optional callback that is run on the full result
of the tree transform, for filtering potential corrections based on the
characteristics of the resulting expression once all of the typos have
been replaced.
llvm-svn: 221735
|
| |
|
|
| |
llvm-svn: 221734
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add API for specifying which `LLVMContext` each `lto_module_t` and
`lto_code_gen_t` is in.
In particular, this enables the following flow:
for (auto &File : Files) {
lto_module_t M = lto_module_create_in_local_context(File...);
querySymbols(M);
lto_module_dispose(M);
}
lto_code_gen_t CG = lto_codegen_create_in_local_context();
for (auto &File : FilesToLink) {
lto_module_t M = lto_module_create_in_codegen_context(File..., CG);
lto_codegen_add_module(CG, M);
lto_module_dispose(M);
}
lto_codegen_compile(CG);
lto_codegen_write_merged_modules(CG, ...);
lto_codegen_dispose(CG);
This flow has a few benefits.
- Only one module (two if you count the combined module in the code
generator) is in memory at a time.
- Metadata (and constants) from files that are parsed to query symbols
but not linked into the code generator don't pollute the global
context.
- The first for loop can be parallelized, since each module is in its
own context.
- When the code generator is disposed, the memory from LTO gets freed.
rdar://problem/18767512
llvm-svn: 221733
|
| |
|
|
| |
llvm-svn: 221732
|
| |
|
|
|
|
|
|
| |
instructions.
This was missed in r221706.
llvm-svn: 221731
|
| |
|
|
| |
llvm-svn: 221730
|
| |
|
|
|
|
|
|
| |
Lower the llvm.fabs intrinsic to the 'fabs' MI instruction.
This fixes rdar://problem/18946552.
llvm-svn: 221729
|
| |
|
|
| |
llvm-svn: 221728
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before:
b = a &&
// Comment
b.c &&
d;
After:
b = a &&
// Comment
b.c && d;
This fixes llvm.org/PR21535.
llvm-svn: 221727
|
| |
|
|
| |
llvm-svn: 221726
|
| |
|
|
| |
llvm-svn: 221725
|
| |
|
|
|
|
| |
initializing a new one every time a copy is needed.
llvm-svn: 221724
|
| |
|
|
|
|
| |
Also simply and remove dead code from MemberExprTypoRecovery.
llvm-svn: 221723
|
| |
|
|
| |
llvm-svn: 221722
|
| |
|
|
|
|
|
|
| |
This is a reapplication of r221171, but we only perform the transformation
on expressions which include a multiplication. We do not transform rem/div
operations as this doesn't appear to be safe in all cases.
llvm-svn: 221721
|
| |
|
|
| |
llvm-svn: 221720
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change makes the asan-coverge (formerly -mllvm -asan-coverge)
accessible via a clang flag.
Companion patch to LLVM is http://reviews.llvm.org/D6152
Test Plan: regression tests, chromium
Reviewers: samsonov
Reviewed By: samsonov
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D6153
llvm-svn: 221719
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change moves asan-coverage instrumentation
into a separate Module pass.
The other part of the change in clang introduces a new flag
-fsanitize-coverage=N.
Another small patch will update tests in compiler-rt.
With this patch no functionality change is expected except for the flag name.
The following changes will make the coverage instrumentation work with tsan/msan
Test Plan: Run regression tests, chromium.
Reviewers: nlewycky, samsonov
Reviewed By: nlewycky, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6152
llvm-svn: 221718
|
| |
|
|
|
|
| |
_LIBCPP_ASSERT, since this is technically undefined behavior. Fixes PR#21496
llvm-svn: 221717
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change makes CodeGenFunction::EmitCheck() take several
conditions that needs to be checked (all of them need to be true),
together with sanitizer kinds these checks are for. This would allow
to split one call into UBSan runtime into several calls in case
different sanitizer kinds would have different recoverability
settings.
Tests should be fixed accordingly, I'm working on it.
Test Plan: regression test suite.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D6219
llvm-svn: 221716
|
| |
|
|
| |
llvm-svn: 221715
|
| |
|
|
|
|
| |
comments.
llvm-svn: 221714
|
| |
|
|
| |
llvm-svn: 221713
|
| |
|
|
|
|
|
|
| |
This reverts commit r221376.
The API change was reverted in r221711.
llvm-svn: 221712
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instead, we're going to separate metadata from the Value hierarchy. See
PR21532.
This reverts commit r221375.
This reverts commit r221373.
This reverts commit r221359.
This reverts commit r221167.
This reverts commit r221027.
This reverts commit r221024.
This reverts commit r221023.
This reverts commit r220995.
This reverts commit r220994.
llvm-svn: 221711
|
| |
|
|
| |
llvm-svn: 221710
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
What would happen before that commit is that the SDDbgValues associated with
a deallocated SDNode would be marked Invalidated, but SDDbgInfo would keep
a map entry keyed by the SDNode pointer pointing to this list of invalidated
SDDbgNodes. As the memory gets reused, the list might get wrongly associated
with another new SDNode. As the SDDbgValues are cloned when they are transfered,
this can lead to an exponential number of SDDbgValues being produced during
DAGCombine like in http://llvm.org/bugs/show_bug.cgi?id=20893
Note that the previous behavior wasn't really buggy as the invalidation made
sure that the SDDbgValues won't be used. This commit can be considered a
memory optimization and as such is really hard to validate in a unit-test.
llvm-svn: 221709
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds a new pass that can inject checks before indirect calls to
make sure that these calls target known locations. It supports three types of
checks and, at compile time, it can take the name of a custom function to call
when an indirect call check fails. The default failure function ignores the
error and continues.
This pass incidentally moves the function JumpInstrTables::transformType from
private to public and makes it static (with a new argument that specifies the
table type to use); this is so that the CFI code can transform function types
at call sites to determine which jump-instruction table to use for the check at
that site.
Also, this removes support for jumptables in ARM, pending further performance
analysis and discussion.
Review: http://reviews.llvm.org/D4167
llvm-svn: 221708
|
| |
|
|
|
|
|
|
| |
comma it would access invalid memory.
Cleaned up parse loop.
llvm-svn: 221707
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a first step for generating SSE rcp instructions for reciprocal
calcs when fast-math allows it. This is very similar to the rsqrt optimization
enabled in D5658 ( http://reviews.llvm.org/rL220570 ).
For now, be conservative and only enable this for AMD btver2 where performance
improves significantly both in terms of latency and throughput.
We may never enable this codegen for Intel Core* chips because the divider circuits
are just too fast. On SandyBridge, divss can be as fast as 10 cycles versus the 21
cycle critical path for the rcp + mul + sub + mul + add estimate.
Follow-on patches may allow configuration of the number of Newton-Raphson refinement
steps, add AVX512 support, and enable the optimization for more chips.
More background here: http://llvm.org/bugs/show_bug.cgi?id=21385
Differential Revision: http://reviews.llvm.org/D6175
llvm-svn: 221706
|
| |
|
|
|
|
| |
Thanks to Filipe Cabecinhas for the tip.
llvm-svn: 221705
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
So DWARF5 specs out auto deduced return types as DW_TAG_unspecified_type
with DW_AT_name "auto", and GCC implements this somewhat, but it
presents a few problems to do this with Clang.
GCC's implementation only applies to member functions where the auto
return type isn't deduced immediately (ie: member functions of templates
or member functions defined out of line). In the common case of an
inline deduced return type function, GCC emits the DW_AT_type as the
deduced return type.
Currently GDB doesn't seem to behave too well with this debug info - it
treats the return type as 'void', even though the definition of the
function has the correctly deduced return type (I guess it sees the
return type the declaration has, doesn't understand it, and assumes
void). This means the function's ABI might be broken (non-trivial return
types, etc), etc.
Clang, on the other hand doesn't track this particular case of a
deducable return type that is deduced immediately versus one that is
deduced 'later'. So if we implement the DWARF5 representation, all
deducible return type functions would get adverse GDB behavior
(including deduced return type lambda functions, inline deduced return
type functions, etc).
Also, we can't just do this for auto types that are not deduced -
because Clang marks even the declaration's return type as deduced (&
provides the underlying type) once a definition is seen that allows the
deduction. So we have to ignore even deduced types - but we can't do
that for auto variables (because this representation only applies to
function declarations - variables and function definitions need the real
type so the function can be called, etc) so we'd need to add an extra
flag to the type unwrapping/creation code to indicate when we want to
see through deduced types and when we don't. It's also not as simple as
just checking at the top level when building a function type (for one
thing, we reuse the function type building for building function pointer
types which might also have 'auto' in them - but be the type of a
variable instead) because the auto might be arbitrarily deeply nested
("auto &", "auto (*)()", etc...)
So, with all that said, let's do the simple thing that works in existing
debuggers for now and treat these functions the same way we do function
templates and implicit special members: omit them from the member list,
since they can't be correctly called anyway (without knowing the return
type the ABI isn't know and a function call could put the arguments in
the wrong place) so they're not much use to the user.
At some point in the future, when GDB understands the DWARF5
representation better it might be worth plumbing through the extra type
builder handling to avoid looking through AutoType for some callers,
etc...
llvm-svn: 221704
|