summaryrefslogtreecommitdiffstats
path: root/openmp/runtime/src/kmp_tasking.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'openmp/runtime/src/kmp_tasking.cpp')
-rw-r--r--openmp/runtime/src/kmp_tasking.cpp3162
1 files changed, 3162 insertions, 0 deletions
diff --git a/openmp/runtime/src/kmp_tasking.cpp b/openmp/runtime/src/kmp_tasking.cpp
new file mode 100644
index 00000000000..07557890c4d
--- /dev/null
+++ b/openmp/runtime/src/kmp_tasking.cpp
@@ -0,0 +1,3162 @@
+/*
+ * kmp_tasking.c -- OpenMP 3.0 tasking support.
+ */
+
+
+//===----------------------------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+
+
+#include "kmp.h"
+#include "kmp_i18n.h"
+#include "kmp_itt.h"
+#include "kmp_wait_release.h"
+#include "kmp_stats.h"
+
+#if OMPT_SUPPORT
+#include "ompt-specific.h"
+#endif
+
+#include "tsan_annotations.h"
+
+/* ------------------------------------------------------------------------ */
+/* ------------------------------------------------------------------------ */
+
+
+/* forward declaration */
+static void __kmp_enable_tasking( kmp_task_team_t *task_team, kmp_info_t *this_thr );
+static void __kmp_alloc_task_deque( kmp_info_t *thread, kmp_thread_data_t *thread_data );
+static int __kmp_realloc_task_threads_data( kmp_info_t *thread, kmp_task_team_t *task_team );
+
+#ifdef OMP_45_ENABLED
+static void __kmp_bottom_half_finish_proxy( kmp_int32 gtid, kmp_task_t * ptask );
+#endif
+
+#ifdef BUILD_TIED_TASK_STACK
+
+//---------------------------------------------------------------------------
+// __kmp_trace_task_stack: print the tied tasks from the task stack in order
+// from top do bottom
+//
+// gtid: global thread identifier for thread containing stack
+// thread_data: thread data for task team thread containing stack
+// threshold: value above which the trace statement triggers
+// location: string identifying call site of this function (for trace)
+
+static void
+__kmp_trace_task_stack( kmp_int32 gtid, kmp_thread_data_t *thread_data, int threshold, char *location )
+{
+ kmp_task_stack_t *task_stack = & thread_data->td.td_susp_tied_tasks;
+ kmp_taskdata_t **stack_top = task_stack -> ts_top;
+ kmp_int32 entries = task_stack -> ts_entries;
+ kmp_taskdata_t *tied_task;
+
+ KA_TRACE(threshold, ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, "
+ "first_block = %p, stack_top = %p \n",
+ location, gtid, entries, task_stack->ts_first_block, stack_top ) );
+
+ KMP_DEBUG_ASSERT( stack_top != NULL );
+ KMP_DEBUG_ASSERT( entries > 0 );
+
+ while ( entries != 0 )
+ {
+ KMP_DEBUG_ASSERT( stack_top != & task_stack->ts_first_block.sb_block[0] );
+ // fix up ts_top if we need to pop from previous block
+ if ( entries & TASK_STACK_INDEX_MASK == 0 )
+ {
+ kmp_stack_block_t *stack_block = (kmp_stack_block_t *) (stack_top) ;
+
+ stack_block = stack_block -> sb_prev;
+ stack_top = & stack_block -> sb_block[TASK_STACK_BLOCK_SIZE];
+ }
+
+ // finish bookkeeping
+ stack_top--;
+ entries--;
+
+ tied_task = * stack_top;
+
+ KMP_DEBUG_ASSERT( tied_task != NULL );
+ KMP_DEBUG_ASSERT( tied_task -> td_flags.tasktype == TASK_TIED );
+
+ KA_TRACE(threshold, ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, "
+ "stack_top=%p, tied_task=%p\n",
+ location, gtid, entries, stack_top, tied_task ) );
+ }
+ KMP_DEBUG_ASSERT( stack_top == & task_stack->ts_first_block.sb_block[0] );
+
+ KA_TRACE(threshold, ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n",
+ location, gtid ) );
+}
+
+//---------------------------------------------------------------------------
+// __kmp_init_task_stack: initialize the task stack for the first time
+// after a thread_data structure is created.
+// It should not be necessary to do this again (assuming the stack works).
+//
+// gtid: global thread identifier of calling thread
+// thread_data: thread data for task team thread containing stack
+
+static void
+__kmp_init_task_stack( kmp_int32 gtid, kmp_thread_data_t *thread_data )
+{
+ kmp_task_stack_t *task_stack = & thread_data->td.td_susp_tied_tasks;
+ kmp_stack_block_t *first_block;
+
+ // set up the first block of the stack
+ first_block = & task_stack -> ts_first_block;
+ task_stack -> ts_top = (kmp_taskdata_t **) first_block;
+ memset( (void *) first_block, '\0', TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *));
+
+ // initialize the stack to be empty
+ task_stack -> ts_entries = TASK_STACK_EMPTY;
+ first_block -> sb_next = NULL;
+ first_block -> sb_prev = NULL;
+}
+
+
+//---------------------------------------------------------------------------
+// __kmp_free_task_stack: free the task stack when thread_data is destroyed.
+//
+// gtid: global thread identifier for calling thread
+// thread_data: thread info for thread containing stack
+
+static void
+__kmp_free_task_stack( kmp_int32 gtid, kmp_thread_data_t *thread_data )
+{
+ kmp_task_stack_t *task_stack = & thread_data->td.td_susp_tied_tasks;
+ kmp_stack_block_t *stack_block = & task_stack -> ts_first_block;
+
+ KMP_DEBUG_ASSERT( task_stack -> ts_entries == TASK_STACK_EMPTY );
+ // free from the second block of the stack
+ while ( stack_block != NULL ) {
+ kmp_stack_block_t *next_block = (stack_block) ? stack_block -> sb_next : NULL;
+
+ stack_block -> sb_next = NULL;
+ stack_block -> sb_prev = NULL;
+ if (stack_block != & task_stack -> ts_first_block) {
+ __kmp_thread_free( thread, stack_block ); // free the block, if not the first
+ }
+ stack_block = next_block;
+ }
+ // initialize the stack to be empty
+ task_stack -> ts_entries = 0;
+ task_stack -> ts_top = NULL;
+}
+
+
+//---------------------------------------------------------------------------
+// __kmp_push_task_stack: Push the tied task onto the task stack.
+// Grow the stack if necessary by allocating another block.
+//
+// gtid: global thread identifier for calling thread
+// thread: thread info for thread containing stack
+// tied_task: the task to push on the stack
+
+static void
+__kmp_push_task_stack( kmp_int32 gtid, kmp_info_t *thread, kmp_taskdata_t * tied_task )
+{
+ // GEH - need to consider what to do if tt_threads_data not allocated yet
+ kmp_thread_data_t *thread_data = & thread -> th.th_task_team ->
+ tt.tt_threads_data[ __kmp_tid_from_gtid( gtid ) ];
+ kmp_task_stack_t *task_stack = & thread_data->td.td_susp_tied_tasks ;
+
+ if ( tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser ) {
+ return; // Don't push anything on stack if team or team tasks are serialized
+ }
+
+ KMP_DEBUG_ASSERT( tied_task -> td_flags.tasktype == TASK_TIED );
+ KMP_DEBUG_ASSERT( task_stack -> ts_top != NULL );
+
+ KA_TRACE(20, ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n",
+ gtid, thread, tied_task ) );
+ // Store entry
+ * (task_stack -> ts_top) = tied_task;
+
+ // Do bookkeeping for next push
+ task_stack -> ts_top++;
+ task_stack -> ts_entries++;
+
+ if ( task_stack -> ts_entries & TASK_STACK_INDEX_MASK == 0 )
+ {
+ // Find beginning of this task block
+ kmp_stack_block_t *stack_block =
+ (kmp_stack_block_t *) (task_stack -> ts_top - TASK_STACK_BLOCK_SIZE);
+
+ // Check if we already have a block
+ if ( stack_block -> sb_next != NULL )
+ { // reset ts_top to beginning of next block
+ task_stack -> ts_top = & stack_block -> sb_next -> sb_block[0];
+ }
+ else
+ { // Alloc new block and link it up
+ kmp_stack_block_t *new_block = (kmp_stack_block_t *)
+ __kmp_thread_calloc(thread, sizeof(kmp_stack_block_t));
+
+ task_stack -> ts_top = & new_block -> sb_block[0];
+ stack_block -> sb_next = new_block;
+ new_block -> sb_prev = stack_block;
+ new_block -> sb_next = NULL;
+
+ KA_TRACE(30, ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n",
+ gtid, tied_task, new_block ) );
+ }
+ }
+ KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid, tied_task ) );
+}
+
+//---------------------------------------------------------------------------
+// __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return
+// the task, just check to make sure it matches the ending task passed in.
+//
+// gtid: global thread identifier for the calling thread
+// thread: thread info structure containing stack
+// tied_task: the task popped off the stack
+// ending_task: the task that is ending (should match popped task)
+
+static void
+__kmp_pop_task_stack( kmp_int32 gtid, kmp_info_t *thread, kmp_taskdata_t *ending_task )
+{
+ // GEH - need to consider what to do if tt_threads_data not allocated yet
+ kmp_thread_data_t *thread_data = & thread -> th.th_task_team -> tt_threads_data[ __kmp_tid_from_gtid( gtid ) ];
+ kmp_task_stack_t *task_stack = & thread_data->td.td_susp_tied_tasks ;
+ kmp_taskdata_t *tied_task;
+
+ if ( ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser ) {
+ return; // Don't pop anything from stack if team or team tasks are serialized
+ }
+
+ KMP_DEBUG_ASSERT( task_stack -> ts_top != NULL );
+ KMP_DEBUG_ASSERT( task_stack -> ts_entries > 0 );
+
+ KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid, thread ) );
+
+ // fix up ts_top if we need to pop from previous block
+ if ( task_stack -> ts_entries & TASK_STACK_INDEX_MASK == 0 )
+ {
+ kmp_stack_block_t *stack_block =
+ (kmp_stack_block_t *) (task_stack -> ts_top) ;
+
+ stack_block = stack_block -> sb_prev;
+ task_stack -> ts_top = & stack_block -> sb_block[TASK_STACK_BLOCK_SIZE];
+ }
+
+ // finish bookkeeping
+ task_stack -> ts_top--;
+ task_stack -> ts_entries--;
+
+ tied_task = * (task_stack -> ts_top );
+
+ KMP_DEBUG_ASSERT( tied_task != NULL );
+ KMP_DEBUG_ASSERT( tied_task -> td_flags.tasktype == TASK_TIED );
+ KMP_DEBUG_ASSERT( tied_task == ending_task ); // If we built the stack correctly
+
+ KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid, tied_task ) );
+ return;
+}
+#endif /* BUILD_TIED_TASK_STACK */
+
+//---------------------------------------------------
+// __kmp_push_task: Add a task to the thread's deque
+
+static kmp_int32
+__kmp_push_task(kmp_int32 gtid, kmp_task_t * task )
+{
+ kmp_info_t * thread = __kmp_threads[ gtid ];
+ kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task);
+ kmp_task_team_t * task_team = thread->th.th_task_team;
+ kmp_int32 tid = __kmp_tid_from_gtid( gtid );
+ kmp_thread_data_t * thread_data;
+
+ KA_TRACE(20, ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata ) );
+
+ if ( taskdata->td_flags.tiedness == TASK_UNTIED ) {
+ // untied task needs to increment counter so that the task structure is not freed prematurely
+ kmp_int32 counter = 1 + KMP_TEST_THEN_INC32(&taskdata->td_untied_count);
+ KA_TRACE(20, ( "__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n",
+ gtid, counter, taskdata ) );
+ }
+
+ // The first check avoids building task_team thread data if serialized
+ if ( taskdata->td_flags.task_serial ) {
+ KA_TRACE(20, ( "__kmp_push_task: T#%d team serialized; returning TASK_NOT_PUSHED for task %p\n",
+ gtid, taskdata ) );
+ return TASK_NOT_PUSHED;
+ }
+
+ // Now that serialized tasks have returned, we can assume that we are not in immediate exec mode
+ KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec );
+ if ( ! KMP_TASKING_ENABLED(task_team) ) {
+ __kmp_enable_tasking( task_team, thread );
+ }
+ KMP_DEBUG_ASSERT( TCR_4(task_team -> tt.tt_found_tasks) == TRUE );
+ KMP_DEBUG_ASSERT( TCR_PTR(task_team -> tt.tt_threads_data) != NULL );
+
+ // Find tasking deque specific to encountering thread
+ thread_data = & task_team -> tt.tt_threads_data[ tid ];
+
+ // No lock needed since only owner can allocate
+ if (thread_data -> td.td_deque == NULL ) {
+ __kmp_alloc_task_deque( thread, thread_data );
+ }
+
+ // Check if deque is full
+ if ( TCR_4(thread_data -> td.td_deque_ntasks) >= TASK_DEQUE_SIZE(thread_data->td) )
+ {
+ KA_TRACE(20, ( "__kmp_push_task: T#%d deque is full; returning TASK_NOT_PUSHED for task %p\n",
+ gtid, taskdata ) );
+ return TASK_NOT_PUSHED;
+ }
+
+ // Lock the deque for the task push operation
+ __kmp_acquire_bootstrap_lock( & thread_data -> td.td_deque_lock );
+
+#if OMP_45_ENABLED
+ // Need to recheck as we can get a proxy task from a thread outside of OpenMP
+ if ( TCR_4(thread_data -> td.td_deque_ntasks) >= TASK_DEQUE_SIZE(thread_data->td) )
+ {
+ __kmp_release_bootstrap_lock( & thread_data -> td.td_deque_lock );
+ KA_TRACE(20, ( "__kmp_push_task: T#%d deque is full on 2nd check; returning TASK_NOT_PUSHED for task %p\n",
+ gtid, taskdata ) );
+ return TASK_NOT_PUSHED;
+ }
+#else
+ // Must have room since no thread can add tasks but calling thread
+ KMP_DEBUG_ASSERT( TCR_4(thread_data -> td.td_deque_ntasks) < TASK_DEQUE_SIZE(thread_data->td) );
+#endif
+
+ thread_data -> td.td_deque[ thread_data -> td.td_deque_tail ] = taskdata; // Push taskdata
+ // Wrap index.
+ thread_data -> td.td_deque_tail = ( thread_data -> td.td_deque_tail + 1 ) & TASK_DEQUE_MASK(thread_data->td);
+ TCW_4(thread_data -> td.td_deque_ntasks, TCR_4(thread_data -> td.td_deque_ntasks) + 1); // Adjust task count
+
+ KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: "
+ "task=%p ntasks=%d head=%u tail=%u\n",
+ gtid, taskdata, thread_data->td.td_deque_ntasks,
+ thread_data->td.td_deque_head, thread_data->td.td_deque_tail) );
+
+ __kmp_release_bootstrap_lock( & thread_data->td.td_deque_lock );
+
+ return TASK_SUCCESSFULLY_PUSHED;
+}
+
+
+//-----------------------------------------------------------------------------------------
+// __kmp_pop_current_task_from_thread: set up current task from called thread when team ends
+// this_thr: thread structure to set current_task in.
+
+void
+__kmp_pop_current_task_from_thread( kmp_info_t *this_thr )
+{
+ KF_TRACE( 10, ("__kmp_pop_current_task_from_thread(enter): T#%d this_thread=%p, curtask=%p, "
+ "curtask_parent=%p\n",
+ 0, this_thr, this_thr -> th.th_current_task,
+ this_thr -> th.th_current_task -> td_parent ) );
+
+ this_thr -> th.th_current_task = this_thr -> th.th_current_task -> td_parent;
+
+ KF_TRACE( 10, ("__kmp_pop_current_task_from_thread(exit): T#%d this_thread=%p, curtask=%p, "
+ "curtask_parent=%p\n",
+ 0, this_thr, this_thr -> th.th_current_task,
+ this_thr -> th.th_current_task -> td_parent ) );
+}
+
+
+//---------------------------------------------------------------------------------------
+// __kmp_push_current_task_to_thread: set up current task in called thread for a new team
+// this_thr: thread structure to set up
+// team: team for implicit task data
+// tid: thread within team to set up
+
+void
+__kmp_push_current_task_to_thread( kmp_info_t *this_thr, kmp_team_t *team, int tid )
+{
+ // current task of the thread is a parent of the new just created implicit tasks of new team
+ KF_TRACE( 10, ( "__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p curtask=%p "
+ "parent_task=%p\n",
+ tid, this_thr, this_thr->th.th_current_task,
+ team->t.t_implicit_task_taskdata[tid].td_parent ) );
+
+ KMP_DEBUG_ASSERT (this_thr != NULL);
+
+ if( tid == 0 ) {
+ if( this_thr->th.th_current_task != & team -> t.t_implicit_task_taskdata[ 0 ] ) {
+ team -> t.t_implicit_task_taskdata[ 0 ].td_parent = this_thr->th.th_current_task;
+ this_thr->th.th_current_task = & team -> t.t_implicit_task_taskdata[ 0 ];
+ }
+ } else {
+ team -> t.t_implicit_task_taskdata[ tid ].td_parent = team -> t.t_implicit_task_taskdata[ 0 ].td_parent;
+ this_thr->th.th_current_task = & team -> t.t_implicit_task_taskdata[ tid ];
+ }
+
+ KF_TRACE( 10, ( "__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p curtask=%p "
+ "parent_task=%p\n",
+ tid, this_thr, this_thr->th.th_current_task,
+ team->t.t_implicit_task_taskdata[tid].td_parent ) );
+}
+
+
+//----------------------------------------------------------------------
+// __kmp_task_start: bookkeeping for a task starting execution
+// GTID: global thread id of calling thread
+// task: task starting execution
+// current_task: task suspending
+
+static void
+__kmp_task_start( kmp_int32 gtid, kmp_task_t * task, kmp_taskdata_t * current_task )
+{
+ kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task);
+ kmp_info_t * thread = __kmp_threads[ gtid ];
+
+ KA_TRACE(10, ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n",
+ gtid, taskdata, current_task) );
+
+ KMP_DEBUG_ASSERT( taskdata -> td_flags.tasktype == TASK_EXPLICIT );
+
+ // mark currently executing task as suspended
+ // TODO: GEH - make sure root team implicit task is initialized properly.
+ // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 );
+ current_task -> td_flags.executing = 0;
+
+ // Add task to stack if tied
+#ifdef BUILD_TIED_TASK_STACK
+ if ( taskdata -> td_flags.tiedness == TASK_TIED )
+ {
+ __kmp_push_task_stack( gtid, thread, taskdata );
+ }
+#endif /* BUILD_TIED_TASK_STACK */
+
+ // mark starting task as executing and as current task
+ thread -> th.th_current_task = taskdata;
+
+ KMP_DEBUG_ASSERT( taskdata->td_flags.started == 0 || taskdata->td_flags.tiedness == TASK_UNTIED );
+ KMP_DEBUG_ASSERT( taskdata->td_flags.executing == 0 || taskdata->td_flags.tiedness == TASK_UNTIED );
+ taskdata -> td_flags.started = 1;
+ taskdata -> td_flags.executing = 1;
+ KMP_DEBUG_ASSERT( taskdata -> td_flags.complete == 0 );
+ KMP_DEBUG_ASSERT( taskdata -> td_flags.freed == 0 );
+
+ // GEH TODO: shouldn't we pass some sort of location identifier here?
+ // APT: yes, we will pass location here.
+ // need to store current thread state (in a thread or taskdata structure)
+ // before setting work_state, otherwise wrong state is set after end of task
+
+ KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n",
+ gtid, taskdata ) );
+
+#if OMPT_SUPPORT
+ if (ompt_enabled &&
+ ompt_callbacks.ompt_callback(ompt_event_task_begin)) {
+ kmp_taskdata_t *parent = taskdata->td_parent;
+ ompt_callbacks.ompt_callback(ompt_event_task_begin)(
+ parent ? parent->ompt_task_info.task_id : ompt_task_id_none,
+ parent ? &(parent->ompt_task_info.frame) : NULL,
+ taskdata->ompt_task_info.task_id,
+ taskdata->ompt_task_info.function);
+ }
+#endif
+#if OMP_40_ENABLED && OMPT_SUPPORT && OMPT_TRACE
+ /* OMPT emit all dependences if requested by the tool */
+ if (ompt_enabled && taskdata->ompt_task_info.ndeps > 0 &&
+ ompt_callbacks.ompt_callback(ompt_event_task_dependences))
+ {
+ ompt_callbacks.ompt_callback(ompt_event_task_dependences)(
+ taskdata->ompt_task_info.task_id,
+ taskdata->ompt_task_info.deps,
+ taskdata->ompt_task_info.ndeps
+ );
+ /* We can now free the allocated memory for the dependencies */
+ KMP_OMPT_DEPS_FREE (thread, taskdata->ompt_task_info.deps);
+ taskdata->ompt_task_info.deps = NULL;
+ taskdata->ompt_task_info.ndeps = 0;
+ }
+#endif /* OMP_40_ENABLED && OMPT_SUPPORT && OMPT_TRACE */
+
+ return;
+}
+
+
+//----------------------------------------------------------------------
+// __kmpc_omp_task_begin_if0: report that a given serialized task has started execution
+// loc_ref: source location information; points to beginning of task block.
+// gtid: global thread number.
+// task: task thunk for the started task.
+
+void
+__kmpc_omp_task_begin_if0( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * task )
+{
+ kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task);
+ kmp_taskdata_t * current_task = __kmp_threads[ gtid ] -> th.th_current_task;
+
+ KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p current_task=%p\n",
+ gtid, loc_ref, taskdata, current_task ) );
+
+ if ( taskdata->td_flags.tiedness == TASK_UNTIED ) {
+ // untied task needs to increment counter so that the task structure is not freed prematurely
+ kmp_int32 counter = 1 + KMP_TEST_THEN_INC32(&taskdata->td_untied_count);
+ KA_TRACE(20, ( "__kmpc_omp_task_begin_if0: T#%d untied_count (%d) incremented for task %p\n",
+ gtid, counter, taskdata ) );
+ }
+
+ taskdata -> td_flags.task_serial = 1; // Execute this task immediately, not deferred.
+ __kmp_task_start( gtid, task, current_task );
+
+ KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n",
+ gtid, loc_ref, taskdata ) );
+
+ return;
+}
+
+#ifdef TASK_UNUSED
+//----------------------------------------------------------------------
+// __kmpc_omp_task_begin: report that a given task has started execution
+// NEVER GENERATED BY COMPILER, DEPRECATED!!!
+
+void
+__kmpc_omp_task_begin( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * task )
+{
+ kmp_taskdata_t * current_task = __kmp_threads[ gtid ] -> th.th_current_task;
+
+ KA_TRACE(10, ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n",
+ gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task ) );
+
+ __kmp_task_start( gtid, task, current_task );
+
+ KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n",
+ gtid, loc_ref, KMP_TASK_TO_TASKDATA(task) ) );
+
+ return;
+}
+#endif // TASK_UNUSED
+
+
+//-------------------------------------------------------------------------------------
+// __kmp_free_task: free the current task space and the space for shareds
+// gtid: Global thread ID of calling thread
+// taskdata: task to free
+// thread: thread data structure of caller
+
+static void
+__kmp_free_task( kmp_int32 gtid, kmp_taskdata_t * taskdata, kmp_info_t * thread )
+{
+ KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n",
+ gtid, taskdata) );
+
+ // Check to make sure all flags and counters have the correct values
+ KMP_DEBUG_ASSERT( taskdata->td_flags.tasktype == TASK_EXPLICIT );
+ KMP_DEBUG_ASSERT( taskdata->td_flags.executing == 0 );
+ KMP_DEBUG_ASSERT( taskdata->td_flags.complete == 1 );
+ KMP_DEBUG_ASSERT( taskdata->td_flags.freed == 0 );
+ KMP_DEBUG_ASSERT( TCR_4(taskdata->td_allocated_child_tasks) == 0 || taskdata->td_flags.task_serial == 1);
+ KMP_DEBUG_ASSERT( TCR_4(taskdata->td_incomplete_child_tasks) == 0 );
+
+ taskdata->td_flags.freed = 1;
+ ANNOTATE_HAPPENS_BEFORE(taskdata);
+ // deallocate the taskdata and shared variable blocks associated with this task
+ #if USE_FAST_MEMORY
+ __kmp_fast_free( thread, taskdata );
+ #else /* ! USE_FAST_MEMORY */
+ __kmp_thread_free( thread, taskdata );
+ #endif
+
+ KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n",
+ gtid, taskdata) );
+}
+
+//-------------------------------------------------------------------------------------
+// __kmp_free_task_and_ancestors: free the current task and ancestors without children
+//
+// gtid: Global thread ID of calling thread
+// taskdata: task to free
+// thread: thread data structure of caller
+
+static void
+__kmp_free_task_and_ancestors( kmp_int32 gtid, kmp_taskdata_t * taskdata, kmp_info_t * thread )
+{
+#if OMP_45_ENABLED
+ // Proxy tasks must always be allowed to free their parents
+ // because they can be run in background even in serial mode.
+ kmp_int32 team_serial = ( taskdata->td_flags.team_serial ||
+ taskdata->td_flags.tasking_ser ) && !taskdata->td_flags.proxy;
+#else
+ kmp_int32 team_serial = taskdata->td_flags.team_serial ||
+ taskdata->td_flags.tasking_ser;
+#endif
+ KMP_DEBUG_ASSERT( taskdata -> td_flags.tasktype == TASK_EXPLICIT );
+
+ kmp_int32 children = KMP_TEST_THEN_DEC32( (kmp_int32 *)(& taskdata -> td_allocated_child_tasks) ) - 1;
+ KMP_DEBUG_ASSERT( children >= 0 );
+
+ // Now, go up the ancestor tree to see if any ancestors can now be freed.
+ while ( children == 0 )
+ {
+ kmp_taskdata_t * parent_taskdata = taskdata -> td_parent;
+
+ KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete "
+ "and freeing itself\n", gtid, taskdata) );
+
+ // --- Deallocate my ancestor task ---
+ __kmp_free_task( gtid, taskdata, thread );
+
+ taskdata = parent_taskdata;
+
+ // Stop checking ancestors at implicit task
+ // instead of walking up ancestor tree to avoid premature deallocation of ancestors.
+ if ( team_serial || taskdata -> td_flags.tasktype == TASK_IMPLICIT )
+ return;
+
+ // Predecrement simulated by "- 1" calculation
+ children = KMP_TEST_THEN_DEC32( (kmp_int32 *)(& taskdata -> td_allocated_child_tasks) ) - 1;
+ KMP_DEBUG_ASSERT( children >= 0 );
+ }
+
+ KA_TRACE(20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; "
+ "not freeing it yet\n", gtid, taskdata, children) );
+}
+
+//---------------------------------------------------------------------
+// __kmp_task_finish: bookkeeping to do when a task finishes execution
+// gtid: global thread ID for calling thread
+// task: task to be finished
+// resumed_task: task to be resumed. (may be NULL if task is serialized)
+
+static void
+__kmp_task_finish( kmp_int32 gtid, kmp_task_t *task, kmp_taskdata_t *resumed_task )
+{
+ kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task);
+ kmp_info_t * thread = __kmp_threads[ gtid ];
+ kmp_task_team_t * task_team = thread->th.th_task_team; // might be NULL for serial teams...
+ kmp_int32 children = 0;
+
+#if OMPT_SUPPORT
+ if (ompt_enabled &&
+ ompt_callbacks.ompt_callback(ompt_event_task_end)) {
+ kmp_taskdata_t *parent = taskdata->td_parent;
+ ompt_callbacks.ompt_callback(ompt_event_task_end)(
+ taskdata->ompt_task_info.task_id);
+ }
+#endif
+
+ KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming task %p\n",
+ gtid, taskdata, resumed_task) );
+
+ KMP_DEBUG_ASSERT( taskdata -> td_flags.tasktype == TASK_EXPLICIT );
+
+ // Pop task from stack if tied
+#ifdef BUILD_TIED_TASK_STACK
+ if ( taskdata -> td_flags.tiedness == TASK_TIED )
+ {
+ __kmp_pop_task_stack( gtid, thread, taskdata );
+ }
+#endif /* BUILD_TIED_TASK_STACK */
+
+ if ( taskdata->td_flags.tiedness == TASK_UNTIED ) {
+ // untied task needs to check the counter so that the task structure is not freed prematurely
+ kmp_int32 counter = KMP_TEST_THEN_DEC32(&taskdata->td_untied_count) - 1;
+ KA_TRACE(20, ( "__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n",
+ gtid, counter, taskdata ) );
+ if ( counter > 0 ) {
+ // untied task is not done, to be continued possibly by other thread, do not free it now
+ if (resumed_task == NULL) {
+ KMP_DEBUG_ASSERT( taskdata->td_flags.task_serial );
+ resumed_task = taskdata->td_parent; // In a serialized task, the resumed task is the parent
+ }
+ thread->th.th_current_task = resumed_task; // restore current_task
+ resumed_task->td_flags.executing = 1; // resume previous task
+ KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, resuming task %p\n",
+ gtid, taskdata, resumed_task) );
+ return;
+ }
+ }
+
+ KMP_DEBUG_ASSERT( taskdata -> td_flags.complete == 0 );
+ taskdata -> td_flags.complete = 1; // mark the task as completed
+ KMP_DEBUG_ASSERT( taskdata -> td_flags.started == 1 );
+ KMP_DEBUG_ASSERT( taskdata -> td_flags.freed == 0 );
+
+ // Only need to keep track of count if team parallel and tasking not serialized
+ if ( !( taskdata -> td_flags.team_serial || taskdata -> td_flags.tasking_ser ) ) {
+ // Predecrement simulated by "- 1" calculation
+ children = KMP_TEST_THEN_DEC32( (kmp_int32 *)(& taskdata -> td_parent -> td_incomplete_child_tasks) ) - 1;
+ KMP_DEBUG_ASSERT( children >= 0 );
+#if OMP_40_ENABLED
+ if ( taskdata->td_taskgroup )
+ KMP_TEST_THEN_DEC32( (kmp_int32 *)(& taskdata->td_taskgroup->count) );
+#if OMP_45_ENABLED
+ }
+ // if we found proxy tasks there could exist a dependency chain
+ // with the proxy task as origin
+ if ( !( taskdata -> td_flags.team_serial || taskdata -> td_flags.tasking_ser ) || (task_team && task_team->tt.tt_found_proxy_tasks) ) {
+#endif
+ __kmp_release_deps(gtid,taskdata);
+#endif
+ }
+
+ // td_flags.executing must be marked as 0 after __kmp_release_deps has been called
+ // Othertwise, if a task is executed immediately from the release_deps code
+ // the flag will be reset to 1 again by this same function
+ KMP_DEBUG_ASSERT( taskdata -> td_flags.executing == 1 );
+ taskdata -> td_flags.executing = 0; // suspend the finishing task
+
+ KA_TRACE(20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n",
+ gtid, taskdata, children) );
+
+#if OMP_40_ENABLED
+ /* If the tasks' destructor thunk flag has been set, we need to invoke the
+ destructor thunk that has been generated by the compiler.
+ The code is placed here, since at this point other tasks might have been released
+ hence overlapping the destructor invokations with some other work in the
+ released tasks. The OpenMP spec is not specific on when the destructors are
+ invoked, so we should be free to choose.
+ */
+ if (taskdata->td_flags.destructors_thunk) {
+ kmp_routine_entry_t destr_thunk = task->data1.destructors;
+ KMP_ASSERT(destr_thunk);
+ destr_thunk(gtid, task);
+ }
+#endif // OMP_40_ENABLED
+
+ // bookkeeping for resuming task:
+ // GEH - note tasking_ser => task_serial
+ KMP_DEBUG_ASSERT( (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) ==
+ taskdata->td_flags.task_serial);
+ if ( taskdata->td_flags.task_serial )
+ {
+ if (resumed_task == NULL) {
+ resumed_task = taskdata->td_parent; // In a serialized task, the resumed task is the parent
+ }
+ else
+#if OMP_45_ENABLED
+ if ( !(task_team && task_team->tt.tt_found_proxy_tasks) )
+#endif
+ {
+ // verify resumed task passed in points to parent
+ KMP_DEBUG_ASSERT( resumed_task == taskdata->td_parent );
+ }
+ }
+ else {
+ KMP_DEBUG_ASSERT( resumed_task != NULL ); // verify that resumed task is passed as arguemnt
+ }
+
+ // Free this task and then ancestor tasks if they have no children.
+ // Restore th_current_task first as suggested by John:
+ // johnmc: if an asynchronous inquiry peers into the runtime system
+ // it doesn't see the freed task as the current task.
+ thread->th.th_current_task = resumed_task;
+ __kmp_free_task_and_ancestors(gtid, taskdata, thread);
+
+ // TODO: GEH - make sure root team implicit task is initialized properly.
+ // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 );
+ resumed_task->td_flags.executing = 1; // resume previous task
+
+ KA_TRACE(10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n",
+ gtid, taskdata, resumed_task) );
+
+ return;
+}
+
+//---------------------------------------------------------------------
+// __kmpc_omp_task_complete_if0: report that a task has completed execution
+// loc_ref: source location information; points to end of task block.
+// gtid: global thread number.
+// task: task thunk for the completed task.
+
+void
+__kmpc_omp_task_complete_if0( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task )
+{
+ KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n",
+ gtid, loc_ref, KMP_TASK_TO_TASKDATA(task) ) );
+
+ __kmp_task_finish( gtid, task, NULL ); // this routine will provide task to resume
+
+ KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n",
+ gtid, loc_ref, KMP_TASK_TO_TASKDATA(task) ) );
+
+ return;
+}
+
+#ifdef TASK_UNUSED
+//---------------------------------------------------------------------
+// __kmpc_omp_task_complete: report that a task has completed execution
+// NEVER GENERATED BY COMPILER, DEPRECATED!!!
+
+void
+__kmpc_omp_task_complete( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task )
+{
+ KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n",
+ gtid, loc_ref, KMP_TASK_TO_TASKDATA(task) ) );
+
+ __kmp_task_finish( gtid, task, NULL ); // Not sure how to find task to resume
+
+ KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n",
+ gtid, loc_ref, KMP_TASK_TO_TASKDATA(task) ) );
+ return;
+}
+#endif // TASK_UNUSED
+
+
+#if OMPT_SUPPORT
+//----------------------------------------------------------------------------------------------------
+// __kmp_task_init_ompt:
+// Initialize OMPT fields maintained by a task. This will only be called after
+// ompt_tool, so we already know whether ompt is enabled or not.
+
+static inline void
+__kmp_task_init_ompt( kmp_taskdata_t * task, int tid, void * function )
+{
+ if (ompt_enabled) {
+ task->ompt_task_info.task_id = __ompt_task_id_new(tid);
+ task->ompt_task_info.function = function;
+ task->ompt_task_info.frame.exit_runtime_frame = NULL;
+ task->ompt_task_info.frame.reenter_runtime_frame = NULL;
+#if OMP_40_ENABLED
+ task->ompt_task_info.ndeps = 0;
+ task->ompt_task_info.deps = NULL;
+#endif /* OMP_40_ENABLED */
+ }
+}
+#endif
+
+
+//----------------------------------------------------------------------------------------------------
+// __kmp_init_implicit_task: Initialize the appropriate fields in the implicit task for a given thread
+//
+// loc_ref: reference to source location of parallel region
+// this_thr: thread data structure corresponding to implicit task
+// team: team for this_thr
+// tid: thread id of given thread within team
+// set_curr_task: TRUE if need to push current task to thread
+// NOTE: Routine does not set up the implicit task ICVS. This is assumed to have already been done elsewhere.
+// TODO: Get better loc_ref. Value passed in may be NULL
+
+void
+__kmp_init_implicit_task( ident_t *loc_ref, kmp_info_t *this_thr, kmp_team_t *team, int tid, int set_curr_task )
+{
+ kmp_taskdata_t * task = & team->t.t_implicit_task_taskdata[ tid ];
+
+ KF_TRACE(10, ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n",
+ tid, team, task, set_curr_task ? "TRUE" : "FALSE" ) );
+
+ task->td_task_id = KMP_GEN_TASK_ID();
+ task->td_team = team;
+// task->td_parent = NULL; // fix for CQ230101 (broken parent task info in debugger)
+ task->td_ident = loc_ref;
+ task->td_taskwait_ident = NULL;
+ task->td_taskwait_counter = 0;
+ task->td_taskwait_thread = 0;
+
+ task->td_flags.tiedness = TASK_TIED;
+ task->td_flags.tasktype = TASK_IMPLICIT;
+#if OMP_45_ENABLED
+ task->td_flags.proxy = TASK_FULL;
+#endif
+
+ // All implicit tasks are executed immediately, not deferred
+ task->td_flags.task_serial = 1;
+ task->td_flags.tasking_ser = ( __kmp_tasking_mode == tskm_immediate_exec );
+ task->td_flags.team_serial = ( team->t.t_serialized ) ? 1 : 0;
+
+ task->td_flags.started = 1;
+ task->td_flags.executing = 1;
+ task->td_flags.complete = 0;
+ task->td_flags.freed = 0;
+
+#if OMP_40_ENABLED
+ task->td_depnode = NULL;
+#endif
+
+ if (set_curr_task) { // only do this initialization the first time a thread is created
+ task->td_incomplete_child_tasks = 0;
+ task->td_allocated_child_tasks = 0; // Not used because do not need to deallocate implicit task
+#if OMP_40_ENABLED
+ task->td_taskgroup = NULL; // An implicit task does not have taskgroup
+ task->td_dephash = NULL;
+#endif
+ __kmp_push_current_task_to_thread( this_thr, team, tid );
+ } else {
+ KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0);
+ KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0);
+ }
+
+#if OMPT_SUPPORT
+ __kmp_task_init_ompt(task, tid, NULL);
+#endif
+
+ KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n",
+ tid, team, task ) );
+}
+
+
+//-----------------------------------------------------------------------------
+//// __kmp_finish_implicit_task: Release resources associated to implicit tasks
+//// at the end of parallel regions. Some resources are kept for reuse in the
+//// next parallel region.
+////
+//// thread: thread data structure corresponding to implicit task
+//
+void
+__kmp_finish_implicit_task(kmp_info_t *thread)
+{
+ kmp_taskdata_t *task = thread->th.th_current_task;
+ if (task->td_dephash)
+ __kmp_dephash_free_entries(thread, task->td_dephash);
+}
+
+
+//-----------------------------------------------------------------------------
+//// __kmp_free_implicit_task: Release resources associated to implicit tasks
+//// when these are destroyed regions
+////
+//// thread: thread data structure corresponding to implicit task
+//
+void
+__kmp_free_implicit_task(kmp_info_t *thread)
+{
+ kmp_taskdata_t *task = thread->th.th_current_task;
+ if (task->td_dephash)
+ __kmp_dephash_free(thread, task->td_dephash);
+ task->td_dephash = NULL;
+}
+
+
+// Round up a size to a power of two specified by val
+// Used to insert padding between structures co-allocated using a single malloc() call
+static size_t
+__kmp_round_up_to_val( size_t size, size_t val ) {
+ if ( size & ( val - 1 ) ) {
+ size &= ~ ( val - 1 );
+ if ( size <= KMP_SIZE_T_MAX - val ) {
+ size += val; // Round up if there is no overflow.
+ }; // if
+ }; // if
+ return size;
+} // __kmp_round_up_to_va
+
+
+//---------------------------------------------------------------------------------
+// __kmp_task_alloc: Allocate the taskdata and task data structures for a task
+//
+// loc_ref: source location information
+// gtid: global thread number.
+// flags: include tiedness & task type (explicit vs. implicit) of the ''new'' task encountered.
+// Converted from kmp_int32 to kmp_tasking_flags_t in routine.
+// sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including private vars accessed in task.
+// sizeof_shareds: Size in bytes of array of pointers to shared vars accessed in task.
+// task_entry: Pointer to task code entry point generated by compiler.
+// returns: a pointer to the allocated kmp_task_t structure (task).
+
+kmp_task_t *
+__kmp_task_alloc( ident_t *loc_ref, kmp_int32 gtid, kmp_tasking_flags_t *flags,
+ size_t sizeof_kmp_task_t, size_t sizeof_shareds,
+ kmp_routine_entry_t task_entry )
+{
+ kmp_task_t *task;
+ kmp_taskdata_t *taskdata;
+ kmp_info_t *thread = __kmp_threads[ gtid ];
+ kmp_team_t *team = thread->th.th_team;
+ kmp_taskdata_t *parent_task = thread->th.th_current_task;
+ size_t shareds_offset;
+
+ KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) "
+ "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
+ gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t,
+ sizeof_shareds, task_entry) );
+
+ if ( parent_task->td_flags.final ) {
+ if (flags->merged_if0) {
+ }
+ flags->final = 1;
+ }
+
+#if OMP_45_ENABLED
+ if ( flags->proxy == TASK_PROXY ) {
+ flags->tiedness = TASK_UNTIED;
+ flags->merged_if0 = 1;
+
+ /* are we running in a sequential parallel or tskm_immediate_exec... we need tasking support enabled */
+ if ( (thread->th.th_task_team) == NULL ) {
+ /* This should only happen if the team is serialized
+ setup a task team and propagate it to the thread
+ */
+ KMP_DEBUG_ASSERT(team->t.t_serialized);
+ KA_TRACE(30,("T#%d creating task team in __kmp_task_alloc for proxy task\n", gtid));
+ __kmp_task_team_setup(thread,team,1); // 1 indicates setup the current team regardless of nthreads
+ thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state];
+ }
+ kmp_task_team_t * task_team = thread->th.th_task_team;
+
+ /* tasking must be enabled now as the task might not be pushed */
+ if ( !KMP_TASKING_ENABLED( task_team ) ) {
+ KA_TRACE(30,("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid));
+ __kmp_enable_tasking( task_team, thread );
+ kmp_int32 tid = thread->th.th_info.ds.ds_tid;
+ kmp_thread_data_t * thread_data = & task_team -> tt.tt_threads_data[ tid ];
+ // No lock needed since only owner can allocate
+ if (thread_data -> td.td_deque == NULL ) {
+ __kmp_alloc_task_deque( thread, thread_data );
+ }
+ }
+
+ if ( task_team->tt.tt_found_proxy_tasks == FALSE )
+ TCW_4(task_team -> tt.tt_found_proxy_tasks, TRUE);
+ }
+#endif
+
+ // Calculate shared structure offset including padding after kmp_task_t struct
+ // to align pointers in shared struct
+ shareds_offset = sizeof( kmp_taskdata_t ) + sizeof_kmp_task_t;
+ shareds_offset = __kmp_round_up_to_val( shareds_offset, sizeof( void * ));
+
+ // Allocate a kmp_taskdata_t block and a kmp_task_t block.
+ KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n",
+ gtid, shareds_offset) );
+ KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n",
+ gtid, sizeof_shareds) );
+
+ // Avoid double allocation here by combining shareds with taskdata
+ #if USE_FAST_MEMORY
+ taskdata = (kmp_taskdata_t *) __kmp_fast_allocate( thread, shareds_offset + sizeof_shareds );
+ #else /* ! USE_FAST_MEMORY */
+ taskdata = (kmp_taskdata_t *) __kmp_thread_malloc( thread, shareds_offset + sizeof_shareds );
+ #endif /* USE_FAST_MEMORY */
+ ANNOTATE_HAPPENS_AFTER(taskdata);
+
+ task = KMP_TASKDATA_TO_TASK(taskdata);
+
+ // Make sure task & taskdata are aligned appropriately
+#if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD
+ KMP_DEBUG_ASSERT( ( ((kmp_uintptr_t)taskdata) & (sizeof(double)-1) ) == 0 );
+ KMP_DEBUG_ASSERT( ( ((kmp_uintptr_t)task) & (sizeof(double)-1) ) == 0 );
+#else
+ KMP_DEBUG_ASSERT( ( ((kmp_uintptr_t)taskdata) & (sizeof(_Quad)-1) ) == 0 );
+ KMP_DEBUG_ASSERT( ( ((kmp_uintptr_t)task) & (sizeof(_Quad)-1) ) == 0 );
+#endif
+ if (sizeof_shareds > 0) {
+ // Avoid double allocation here by combining shareds with taskdata
+ task->shareds = & ((char *) taskdata)[ shareds_offset ];
+ // Make sure shareds struct is aligned to pointer size
+ KMP_DEBUG_ASSERT( ( ((kmp_uintptr_t)task->shareds) & (sizeof(void *)-1) ) == 0 );
+ } else {
+ task->shareds = NULL;
+ }
+ task->routine = task_entry;
+ task->part_id = 0; // AC: Always start with 0 part id
+
+ taskdata->td_task_id = KMP_GEN_TASK_ID();
+ taskdata->td_team = team;
+ taskdata->td_alloc_thread = thread;
+ taskdata->td_parent = parent_task;
+ taskdata->td_level = parent_task->td_level + 1; // increment nesting level
+ taskdata->td_untied_count = 0;
+ taskdata->td_ident = loc_ref;
+ taskdata->td_taskwait_ident = NULL;
+ taskdata->td_taskwait_counter = 0;
+ taskdata->td_taskwait_thread = 0;
+ KMP_DEBUG_ASSERT( taskdata->td_parent != NULL );
+#if OMP_45_ENABLED
+ // avoid copying icvs for proxy tasks
+ if ( flags->proxy == TASK_FULL )
+#endif
+ copy_icvs( &taskdata->td_icvs, &taskdata->td_parent->td_icvs );
+
+ taskdata->td_flags.tiedness = flags->tiedness;
+ taskdata->td_flags.final = flags->final;
+ taskdata->td_flags.merged_if0 = flags->merged_if0;
+#if OMP_40_ENABLED
+ taskdata->td_flags.destructors_thunk = flags->destructors_thunk;
+#endif // OMP_40_ENABLED
+#if OMP_45_ENABLED
+ taskdata->td_flags.proxy = flags->proxy;
+ taskdata->td_task_team = thread->th.th_task_team;
+ taskdata->td_size_alloc = shareds_offset + sizeof_shareds;
+#endif
+ taskdata->td_flags.tasktype = TASK_EXPLICIT;
+
+ // GEH - TODO: fix this to copy parent task's value of tasking_ser flag
+ taskdata->td_flags.tasking_ser = ( __kmp_tasking_mode == tskm_immediate_exec );
+
+ // GEH - TODO: fix this to copy parent task's value of team_serial flag
+ taskdata->td_flags.team_serial = ( team->t.t_serialized ) ? 1 : 0;
+
+ // GEH - Note we serialize the task if the team is serialized to make sure implicit parallel region
+ // tasks are not left until program termination to execute. Also, it helps locality to execute
+ // immediately.
+ taskdata->td_flags.task_serial = ( parent_task->td_flags.final
+ || taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser );
+
+ taskdata->td_flags.started = 0;
+ taskdata->td_flags.executing = 0;
+ taskdata->td_flags.complete = 0;
+ taskdata->td_flags.freed = 0;
+
+ taskdata->td_flags.native = flags->native;
+
+ taskdata->td_incomplete_child_tasks = 0;
+ taskdata->td_allocated_child_tasks = 1; // start at one because counts current task and children
+#if OMP_40_ENABLED
+ taskdata->td_taskgroup = parent_task->td_taskgroup; // task inherits the taskgroup from the parent task
+ taskdata->td_dephash = NULL;
+ taskdata->td_depnode = NULL;
+#endif
+
+ // Only need to keep track of child task counts if team parallel and tasking not serialized or if it is a proxy task
+#if OMP_45_ENABLED
+ if ( flags->proxy == TASK_PROXY || !( taskdata -> td_flags.team_serial || taskdata -> td_flags.tasking_ser ) )
+#else
+ if ( !( taskdata -> td_flags.team_serial || taskdata -> td_flags.tasking_ser ) )
+#endif
+ {
+ KMP_TEST_THEN_INC32( (kmp_int32 *)(& parent_task->td_incomplete_child_tasks) );
+#if OMP_40_ENABLED
+ if ( parent_task->td_taskgroup )
+ KMP_TEST_THEN_INC32( (kmp_int32 *)(& parent_task->td_taskgroup->count) );
+#endif
+ // Only need to keep track of allocated child tasks for explicit tasks since implicit not deallocated
+ if ( taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT ) {
+ KMP_TEST_THEN_INC32( (kmp_int32 *)(& taskdata->td_parent->td_allocated_child_tasks) );
+ }
+ }
+
+ KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n",
+ gtid, taskdata, taskdata->td_parent) );
+ ANNOTATE_HAPPENS_BEFORE(task);
+
+#if OMPT_SUPPORT
+ __kmp_task_init_ompt(taskdata, gtid, (void*) task_entry);
+#endif
+
+ return task;
+}
+
+
+kmp_task_t *
+__kmpc_omp_task_alloc( ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags,
+ size_t sizeof_kmp_task_t, size_t sizeof_shareds,
+ kmp_routine_entry_t task_entry )
+{
+ kmp_task_t *retval;
+ kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *) & flags;
+
+ input_flags->native = FALSE;
+ // __kmp_task_alloc() sets up all other runtime flags
+
+#if OMP_45_ENABLED
+ KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s) "
+ "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
+ gtid, loc_ref, input_flags->tiedness ? "tied " : "untied",
+ input_flags->proxy ? "proxy" : "",
+ sizeof_kmp_task_t, sizeof_shareds, task_entry) );
+#else
+ KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s) "
+ "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
+ gtid, loc_ref, input_flags->tiedness ? "tied " : "untied",
+ sizeof_kmp_task_t, sizeof_shareds, task_entry) );
+#endif
+
+ retval = __kmp_task_alloc( loc_ref, gtid, input_flags, sizeof_kmp_task_t,
+ sizeof_shareds, task_entry );
+
+ KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval) );
+
+ return retval;
+}
+
+//-----------------------------------------------------------
+// __kmp_invoke_task: invoke the specified task
+//
+// gtid: global thread ID of caller
+// task: the task to invoke
+// current_task: the task to resume after task invokation
+
+static void
+__kmp_invoke_task( kmp_int32 gtid, kmp_task_t *task, kmp_taskdata_t * current_task )
+{
+ kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task);
+ kmp_uint64 cur_time;
+#if OMP_40_ENABLED
+ int discard = 0 /* false */;
+#endif
+ KA_TRACE(30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n",
+ gtid, taskdata, current_task) );
+ KMP_DEBUG_ASSERT(task);
+#if OMP_45_ENABLED
+ if ( taskdata->td_flags.proxy == TASK_PROXY &&
+ taskdata->td_flags.complete == 1)
+ {
+ // This is a proxy task that was already completed but it needs to run
+ // its bottom-half finish
+ KA_TRACE(30, ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n",
+ gtid, taskdata) );
+
+ __kmp_bottom_half_finish_proxy(gtid,task);
+
+ KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for proxy task %p, resuming task %p\n", gtid, taskdata, current_task) );
+
+ return;
+ }
+#endif
+
+#if USE_ITT_BUILD && USE_ITT_NOTIFY
+ if(__kmp_forkjoin_frames_mode == 3) {
+ // Get the current time stamp to measure task execution time to correct barrier imbalance time
+ cur_time = __itt_get_timestamp();
+ }
+#endif
+
+#if OMP_45_ENABLED
+ // Proxy tasks are not handled by the runtime
+ if ( taskdata->td_flags.proxy != TASK_PROXY ) {
+#endif
+ ANNOTATE_HAPPENS_AFTER(task);
+ __kmp_task_start( gtid, task, current_task );
+#if OMP_45_ENABLED
+ }
+#endif
+
+#if OMPT_SUPPORT
+ ompt_thread_info_t oldInfo;
+ kmp_info_t * thread;
+ if (ompt_enabled) {
+ // Store the threads states and restore them after the task
+ thread = __kmp_threads[ gtid ];
+ oldInfo = thread->th.ompt_thread_info;
+ thread->th.ompt_thread_info.wait_id = 0;
+ thread->th.ompt_thread_info.state = ompt_state_work_parallel;
+ taskdata->ompt_task_info.frame.exit_runtime_frame = __builtin_frame_address(0);
+ }
+#endif
+
+#if OMP_40_ENABLED
+ // TODO: cancel tasks if the parallel region has also been cancelled
+ // TODO: check if this sequence can be hoisted above __kmp_task_start
+ // if cancellation has been enabled for this run ...
+ if (__kmp_omp_cancellation) {
+ kmp_info_t *this_thr = __kmp_threads [ gtid ];
+ kmp_team_t * this_team = this_thr->th.th_team;
+ kmp_taskgroup_t * taskgroup = taskdata->td_taskgroup;
+ if ((taskgroup && taskgroup->cancel_request) || (this_team->t.t_cancel_request == cancel_parallel)) {
+ KMP_COUNT_BLOCK(TASK_cancelled);
+ // this task belongs to a task group and we need to cancel it
+ discard = 1 /* true */;
+ }
+ }
+
+ //
+ // Invoke the task routine and pass in relevant data.
+ // Thunks generated by gcc take a different argument list.
+ //
+ if (!discard) {
+#if KMP_STATS_ENABLED
+ KMP_COUNT_BLOCK(TASK_executed);
+ switch(KMP_GET_THREAD_STATE()) {
+ case FORK_JOIN_BARRIER: KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar); break;
+ case PLAIN_BARRIER: KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar); break;
+ case TASKYIELD: KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield); break;
+ case TASKWAIT: KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait); break;
+ case TASKGROUP: KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup); break;
+ default: KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate); break;
+ }
+#endif // KMP_STATS_ENABLED
+#endif // OMP_40_ENABLED
+
+#if OMPT_SUPPORT && OMPT_TRACE
+ /* let OMPT know that we're about to run this task */
+ if (ompt_enabled &&
+ ompt_callbacks.ompt_callback(ompt_event_task_switch))
+ {
+ ompt_callbacks.ompt_callback(ompt_event_task_switch)(
+ current_task->ompt_task_info.task_id,
+ taskdata->ompt_task_info.task_id);
+ }
+#endif
+
+#ifdef KMP_GOMP_COMPAT
+ if (taskdata->td_flags.native) {
+ ((void (*)(void *))(*(task->routine)))(task->shareds);
+ }
+ else
+#endif /* KMP_GOMP_COMPAT */
+ {
+ (*(task->routine))(gtid, task);
+ }
+ KMP_POP_PARTITIONED_TIMER();
+
+#if OMPT_SUPPORT && OMPT_TRACE
+ /* let OMPT know that we're returning to the callee task */
+ if (ompt_enabled &&
+ ompt_callbacks.ompt_callback(ompt_event_task_switch))
+ {
+ ompt_callbacks.ompt_callback(ompt_event_task_switch)(
+ taskdata->ompt_task_info.task_id,
+ current_task->ompt_task_info.task_id);
+ }
+#endif
+
+#if OMP_40_ENABLED
+ }
+#endif // OMP_40_ENABLED
+
+
+#if OMPT_SUPPORT
+ if (ompt_enabled) {
+ thread->th.ompt_thread_info = oldInfo;
+ taskdata->ompt_task_info.frame.exit_runtime_frame = NULL;
+ }
+#endif
+
+#if OMP_45_ENABLED
+ // Proxy tasks are not handled by the runtime
+ if ( taskdata->td_flags.proxy != TASK_PROXY ) {
+#endif
+ ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent);
+ __kmp_task_finish( gtid, task, current_task );
+#if OMP_45_ENABLED
+ }
+#endif
+
+#if USE_ITT_BUILD && USE_ITT_NOTIFY
+ // Barrier imbalance - correct arrive time after the task finished
+ if(__kmp_forkjoin_frames_mode == 3) {
+ kmp_info_t *this_thr = __kmp_threads [ gtid ];
+ if(this_thr->th.th_bar_arrive_time) {
+ this_thr->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time);
+ }
+ }
+#endif
+ KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n",
+ gtid, taskdata, current_task) );
+ return;
+}
+
+//-----------------------------------------------------------------------
+// __kmpc_omp_task_parts: Schedule a thread-switchable task for execution
+//
+// loc_ref: location of original task pragma (ignored)
+// gtid: Global Thread ID of encountering thread
+// new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
+// Returns:
+// TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to be resumed later.
+// TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be resumed later.
+
+kmp_int32
+__kmpc_omp_task_parts( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * new_task)
+{
+ kmp_taskdata_t * new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
+
+ KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n",
+ gtid, loc_ref, new_taskdata ) );
+
+ /* Should we execute the new task or queue it? For now, let's just always try to
+ queue it. If the queue fills up, then we'll execute it. */
+
+ if ( __kmp_push_task( gtid, new_task ) == TASK_NOT_PUSHED ) // if cannot defer
+ { // Execute this task immediately
+ kmp_taskdata_t * current_task = __kmp_threads[ gtid ] -> th.th_current_task;
+ new_taskdata->td_flags.task_serial = 1;
+ __kmp_invoke_task( gtid, new_task, current_task );
+ }
+
+ KA_TRACE(10, ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: "
+ "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n", gtid, loc_ref,
+ new_taskdata ) );
+
+ ANNOTATE_HAPPENS_BEFORE(new_task);
+ return TASK_CURRENT_NOT_QUEUED;
+}
+
+//---------------------------------------------------------------------
+// __kmp_omp_task: Schedule a non-thread-switchable task for execution
+// gtid: Global Thread ID of encountering thread
+// new_task: non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
+// serialize_immediate: if TRUE then if the task is executed immediately its execution will be serialized
+// returns:
+//
+// TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to be resumed later.
+// TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be resumed later.
+kmp_int32
+__kmp_omp_task( kmp_int32 gtid, kmp_task_t * new_task, bool serialize_immediate )
+{
+ kmp_taskdata_t * new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
+
+#if OMPT_SUPPORT
+ if (ompt_enabled) {
+ new_taskdata->ompt_task_info.frame.reenter_runtime_frame =
+ __builtin_frame_address(1);
+ }
+#endif
+
+ /* Should we execute the new task or queue it? For now, let's just always try to
+ queue it. If the queue fills up, then we'll execute it. */
+#if OMP_45_ENABLED
+ if ( new_taskdata->td_flags.proxy == TASK_PROXY || __kmp_push_task( gtid, new_task ) == TASK_NOT_PUSHED ) // if cannot defer
+#else
+ if ( __kmp_push_task( gtid, new_task ) == TASK_NOT_PUSHED ) // if cannot defer
+#endif
+ { // Execute this task immediately
+ kmp_taskdata_t * current_task = __kmp_threads[ gtid ] -> th.th_current_task;
+ if ( serialize_immediate )
+ new_taskdata -> td_flags.task_serial = 1;
+ __kmp_invoke_task( gtid, new_task, current_task );
+ }
+
+#if OMPT_SUPPORT
+ if (ompt_enabled) {
+ new_taskdata->ompt_task_info.frame.reenter_runtime_frame = NULL;
+ }
+#endif
+
+ ANNOTATE_HAPPENS_BEFORE(new_task);
+ return TASK_CURRENT_NOT_QUEUED;
+}
+
+//---------------------------------------------------------------------
+// __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a non-thread-switchable task from
+// the parent thread only!
+// loc_ref: location of original task pragma (ignored)
+// gtid: Global Thread ID of encountering thread
+// new_task: non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
+// returns:
+//
+// TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to be resumed later.
+// TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be resumed later.
+
+kmp_int32
+__kmpc_omp_task( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * new_task)
+{
+ kmp_int32 res;
+ KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
+
+#if KMP_DEBUG
+ kmp_taskdata_t * new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
+#endif
+ KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n",
+ gtid, loc_ref, new_taskdata ) );
+
+ res = __kmp_omp_task(gtid,new_task,true);
+
+ KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
+ gtid, loc_ref, new_taskdata ) );
+ return res;
+}
+
+//-------------------------------------------------------------------------------------
+// __kmpc_omp_taskwait: Wait until all tasks generated by the current task are complete
+
+kmp_int32
+__kmpc_omp_taskwait( ident_t *loc_ref, kmp_int32 gtid )
+{
+ kmp_taskdata_t * taskdata;
+ kmp_info_t * thread;
+ int thread_finished = FALSE;
+ KMP_SET_THREAD_STATE_BLOCK(TASKWAIT);
+
+ KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref) );
+
+ if ( __kmp_tasking_mode != tskm_immediate_exec ) {
+ // GEH TODO: shouldn't we have some sort of OMPRAP API calls here to mark begin wait?
+
+ thread = __kmp_threads[ gtid ];
+ taskdata = thread -> th.th_current_task;
+
+#if OMPT_SUPPORT && OMPT_TRACE
+ ompt_task_id_t my_task_id;
+ ompt_parallel_id_t my_parallel_id;
+
+ if (ompt_enabled) {
+ kmp_team_t *team = thread->th.th_team;
+ my_task_id = taskdata->ompt_task_info.task_id;
+ my_parallel_id = team->t.ompt_team_info.parallel_id;
+
+ taskdata->ompt_task_info.frame.reenter_runtime_frame = __builtin_frame_address(1);
+ if (ompt_callbacks.ompt_callback(ompt_event_taskwait_begin)) {
+ ompt_callbacks.ompt_callback(ompt_event_taskwait_begin)(
+ my_parallel_id, my_task_id);
+ }
+ }
+#endif
+
+ // Debugger: The taskwait is active. Store location and thread encountered the taskwait.
+#if USE_ITT_BUILD
+ // Note: These values are used by ITT events as well.
+#endif /* USE_ITT_BUILD */
+ taskdata->td_taskwait_counter += 1;
+ taskdata->td_taskwait_ident = loc_ref;
+ taskdata->td_taskwait_thread = gtid + 1;
+
+#if USE_ITT_BUILD
+ void * itt_sync_obj = __kmp_itt_taskwait_object( gtid );
+ if ( itt_sync_obj != NULL )
+ __kmp_itt_taskwait_starting( gtid, itt_sync_obj );
+#endif /* USE_ITT_BUILD */
+
+ bool must_wait = ! taskdata->td_flags.team_serial && ! taskdata->td_flags.final;
+
+#if OMP_45_ENABLED
+ must_wait = must_wait || (thread->th.th_task_team != NULL && thread->th.th_task_team->tt.tt_found_proxy_tasks);
+#endif
+ if (must_wait)
+ {
+ kmp_flag_32 flag(&(taskdata->td_incomplete_child_tasks), 0U);
+ while ( TCR_4(taskdata -> td_incomplete_child_tasks) != 0 ) {
+ flag.execute_tasks(thread, gtid, FALSE, &thread_finished
+ USE_ITT_BUILD_ARG(itt_sync_obj), __kmp_task_stealing_constraint );
+ }
+ }
+#if USE_ITT_BUILD
+ if ( itt_sync_obj != NULL )
+ __kmp_itt_taskwait_finished( gtid, itt_sync_obj );
+#endif /* USE_ITT_BUILD */
+
+ // GEH TODO: shouldn't we have some sort of OMPRAP API calls here to mark end of wait?
+ // Debugger: The taskwait is completed. Location remains, but thread is negated.
+ taskdata->td_taskwait_thread = - taskdata->td_taskwait_thread;
+
+#if OMPT_SUPPORT && OMPT_TRACE
+ if (ompt_enabled) {
+ if (ompt_callbacks.ompt_callback(ompt_event_taskwait_end)) {
+ ompt_callbacks.ompt_callback(ompt_event_taskwait_end)(
+ my_parallel_id, my_task_id);
+ }
+ taskdata->ompt_task_info.frame.reenter_runtime_frame = NULL;
+ }
+#endif
+ ANNOTATE_HAPPENS_AFTER(taskdata);
+ }
+
+ KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, "
+ "returning TASK_CURRENT_NOT_QUEUED\n", gtid, taskdata) );
+
+ return TASK_CURRENT_NOT_QUEUED;
+}
+
+
+//-------------------------------------------------
+// __kmpc_omp_taskyield: switch to a different task
+
+kmp_int32
+__kmpc_omp_taskyield( ident_t *loc_ref, kmp_int32 gtid, int end_part )
+{
+ kmp_taskdata_t * taskdata;
+ kmp_info_t * thread;
+ int thread_finished = FALSE;
+
+ KMP_COUNT_BLOCK(OMP_TASKYIELD);
+ KMP_SET_THREAD_STATE_BLOCK(TASKYIELD);
+
+ KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n",
+ gtid, loc_ref, end_part) );
+
+ if ( __kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel ) {
+ // GEH TODO: shouldn't we have some sort of OMPRAP API calls here to mark begin wait?
+
+ thread = __kmp_threads[ gtid ];
+ taskdata = thread -> th.th_current_task;
+ // Should we model this as a task wait or not?
+ // Debugger: The taskwait is active. Store location and thread encountered the taskwait.
+#if USE_ITT_BUILD
+ // Note: These values are used by ITT events as well.
+#endif /* USE_ITT_BUILD */
+ taskdata->td_taskwait_counter += 1;
+ taskdata->td_taskwait_ident = loc_ref;
+ taskdata->td_taskwait_thread = gtid + 1;
+
+#if USE_ITT_BUILD
+ void * itt_sync_obj = __kmp_itt_taskwait_object( gtid );
+ if ( itt_sync_obj != NULL )
+ __kmp_itt_taskwait_starting( gtid, itt_sync_obj );
+#endif /* USE_ITT_BUILD */
+ if ( ! taskdata->td_flags.team_serial ) {
+ kmp_task_team_t * task_team = thread->th.th_task_team;
+ if (task_team != NULL) {
+ if (KMP_TASKING_ENABLED(task_team)) {
+ __kmp_execute_tasks_32( thread, gtid, NULL, FALSE, &thread_finished
+ USE_ITT_BUILD_ARG(itt_sync_obj), __kmp_task_stealing_constraint );
+ }
+ }
+ }
+#if USE_ITT_BUILD
+ if ( itt_sync_obj != NULL )
+ __kmp_itt_taskwait_finished( gtid, itt_sync_obj );
+#endif /* USE_ITT_BUILD */
+
+ // GEH TODO: shouldn't we have some sort of OMPRAP API calls here to mark end of wait?
+ // Debugger: The taskwait is completed. Location remains, but thread is negated.
+ taskdata->td_taskwait_thread = - taskdata->td_taskwait_thread;
+ }
+
+ KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, "
+ "returning TASK_CURRENT_NOT_QUEUED\n", gtid, taskdata) );
+
+ return TASK_CURRENT_NOT_QUEUED;
+}
+
+
+#if OMP_40_ENABLED
+//-------------------------------------------------------------------------------------
+// __kmpc_taskgroup: Start a new taskgroup
+
+void
+__kmpc_taskgroup( ident_t* loc, int gtid )
+{
+ kmp_info_t * thread = __kmp_threads[ gtid ];
+ kmp_taskdata_t * taskdata = thread->th.th_current_task;
+ kmp_taskgroup_t * tg_new =
+ (kmp_taskgroup_t *)__kmp_thread_malloc( thread, sizeof( kmp_taskgroup_t ) );
+ KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new) );
+ tg_new->count = 0;
+ tg_new->cancel_request = cancel_noreq;
+ tg_new->parent = taskdata->td_taskgroup;
+ taskdata->td_taskgroup = tg_new;
+}
+
+
+//-------------------------------------------------------------------------------------
+// __kmpc_end_taskgroup: Wait until all tasks generated by the current task
+// and its descendants are complete
+
+void
+__kmpc_end_taskgroup( ident_t* loc, int gtid )
+{
+ kmp_info_t * thread = __kmp_threads[ gtid ];
+ kmp_taskdata_t * taskdata = thread->th.th_current_task;
+ kmp_taskgroup_t * taskgroup = taskdata->td_taskgroup;
+ int thread_finished = FALSE;
+
+ KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc) );
+ KMP_DEBUG_ASSERT( taskgroup != NULL );
+ KMP_SET_THREAD_STATE_BLOCK(TASKGROUP);
+
+ if ( __kmp_tasking_mode != tskm_immediate_exec ) {
+#if USE_ITT_BUILD
+ // For ITT the taskgroup wait is similar to taskwait until we need to distinguish them
+ void * itt_sync_obj = __kmp_itt_taskwait_object( gtid );
+ if ( itt_sync_obj != NULL )
+ __kmp_itt_taskwait_starting( gtid, itt_sync_obj );
+#endif /* USE_ITT_BUILD */
+
+#if OMP_45_ENABLED
+ if ( ! taskdata->td_flags.team_serial || (thread->th.th_task_team != NULL && thread->th.th_task_team->tt.tt_found_proxy_tasks) )
+#else
+ if ( ! taskdata->td_flags.team_serial )
+#endif
+ {
+ kmp_flag_32 flag(&(taskgroup->count), 0U);
+ while ( TCR_4(taskgroup->count) != 0 ) {
+ flag.execute_tasks(thread, gtid, FALSE, &thread_finished
+ USE_ITT_BUILD_ARG(itt_sync_obj), __kmp_task_stealing_constraint );
+ }
+ }
+
+#if USE_ITT_BUILD
+ if ( itt_sync_obj != NULL )
+ __kmp_itt_taskwait_finished( gtid, itt_sync_obj );
+#endif /* USE_ITT_BUILD */
+ }
+ KMP_DEBUG_ASSERT( taskgroup->count == 0 );
+
+ // Restore parent taskgroup for the current task
+ taskdata->td_taskgroup = taskgroup->parent;
+ __kmp_thread_free( thread, taskgroup );
+
+ KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n", gtid, taskdata) );
+ ANNOTATE_HAPPENS_AFTER(taskdata);
+}
+#endif
+
+
+//------------------------------------------------------
+// __kmp_remove_my_task: remove a task from my own deque
+
+static kmp_task_t *
+__kmp_remove_my_task( kmp_info_t * thread, kmp_int32 gtid, kmp_task_team_t *task_team,
+ kmp_int32 is_constrained )
+{
+ kmp_task_t * task;
+ kmp_taskdata_t * taskdata;
+ kmp_thread_data_t *thread_data;
+ kmp_uint32 tail;
+
+ KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec );
+ KMP_DEBUG_ASSERT( task_team -> tt.tt_threads_data != NULL ); // Caller should check this condition
+
+ thread_data = & task_team -> tt.tt_threads_data[ __kmp_tid_from_gtid( gtid ) ];
+
+ KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n",
+ gtid, thread_data->td.td_deque_ntasks, thread_data->td.td_deque_head,
+ thread_data->td.td_deque_tail) );
+
+ if (TCR_4(thread_data -> td.td_deque_ntasks) == 0) {
+ KA_TRACE(10, ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: ntasks=%d head=%u tail=%u\n",
+ gtid, thread_data->td.td_deque_ntasks, thread_data->td.td_deque_head,
+ thread_data->td.td_deque_tail) );
+ return NULL;
+ }
+
+ __kmp_acquire_bootstrap_lock( & thread_data -> td.td_deque_lock );
+
+ if (TCR_4(thread_data -> td.td_deque_ntasks) == 0) {
+ __kmp_release_bootstrap_lock( & thread_data -> td.td_deque_lock );
+ KA_TRACE(10, ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: ntasks=%d head=%u tail=%u\n",
+ gtid, thread_data->td.td_deque_ntasks, thread_data->td.td_deque_head,
+ thread_data->td.td_deque_tail) );
+ return NULL;
+ }
+
+ tail = ( thread_data -> td.td_deque_tail - 1 ) & TASK_DEQUE_MASK(thread_data->td); // Wrap index.
+ taskdata = thread_data -> td.td_deque[ tail ];
+
+ if (is_constrained && (taskdata->td_flags.tiedness == TASK_TIED)) {
+ // we need to check if the candidate obeys task scheduling constraint:
+ // only child of current task can be scheduled
+ kmp_taskdata_t * current = thread->th.th_current_task;
+ kmp_int32 level = current->td_level;
+ kmp_taskdata_t * parent = taskdata->td_parent;
+ while ( parent != current && parent->td_level > level ) {
+ parent = parent->td_parent; // check generation up to the level of the current task
+ KMP_DEBUG_ASSERT(parent != NULL);
+ }
+ if ( parent != current ) {
+ // If the tail task is not a child, then no other child can appear in the deque.
+ __kmp_release_bootstrap_lock( & thread_data -> td.td_deque_lock );
+ KA_TRACE(10, ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: ntasks=%d head=%u tail=%u\n",
+ gtid, thread_data->td.td_deque_ntasks, thread_data->td.td_deque_head,
+ thread_data->td.td_deque_tail) );
+ return NULL;
+ }
+ }
+
+ thread_data -> td.td_deque_tail = tail;
+ TCW_4(thread_data -> td.td_deque_ntasks, thread_data -> td.td_deque_ntasks - 1);
+
+ __kmp_release_bootstrap_lock( & thread_data->td.td_deque_lock );
+
+ KA_TRACE(10, ("__kmp_remove_my_task(exit #2): T#%d task %p removed: ntasks=%d head=%u tail=%u\n",
+ gtid, taskdata, thread_data->td.td_deque_ntasks, thread_data->td.td_deque_head,
+ thread_data->td.td_deque_tail) );
+
+ task = KMP_TASKDATA_TO_TASK( taskdata );
+ return task;
+}
+
+
+//-----------------------------------------------------------
+// __kmp_steal_task: remove a task from another thread's deque
+// Assume that calling thread has already checked existence of
+// task_team thread_data before calling this routine.
+
+static kmp_task_t *
+__kmp_steal_task( kmp_info_t *victim, kmp_int32 gtid, kmp_task_team_t *task_team,
+ volatile kmp_uint32 *unfinished_threads, int *thread_finished,
+ kmp_int32 is_constrained )
+{
+ kmp_task_t * task;
+ kmp_taskdata_t * taskdata;
+ kmp_thread_data_t *victim_td, *threads_data;
+ kmp_int32 victim_tid;
+
+ KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec );
+
+ threads_data = task_team -> tt.tt_threads_data;
+ KMP_DEBUG_ASSERT( threads_data != NULL ); // Caller should check this condition
+
+ victim_tid = victim->th.th_info.ds.ds_tid;
+ victim_td = & threads_data[ victim_tid ];
+
+ KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: task_team=%p ntasks=%d "
+ "head=%u tail=%u\n",
+ gtid, __kmp_gtid_from_thread( victim ), task_team, victim_td->td.td_deque_ntasks,
+ victim_td->td.td_deque_head, victim_td->td.td_deque_tail) );
+
+ if ( (TCR_4(victim_td -> td.td_deque_ntasks) == 0) || // Caller should not check this condition
+ (TCR_PTR(victim->th.th_task_team) != task_team)) // GEH: why would this happen?
+ {
+ KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: task_team=%p "
+ "ntasks=%d head=%u tail=%u\n",
+ gtid, __kmp_gtid_from_thread( victim ), task_team, victim_td->td.td_deque_ntasks,
+ victim_td->td.td_deque_head, victim_td->td.td_deque_tail) );
+ return NULL;
+ }
+
+ __kmp_acquire_bootstrap_lock( & victim_td -> td.td_deque_lock );
+
+ // Check again after we acquire the lock
+ if ( (TCR_4(victim_td -> td.td_deque_ntasks) == 0) ||
+ (TCR_PTR(victim->th.th_task_team) != task_team)) // GEH: why would this happen?
+ {
+ __kmp_release_bootstrap_lock( & victim_td -> td.td_deque_lock );
+ KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: task_team=%p "
+ "ntasks=%d head=%u tail=%u\n",
+ gtid, __kmp_gtid_from_thread( victim ), task_team, victim_td->td.td_deque_ntasks,
+ victim_td->td.td_deque_head, victim_td->td.td_deque_tail) );
+ return NULL;
+ }
+
+ KMP_DEBUG_ASSERT( victim_td -> td.td_deque != NULL );
+
+ taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head];
+ if ( is_constrained ) {
+ // we need to check if the candidate obeys task scheduling constraint:
+ // only descendant of current task can be scheduled
+ kmp_taskdata_t * current = __kmp_threads[ gtid ]->th.th_current_task;
+ kmp_int32 level = current->td_level;
+ kmp_taskdata_t * parent = taskdata->td_parent;
+ while ( parent != current && parent->td_level > level ) {
+ parent = parent->td_parent; // check generation up to the level of the current task
+ KMP_DEBUG_ASSERT(parent != NULL);
+ }
+ if ( parent != current ) {
+ // If the head task is not a descendant of the current task then do not
+ // steal it. No other task in victim's deque can be a descendant of the
+ // current task.
+ __kmp_release_bootstrap_lock( & victim_td -> td.td_deque_lock );
+ KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: task_team=%p "
+ "ntasks=%d head=%u tail=%u\n",
+ gtid, __kmp_gtid_from_thread( threads_data[victim_tid].td.td_thr ),
+ task_team, victim_td->td.td_deque_ntasks,
+ victim_td->td.td_deque_head, victim_td->td.td_deque_tail) );
+ return NULL;
+ }
+ }
+ // Bump head pointer and Wrap.
+ victim_td->td.td_deque_head = (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td);
+ if (*thread_finished) {
+ // We need to un-mark this victim as a finished victim. This must be done before
+ // releasing the lock, or else other threads (starting with the master victim)
+ // might be prematurely released from the barrier!!!
+ kmp_uint32 count;
+
+ count = KMP_TEST_THEN_INC32( (kmp_int32 *)unfinished_threads );
+
+ KA_TRACE(20, ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n",
+ gtid, count + 1, task_team) );
+
+ *thread_finished = FALSE;
+ }
+ TCW_4(victim_td -> td.td_deque_ntasks, TCR_4(victim_td -> td.td_deque_ntasks) - 1);
+
+ __kmp_release_bootstrap_lock( & victim_td -> td.td_deque_lock );
+
+ KMP_COUNT_BLOCK(TASK_stolen);
+ KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d stole task %p from T#%d: task_team=%p "
+ "ntasks=%d head=%u tail=%u\n",
+ gtid, taskdata, __kmp_gtid_from_thread( victim ), task_team,
+ victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
+ victim_td->td.td_deque_tail) );
+
+ task = KMP_TASKDATA_TO_TASK( taskdata );
+ return task;
+}
+
+
+//-----------------------------------------------------------------------------
+// __kmp_execute_tasks_template: Choose and execute tasks until either the condition
+// is statisfied (return true) or there are none left (return false).
+// final_spin is TRUE if this is the spin at the release barrier.
+// thread_finished indicates whether the thread is finished executing all
+// the tasks it has on its deque, and is at the release barrier.
+// spinner is the location on which to spin.
+// spinner == NULL means only execute a single task and return.
+// checker is the value to check to terminate the spin.
+template <class C>
+static inline int __kmp_execute_tasks_template(kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin,
+ int *thread_finished
+ USE_ITT_BUILD_ARG(void * itt_sync_obj), kmp_int32 is_constrained)
+{
+ kmp_task_team_t * task_team = thread->th.th_task_team;
+ kmp_thread_data_t * threads_data;
+ kmp_task_t * task;
+ kmp_info_t * other_thread;
+ kmp_taskdata_t * current_task = thread -> th.th_current_task;
+ volatile kmp_uint32 * unfinished_threads;
+ kmp_int32 nthreads, victim=-2, use_own_tasks=1, new_victim=0, tid=thread->th.th_info.ds.ds_tid;
+
+ KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec );
+ KMP_DEBUG_ASSERT( thread == __kmp_threads[ gtid ] );
+
+ if (task_team == NULL) return FALSE;
+
+ KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d *thread_finished=%d\n",
+ gtid, final_spin, *thread_finished) );
+
+ threads_data = (kmp_thread_data_t *)TCR_PTR(task_team -> tt.tt_threads_data);
+ KMP_DEBUG_ASSERT( threads_data != NULL );
+
+ nthreads = task_team -> tt.tt_nproc;
+ unfinished_threads = &(task_team -> tt.tt_unfinished_threads);
+#if OMP_45_ENABLED
+ KMP_DEBUG_ASSERT( nthreads > 1 || task_team->tt.tt_found_proxy_tasks);
+#else
+ KMP_DEBUG_ASSERT( nthreads > 1 );
+#endif
+ KMP_DEBUG_ASSERT( (int)(TCR_4(*unfinished_threads)) >= 0 );
+
+ while (1) { // Outer loop keeps trying to find tasks in case of single thread getting tasks from target constructs
+ while (1) { // Inner loop to find a task and execute it
+ task = NULL;
+ if (use_own_tasks) { // check on own queue first
+ task = __kmp_remove_my_task( thread, gtid, task_team, is_constrained );
+ }
+ if ((task == NULL) && (nthreads > 1)) { // Steal a task
+ int asleep = 1;
+ use_own_tasks = 0;
+ // Try to steal from the last place I stole from successfully.
+ if (victim == -2) { // haven't stolen anything yet
+ victim = threads_data[tid].td.td_deque_last_stolen;
+ if (victim != -1) // if we have a last stolen from victim, get the thread
+ other_thread = threads_data[victim].td.td_thr;
+ }
+ if (victim != -1) { // found last victim
+ asleep = 0;
+ }
+ else if (!new_victim) { // no recent steals and we haven't already used a new victim; select a random thread
+ do { // Find a different thread to steal work from.
+ // Pick a random thread. Initial plan was to cycle through all the threads, and only return if
+ // we tried to steal from every thread, and failed. Arch says that's not such a great idea.
+ victim = __kmp_get_random(thread) % (nthreads - 1);
+ if (victim >= tid) {
+ ++victim; // Adjusts random distribution to exclude self
+ }
+ // Found a potential victim
+ other_thread = threads_data[victim].td.td_thr;
+ // There is a slight chance that __kmp_enable_tasking() did not wake up all threads
+ // waiting at the barrier. If victim is sleeping, then wake it up. Since we were going to
+ // pay the cache miss penalty for referencing another thread's kmp_info_t struct anyway,
+ // the check shouldn't cost too much performance at this point. In extra barrier mode, tasks
+ // do not sleep at the separate tasking barrier, so this isn't a problem.
+ asleep = 0;
+ if ( ( __kmp_tasking_mode == tskm_task_teams ) &&
+ (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) &&
+ (TCR_PTR(other_thread->th.th_sleep_loc) != NULL)) {
+ asleep = 1;
+ __kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread), other_thread->th.th_sleep_loc);
+ // A sleeping thread should not have any tasks on it's queue. There is a slight
+ // possibility that it resumes, steals a task from another thread, which spawns more
+ // tasks, all in the time that it takes this thread to check => don't write an assertion
+ // that the victim's queue is empty. Try stealing from a different thread.
+ }
+ } while (asleep);
+ }
+
+ if (!asleep) {
+ // We have a victim to try to steal from
+ task = __kmp_steal_task(other_thread, gtid, task_team, unfinished_threads, thread_finished, is_constrained);
+ }
+ if (task != NULL) { // set last stolen to victim
+ if (threads_data[tid].td.td_deque_last_stolen != victim) {
+ threads_data[tid].td.td_deque_last_stolen = victim;
+ // The pre-refactored code did not try more than 1 successful new vicitm,
+ // unless the last one generated more local tasks; new_victim keeps track of this
+ new_victim = 1;
+ }
+ }
+ else { // No tasks found; unset last_stolen
+ KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1);
+ victim = -2; // no successful victim found
+ }
+ }
+
+ if (task == NULL) // break out of tasking loop
+ break;
+
+ // Found a task; execute it
+#if USE_ITT_BUILD && USE_ITT_NOTIFY
+ if ( __itt_sync_create_ptr || KMP_ITT_DEBUG ) {
+ if ( itt_sync_obj == NULL ) { // we are at fork barrier where we could not get the object reliably
+ itt_sync_obj = __kmp_itt_barrier_object( gtid, bs_forkjoin_barrier );
+ }
+ __kmp_itt_task_starting( itt_sync_obj );
+ }
+#endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
+ __kmp_invoke_task( gtid, task, current_task );
+#if USE_ITT_BUILD
+ if ( itt_sync_obj != NULL ) __kmp_itt_task_finished( itt_sync_obj );
+#endif /* USE_ITT_BUILD */
+ // If this thread is only partway through the barrier and the condition is met, then return now,
+ // so that the barrier gather/release pattern can proceed. If this thread is in the last spin loop
+ // in the barrier, waiting to be released, we know that the termination condition will not be
+ // satisified, so don't waste any cycles checking it.
+ if (flag == NULL || (!final_spin && flag->done_check())) {
+ KA_TRACE(15, ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", gtid) );
+ return TRUE;
+ }
+ if (thread->th.th_task_team == NULL) {
+ break;
+ }
+ KMP_YIELD( __kmp_library == library_throughput ); // Yield before executing next task
+ // If execution of a stolen task results in more tasks being placed on our run queue, reset use_own_tasks
+ if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) {
+ KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned other tasks, restart\n", gtid));
+ use_own_tasks = 1;
+ new_victim = 0;
+ }
+ }
+
+ // The task source has been exhausted. If in final spin loop of barrier, check if termination condition is satisfied.
+#if OMP_45_ENABLED
+ // The work queue may be empty but there might be proxy tasks still executing
+ if (final_spin && TCR_4(current_task->td_incomplete_child_tasks) == 0)
+#else
+ if (final_spin)
+#endif
+ {
+ // First, decrement the #unfinished threads, if that has not already been done. This decrement
+ // might be to the spin location, and result in the termination condition being satisfied.
+ if (! *thread_finished) {
+ kmp_uint32 count;
+
+ count = KMP_TEST_THEN_DEC32( (kmp_int32 *)unfinished_threads ) - 1;
+ KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec unfinished_threads to %d task_team=%p\n",
+ gtid, count, task_team) );
+ *thread_finished = TRUE;
+ }
+
+ // It is now unsafe to reference thread->th.th_team !!!
+ // Decrementing task_team->tt.tt_unfinished_threads can allow the master thread to pass through
+ // the barrier, where it might reset each thread's th.th_team field for the next parallel region.
+ // If we can steal more work, we know that this has not happened yet.
+ if (flag != NULL && flag->done_check()) {
+ KA_TRACE(15, ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", gtid) );
+ return TRUE;
+ }
+ }
+
+ // If this thread's task team is NULL, master has recognized that there are no more tasks; bail out
+ if (thread->th.th_task_team == NULL) {
+ KA_TRACE(15, ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid) );
+ return FALSE;
+ }
+
+#if OMP_45_ENABLED
+ // We could be getting tasks from target constructs; if this is the only thread, keep trying to execute
+ // tasks from own queue
+ if (nthreads == 1)
+ use_own_tasks = 1;
+ else
+#endif
+ {
+ KA_TRACE(15, ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid) );
+ return FALSE;
+ }
+ }
+}
+
+int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32 *flag, int final_spin,
+ int *thread_finished
+ USE_ITT_BUILD_ARG(void * itt_sync_obj), kmp_int32 is_constrained)
+{
+ return __kmp_execute_tasks_template(thread, gtid, flag, final_spin, thread_finished
+ USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
+}
+
+int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64 *flag, int final_spin,
+ int *thread_finished
+ USE_ITT_BUILD_ARG(void * itt_sync_obj), kmp_int32 is_constrained)
+{
+ return __kmp_execute_tasks_template(thread, gtid, flag, final_spin, thread_finished
+ USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
+}
+
+int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin,
+ int *thread_finished
+ USE_ITT_BUILD_ARG(void * itt_sync_obj), kmp_int32 is_constrained)
+{
+ return __kmp_execute_tasks_template(thread, gtid, flag, final_spin, thread_finished
+ USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
+}
+
+
+
+//-----------------------------------------------------------------------------
+// __kmp_enable_tasking: Allocate task team and resume threads sleeping at the
+// next barrier so they can assist in executing enqueued tasks.
+// First thread in allocates the task team atomically.
+
+static void
+__kmp_enable_tasking( kmp_task_team_t *task_team, kmp_info_t *this_thr )
+{
+ kmp_thread_data_t *threads_data;
+ int nthreads, i, is_init_thread;
+
+ KA_TRACE( 10, ( "__kmp_enable_tasking(enter): T#%d\n",
+ __kmp_gtid_from_thread( this_thr ) ) );
+
+ KMP_DEBUG_ASSERT(task_team != NULL);
+ KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL);
+
+ nthreads = task_team->tt.tt_nproc;
+ KMP_DEBUG_ASSERT(nthreads > 0);
+ KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc);
+
+ // Allocate or increase the size of threads_data if necessary
+ is_init_thread = __kmp_realloc_task_threads_data( this_thr, task_team );
+
+ if (!is_init_thread) {
+ // Some other thread already set up the array.
+ KA_TRACE( 20, ( "__kmp_enable_tasking(exit): T#%d: threads array already set up.\n",
+ __kmp_gtid_from_thread( this_thr ) ) );
+ return;
+ }
+ threads_data = (kmp_thread_data_t *)TCR_PTR(task_team -> tt.tt_threads_data);
+ KMP_DEBUG_ASSERT( threads_data != NULL );
+
+ if ( ( __kmp_tasking_mode == tskm_task_teams ) &&
+ ( __kmp_dflt_blocktime != KMP_MAX_BLOCKTIME ) )
+ {
+ // Release any threads sleeping at the barrier, so that they can steal
+ // tasks and execute them. In extra barrier mode, tasks do not sleep
+ // at the separate tasking barrier, so this isn't a problem.
+ for (i = 0; i < nthreads; i++) {
+ volatile void *sleep_loc;
+ kmp_info_t *thread = threads_data[i].td.td_thr;
+
+ if (i == this_thr->th.th_info.ds.ds_tid) {
+ continue;
+ }
+ // Since we haven't locked the thread's suspend mutex lock at this
+ // point, there is a small window where a thread might be putting
+ // itself to sleep, but hasn't set the th_sleep_loc field yet.
+ // To work around this, __kmp_execute_tasks_template() periodically checks
+ // see if other threads are sleeping (using the same random
+ // mechanism that is used for task stealing) and awakens them if
+ // they are.
+ if ( ( sleep_loc = TCR_PTR( thread -> th.th_sleep_loc) ) != NULL )
+ {
+ KF_TRACE( 50, ( "__kmp_enable_tasking: T#%d waking up thread T#%d\n",
+ __kmp_gtid_from_thread( this_thr ),
+ __kmp_gtid_from_thread( thread ) ) );
+ __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
+ }
+ else {
+ KF_TRACE( 50, ( "__kmp_enable_tasking: T#%d don't wake up thread T#%d\n",
+ __kmp_gtid_from_thread( this_thr ),
+ __kmp_gtid_from_thread( thread ) ) );
+ }
+ }
+ }
+
+ KA_TRACE( 10, ( "__kmp_enable_tasking(exit): T#%d\n",
+ __kmp_gtid_from_thread( this_thr ) ) );
+}
+
+
+/* ------------------------------------------------------------------------ */
+/* // TODO: Check the comment consistency
+ * Utility routines for "task teams". A task team (kmp_task_t) is kind of
+ * like a shadow of the kmp_team_t data struct, with a different lifetime.
+ * After a child * thread checks into a barrier and calls __kmp_release() from
+ * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no
+ * longer assume that the kmp_team_t structure is intact (at any moment, the
+ * master thread may exit the barrier code and free the team data structure,
+ * and return the threads to the thread pool).
+ *
+ * This does not work with the the tasking code, as the thread is still
+ * expected to participate in the execution of any tasks that may have been
+ * spawned my a member of the team, and the thread still needs access to all
+ * to each thread in the team, so that it can steal work from it.
+ *
+ * Enter the existence of the kmp_task_team_t struct. It employs a reference
+ * counting mechanims, and is allocated by the master thread before calling
+ * __kmp_<barrier_kind>_release, and then is release by the last thread to
+ * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes
+ * of the kmp_task_team_t structs for consecutive barriers can overlap
+ * (and will, unless the master thread is the last thread to exit the barrier
+ * release phase, which is not typical).
+ *
+ * The existence of such a struct is useful outside the context of tasking,
+ * but for now, I'm trying to keep it specific to the OMP_30_ENABLED macro,
+ * so that any performance differences show up when comparing the 2.5 vs. 3.0
+ * libraries.
+ *
+ * We currently use the existence of the threads array as an indicator that
+ * tasks were spawned since the last barrier. If the structure is to be
+ * useful outside the context of tasking, then this will have to change, but
+ * not settting the field minimizes the performance impact of tasking on
+ * barriers, when no explicit tasks were spawned (pushed, actually).
+ */
+
+
+static kmp_task_team_t *__kmp_free_task_teams = NULL; // Free list for task_team data structures
+// Lock for task team data structures
+static kmp_bootstrap_lock_t __kmp_task_team_lock = KMP_BOOTSTRAP_LOCK_INITIALIZER( __kmp_task_team_lock );
+
+
+//------------------------------------------------------------------------------
+// __kmp_alloc_task_deque:
+// Allocates a task deque for a particular thread, and initialize the necessary
+// data structures relating to the deque. This only happens once per thread
+// per task team since task teams are recycled.
+// No lock is needed during allocation since each thread allocates its own
+// deque.
+
+static void
+__kmp_alloc_task_deque( kmp_info_t *thread, kmp_thread_data_t *thread_data )
+{
+ __kmp_init_bootstrap_lock( & thread_data -> td.td_deque_lock );
+ KMP_DEBUG_ASSERT( thread_data -> td.td_deque == NULL );
+
+ // Initialize last stolen task field to "none"
+ thread_data -> td.td_deque_last_stolen = -1;
+
+ KMP_DEBUG_ASSERT( TCR_4(thread_data -> td.td_deque_ntasks) == 0 );
+ KMP_DEBUG_ASSERT( thread_data -> td.td_deque_head == 0 );
+ KMP_DEBUG_ASSERT( thread_data -> td.td_deque_tail == 0 );
+
+ KE_TRACE( 10, ( "__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n",
+ __kmp_gtid_from_thread( thread ), INITIAL_TASK_DEQUE_SIZE, thread_data ) );
+ // Allocate space for task deque, and zero the deque
+ // Cannot use __kmp_thread_calloc() because threads not around for
+ // kmp_reap_task_team( ).
+ thread_data -> td.td_deque = (kmp_taskdata_t **)
+ __kmp_allocate( INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
+ thread_data -> td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
+}
+
+//------------------------------------------------------------------------------
+// __kmp_realloc_task_deque:
+// Re-allocates a task deque for a particular thread, copies the content from the old deque
+// and adjusts the necessary data structures relating to the deque.
+// This operation must be done with a the deque_lock being held
+
+static void __kmp_realloc_task_deque ( kmp_info_t *thread, kmp_thread_data_t *thread_data )
+{
+ kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td);
+ kmp_int32 new_size = 2 * size;
+
+ KE_TRACE( 10, ( "__kmp_realloc_task_deque: T#%d reallocating deque[from %d to %d] for thread_data %p\n",
+ __kmp_gtid_from_thread( thread ), size, new_size, thread_data ) );
+
+ kmp_taskdata_t ** new_deque = (kmp_taskdata_t **) __kmp_allocate( new_size * sizeof(kmp_taskdata_t *));
+
+ int i,j;
+ for ( i = thread_data->td.td_deque_head, j = 0; j < size; i = (i+1) & TASK_DEQUE_MASK(thread_data->td), j++ )
+ new_deque[j] = thread_data->td.td_deque[i];
+
+ __kmp_free(thread_data->td.td_deque);
+
+ thread_data -> td.td_deque_head = 0;
+ thread_data -> td.td_deque_tail = size;
+ thread_data -> td.td_deque = new_deque;
+ thread_data -> td.td_deque_size = new_size;
+}
+
+//------------------------------------------------------------------------------
+// __kmp_free_task_deque:
+// Deallocates a task deque for a particular thread.
+// Happens at library deallocation so don't need to reset all thread data fields.
+
+static void
+__kmp_free_task_deque( kmp_thread_data_t *thread_data )
+{
+ __kmp_acquire_bootstrap_lock( & thread_data -> td.td_deque_lock );
+
+ if ( thread_data -> td.td_deque != NULL ) {
+ TCW_4(thread_data -> td.td_deque_ntasks, 0);
+ __kmp_free( thread_data -> td.td_deque );
+ thread_data -> td.td_deque = NULL;
+ }
+ __kmp_release_bootstrap_lock( & thread_data -> td.td_deque_lock );
+
+#ifdef BUILD_TIED_TASK_STACK
+ // GEH: Figure out what to do here for td_susp_tied_tasks
+ if ( thread_data -> td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY ) {
+ __kmp_free_task_stack( __kmp_thread_from_gtid( gtid ), thread_data );
+ }
+#endif // BUILD_TIED_TASK_STACK
+}
+
+
+//------------------------------------------------------------------------------
+// __kmp_realloc_task_threads_data:
+// Allocates a threads_data array for a task team, either by allocating an initial
+// array or enlarging an existing array. Only the first thread to get the lock
+// allocs or enlarges the array and re-initializes the array eleemnts.
+// That thread returns "TRUE", the rest return "FALSE".
+// Assumes that the new array size is given by task_team -> tt.tt_nproc.
+// The current size is given by task_team -> tt.tt_max_threads.
+
+static int
+__kmp_realloc_task_threads_data( kmp_info_t *thread, kmp_task_team_t *task_team )
+{
+ kmp_thread_data_t ** threads_data_p;
+ kmp_int32 nthreads, maxthreads;
+ int is_init_thread = FALSE;
+
+ if ( TCR_4(task_team -> tt.tt_found_tasks) ) {
+ // Already reallocated and initialized.
+ return FALSE;
+ }
+
+ threads_data_p = & task_team -> tt.tt_threads_data;
+ nthreads = task_team -> tt.tt_nproc;
+ maxthreads = task_team -> tt.tt_max_threads;
+
+ // All threads must lock when they encounter the first task of the implicit task
+ // region to make sure threads_data fields are (re)initialized before used.
+ __kmp_acquire_bootstrap_lock( & task_team -> tt.tt_threads_lock );
+
+ if ( ! TCR_4(task_team -> tt.tt_found_tasks) ) {
+ // first thread to enable tasking
+ kmp_team_t *team = thread -> th.th_team;
+ int i;
+
+ is_init_thread = TRUE;
+ if ( maxthreads < nthreads ) {
+
+ if ( *threads_data_p != NULL ) {
+ kmp_thread_data_t *old_data = *threads_data_p;
+ kmp_thread_data_t *new_data = NULL;
+
+ KE_TRACE( 10, ( "__kmp_realloc_task_threads_data: T#%d reallocating "
+ "threads data for task_team %p, new_size = %d, old_size = %d\n",
+ __kmp_gtid_from_thread( thread ), task_team,
+ nthreads, maxthreads ) );
+ // Reallocate threads_data to have more elements than current array
+ // Cannot use __kmp_thread_realloc() because threads not around for
+ // kmp_reap_task_team( ). Note all new array entries are initialized
+ // to zero by __kmp_allocate().
+ new_data = (kmp_thread_data_t *)
+ __kmp_allocate( nthreads * sizeof(kmp_thread_data_t) );
+ // copy old data to new data
+ KMP_MEMCPY_S( (void *) new_data, nthreads * sizeof(kmp_thread_data_t),
+ (void *) old_data,
+ maxthreads * sizeof(kmp_taskdata_t *) );
+
+#ifdef BUILD_TIED_TASK_STACK
+ // GEH: Figure out if this is the right thing to do
+ for (i = maxthreads; i < nthreads; i++) {
+ kmp_thread_data_t *thread_data = & (*threads_data_p)[i];
+ __kmp_init_task_stack( __kmp_gtid_from_thread( thread ), thread_data );
+ }
+#endif // BUILD_TIED_TASK_STACK
+ // Install the new data and free the old data
+ (*threads_data_p) = new_data;
+ __kmp_free( old_data );
+ }
+ else {
+ KE_TRACE( 10, ( "__kmp_realloc_task_threads_data: T#%d allocating "
+ "threads data for task_team %p, size = %d\n",
+ __kmp_gtid_from_thread( thread ), task_team, nthreads ) );
+ // Make the initial allocate for threads_data array, and zero entries
+ // Cannot use __kmp_thread_calloc() because threads not around for
+ // kmp_reap_task_team( ).
+ ANNOTATE_IGNORE_WRITES_BEGIN();
+ *threads_data_p = (kmp_thread_data_t *)
+ __kmp_allocate( nthreads * sizeof(kmp_thread_data_t) );
+ ANNOTATE_IGNORE_WRITES_END();
+#ifdef BUILD_TIED_TASK_STACK
+ // GEH: Figure out if this is the right thing to do
+ for (i = 0; i < nthreads; i++) {
+ kmp_thread_data_t *thread_data = & (*threads_data_p)[i];
+ __kmp_init_task_stack( __kmp_gtid_from_thread( thread ), thread_data );
+ }
+#endif // BUILD_TIED_TASK_STACK
+ }
+ task_team -> tt.tt_max_threads = nthreads;
+ }
+ else {
+ // If array has (more than) enough elements, go ahead and use it
+ KMP_DEBUG_ASSERT( *threads_data_p != NULL );
+ }
+
+ // initialize threads_data pointers back to thread_info structures
+ for (i = 0; i < nthreads; i++) {
+ kmp_thread_data_t *thread_data = & (*threads_data_p)[i];
+ thread_data -> td.td_thr = team -> t.t_threads[i];
+
+ if ( thread_data -> td.td_deque_last_stolen >= nthreads) {
+ // The last stolen field survives across teams / barrier, and the number
+ // of threads may have changed. It's possible (likely?) that a new
+ // parallel region will exhibit the same behavior as the previous region.
+ thread_data -> td.td_deque_last_stolen = -1;
+ }
+ }
+
+ KMP_MB();
+ TCW_SYNC_4(task_team -> tt.tt_found_tasks, TRUE);
+ }
+
+ __kmp_release_bootstrap_lock( & task_team -> tt.tt_threads_lock );
+ return is_init_thread;
+}
+
+
+//------------------------------------------------------------------------------
+// __kmp_free_task_threads_data:
+// Deallocates a threads_data array for a task team, including any attached
+// tasking deques. Only occurs at library shutdown.
+
+static void
+__kmp_free_task_threads_data( kmp_task_team_t *task_team )
+{
+ __kmp_acquire_bootstrap_lock( & task_team -> tt.tt_threads_lock );
+ if ( task_team -> tt.tt_threads_data != NULL ) {
+ int i;
+ for (i = 0; i < task_team->tt.tt_max_threads; i++ ) {
+ __kmp_free_task_deque( & task_team -> tt.tt_threads_data[i] );
+ }
+ __kmp_free( task_team -> tt.tt_threads_data );
+ task_team -> tt.tt_threads_data = NULL;
+ }
+ __kmp_release_bootstrap_lock( & task_team -> tt.tt_threads_lock );
+}
+
+
+//------------------------------------------------------------------------------
+// __kmp_allocate_task_team:
+// Allocates a task team associated with a specific team, taking it from
+// the global task team free list if possible. Also initializes data structures.
+
+static kmp_task_team_t *
+__kmp_allocate_task_team( kmp_info_t *thread, kmp_team_t *team )
+{
+ kmp_task_team_t *task_team = NULL;
+ int nthreads;
+
+ KA_TRACE( 20, ( "__kmp_allocate_task_team: T#%d entering; team = %p\n",
+ (thread ? __kmp_gtid_from_thread( thread ) : -1), team ) );
+
+ if (TCR_PTR(__kmp_free_task_teams) != NULL) {
+ // Take a task team from the task team pool
+ __kmp_acquire_bootstrap_lock( &__kmp_task_team_lock );
+ if (__kmp_free_task_teams != NULL) {
+ task_team = __kmp_free_task_teams;
+ TCW_PTR(__kmp_free_task_teams, task_team -> tt.tt_next);
+ task_team -> tt.tt_next = NULL;
+ }
+ __kmp_release_bootstrap_lock( &__kmp_task_team_lock );
+ }
+
+ if (task_team == NULL) {
+ KE_TRACE( 10, ( "__kmp_allocate_task_team: T#%d allocating "
+ "task team for team %p\n",
+ __kmp_gtid_from_thread( thread ), team ) );
+ // Allocate a new task team if one is not available.
+ // Cannot use __kmp_thread_malloc() because threads not around for
+ // kmp_reap_task_team( ).
+ task_team = (kmp_task_team_t *) __kmp_allocate( sizeof(kmp_task_team_t) );
+ __kmp_init_bootstrap_lock( & task_team -> tt.tt_threads_lock );
+ //task_team -> tt.tt_threads_data = NULL; // AC: __kmp_allocate zeroes returned memory
+ //task_team -> tt.tt_max_threads = 0;
+ //task_team -> tt.tt_next = NULL;
+ }
+
+ TCW_4(task_team -> tt.tt_found_tasks, FALSE);
+#if OMP_45_ENABLED
+ TCW_4(task_team -> tt.tt_found_proxy_tasks, FALSE);
+#endif
+ task_team -> tt.tt_nproc = nthreads = team->t.t_nproc;
+
+ TCW_4( task_team -> tt.tt_unfinished_threads, nthreads );
+ TCW_4( task_team -> tt.tt_active, TRUE );
+
+ KA_TRACE( 20, ( "__kmp_allocate_task_team: T#%d exiting; task_team = %p unfinished_threads init'd to %d\n",
+ (thread ? __kmp_gtid_from_thread( thread ) : -1), task_team, task_team -> tt.tt_unfinished_threads) );
+ return task_team;
+}
+
+
+//------------------------------------------------------------------------------
+// __kmp_free_task_team:
+// Frees the task team associated with a specific thread, and adds it
+// to the global task team free list.
+
+void
+__kmp_free_task_team( kmp_info_t *thread, kmp_task_team_t *task_team )
+{
+ KA_TRACE( 20, ( "__kmp_free_task_team: T#%d task_team = %p\n",
+ thread ? __kmp_gtid_from_thread( thread ) : -1, task_team ) );
+
+ // Put task team back on free list
+ __kmp_acquire_bootstrap_lock( & __kmp_task_team_lock );
+
+ KMP_DEBUG_ASSERT( task_team -> tt.tt_next == NULL );
+ task_team -> tt.tt_next = __kmp_free_task_teams;
+ TCW_PTR(__kmp_free_task_teams, task_team);
+
+ __kmp_release_bootstrap_lock( & __kmp_task_team_lock );
+}
+
+
+//------------------------------------------------------------------------------
+// __kmp_reap_task_teams:
+// Free all the task teams on the task team free list.
+// Should only be done during library shutdown.
+// Cannot do anything that needs a thread structure or gtid since they are already gone.
+
+void
+__kmp_reap_task_teams( void )
+{
+ kmp_task_team_t *task_team;
+
+ if ( TCR_PTR(__kmp_free_task_teams) != NULL ) {
+ // Free all task_teams on the free list
+ __kmp_acquire_bootstrap_lock( &__kmp_task_team_lock );
+ while ( ( task_team = __kmp_free_task_teams ) != NULL ) {
+ __kmp_free_task_teams = task_team -> tt.tt_next;
+ task_team -> tt.tt_next = NULL;
+
+ // Free threads_data if necessary
+ if ( task_team -> tt.tt_threads_data != NULL ) {
+ __kmp_free_task_threads_data( task_team );
+ }
+ __kmp_free( task_team );
+ }
+ __kmp_release_bootstrap_lock( &__kmp_task_team_lock );
+ }
+}
+
+//------------------------------------------------------------------------------
+// __kmp_wait_to_unref_task_teams:
+// Some threads could still be in the fork barrier release code, possibly
+// trying to steal tasks. Wait for each thread to unreference its task team.
+//
+void
+__kmp_wait_to_unref_task_teams(void)
+{
+ kmp_info_t *thread;
+ kmp_uint32 spins;
+ int done;
+
+ KMP_INIT_YIELD( spins );
+
+ for (;;) {
+ done = TRUE;
+
+ // TODO: GEH - this may be is wrong because some sync would be necessary
+ // in case threads are added to the pool during the traversal.
+ // Need to verify that lock for thread pool is held when calling
+ // this routine.
+ for (thread = (kmp_info_t *)__kmp_thread_pool;
+ thread != NULL;
+ thread = thread->th.th_next_pool)
+ {
+#if KMP_OS_WINDOWS
+ DWORD exit_val;
+#endif
+ if ( TCR_PTR(thread->th.th_task_team) == NULL ) {
+ KA_TRACE( 10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n",
+ __kmp_gtid_from_thread( thread ) ) );
+ continue;
+ }
+#if KMP_OS_WINDOWS
+ // TODO: GEH - add this check for Linux* OS / OS X* as well?
+ if (!__kmp_is_thread_alive(thread, &exit_val)) {
+ thread->th.th_task_team = NULL;
+ continue;
+ }
+#endif
+
+ done = FALSE; // Because th_task_team pointer is not NULL for this thread
+
+ KA_TRACE( 10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to unreference task_team\n",
+ __kmp_gtid_from_thread( thread ) ) );
+
+ if ( __kmp_dflt_blocktime != KMP_MAX_BLOCKTIME ) {
+ volatile void *sleep_loc;
+ // If the thread is sleeping, awaken it.
+ if ( ( sleep_loc = TCR_PTR( thread->th.th_sleep_loc) ) != NULL ) {
+ KA_TRACE( 10, ( "__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n",
+ __kmp_gtid_from_thread( thread ), __kmp_gtid_from_thread( thread ) ) );
+ __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
+ }
+ }
+ }
+ if (done) {
+ break;
+ }
+
+ // If we are oversubscribed,
+ // or have waited a bit (and library mode is throughput), yield.
+ // Pause is in the following code.
+ KMP_YIELD( TCR_4(__kmp_nth) > __kmp_avail_proc );
+ KMP_YIELD_SPIN( spins ); // Yields only if KMP_LIBRARY=throughput
+ }
+}
+
+
+//------------------------------------------------------------------------------
+// __kmp_task_team_setup: Create a task_team for the current team, but use
+// an already created, unused one if it already exists.
+void
+__kmp_task_team_setup( kmp_info_t *this_thr, kmp_team_t *team, int always )
+{
+ KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec );
+
+ // If this task_team hasn't been created yet, allocate it. It will be used in the region after the next.
+ // If it exists, it is the current task team and shouldn't be touched yet as it may still be in use.
+ if (team->t.t_task_team[this_thr->th.th_task_state] == NULL && (always || team->t.t_nproc > 1) ) {
+ team->t.t_task_team[this_thr->th.th_task_state] = __kmp_allocate_task_team( this_thr, team );
+ KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created new task_team %p for team %d at parity=%d\n",
+ __kmp_gtid_from_thread(this_thr), team->t.t_task_team[this_thr->th.th_task_state],
+ ((team != NULL) ? team->t.t_id : -1), this_thr->th.th_task_state));
+ }
+
+ // After threads exit the release, they will call sync, and then point to this other task_team; make sure it is
+ // allocated and properly initialized. As threads spin in the barrier release phase, they will continue to use the
+ // previous task_team struct(above), until they receive the signal to stop checking for tasks (they can't safely
+ // reference the kmp_team_t struct, which could be reallocated by the master thread). No task teams are formed for
+ // serialized teams.
+ if (team->t.t_nproc > 1) {
+ int other_team = 1 - this_thr->th.th_task_state;
+ if (team->t.t_task_team[other_team] == NULL) { // setup other team as well
+ team->t.t_task_team[other_team] = __kmp_allocate_task_team( this_thr, team );
+ KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created second new task_team %p for team %d at parity=%d\n",
+ __kmp_gtid_from_thread( this_thr ), team->t.t_task_team[other_team],
+ ((team != NULL) ? team->t.t_id : -1), other_team ));
+ }
+ else { // Leave the old task team struct in place for the upcoming region; adjust as needed
+ kmp_task_team_t *task_team = team->t.t_task_team[other_team];
+ if (!task_team->tt.tt_active || team->t.t_nproc != task_team->tt.tt_nproc) {
+ TCW_4(task_team->tt.tt_nproc, team->t.t_nproc);
+ TCW_4(task_team->tt.tt_found_tasks, FALSE);
+#if OMP_45_ENABLED
+ TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
+#endif
+ TCW_4(task_team->tt.tt_unfinished_threads, team->t.t_nproc );
+ TCW_4(task_team->tt.tt_active, TRUE );
+ }
+ // if team size has changed, the first thread to enable tasking will realloc threads_data if necessary
+ KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d reset next task_team %p for team %d at parity=%d\n",
+ __kmp_gtid_from_thread( this_thr ), team->t.t_task_team[other_team],
+ ((team != NULL) ? team->t.t_id : -1), other_team ));
+ }
+ }
+}
+
+
+//------------------------------------------------------------------------------
+// __kmp_task_team_sync: Propagation of task team data from team to threads
+// which happens just after the release phase of a team barrier. This may be
+// called by any thread, but only for teams with # threads > 1.
+
+void
+__kmp_task_team_sync( kmp_info_t *this_thr, kmp_team_t *team )
+{
+ KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec );
+
+ // Toggle the th_task_state field, to switch which task_team this thread refers to
+ this_thr->th.th_task_state = 1 - this_thr->th.th_task_state;
+ // It is now safe to propagate the task team pointer from the team struct to the current thread.
+ TCW_PTR(this_thr->th.th_task_team, team->t.t_task_team[this_thr->th.th_task_state]);
+ KA_TRACE(20, ("__kmp_task_team_sync: Thread T#%d task team switched to task_team %p from Team #%d (parity=%d)\n",
+ __kmp_gtid_from_thread( this_thr ), this_thr->th.th_task_team,
+ ((team != NULL) ? team->t.t_id : -1), this_thr->th.th_task_state));
+}
+
+
+//--------------------------------------------------------------------------------------------
+// __kmp_task_team_wait: Master thread waits for outstanding tasks after the barrier gather
+// phase. Only called by master thread if #threads in team > 1 or if proxy tasks were created.
+// wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off by passing in 0
+// optionally as the last argument. When wait is zero, master thread does not wait for
+// unfinished_threads to reach 0.
+void
+__kmp_task_team_wait( kmp_info_t *this_thr, kmp_team_t *team
+ USE_ITT_BUILD_ARG(void * itt_sync_obj)
+ , int wait)
+{
+ kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state];
+
+ KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec );
+ KMP_DEBUG_ASSERT( task_team == this_thr->th.th_task_team );
+
+ if ( ( task_team != NULL ) && KMP_TASKING_ENABLED(task_team) ) {
+ if (wait) {
+ KA_TRACE(20, ("__kmp_task_team_wait: Master T#%d waiting for all tasks (for unfinished_threads to reach 0) on task_team = %p\n",
+ __kmp_gtid_from_thread(this_thr), task_team));
+ // Worker threads may have dropped through to release phase, but could still be executing tasks. Wait
+ // here for tasks to complete. To avoid memory contention, only master thread checks termination condition.
+ kmp_flag_32 flag(&task_team->tt.tt_unfinished_threads, 0U);
+ flag.wait(this_thr, TRUE
+ USE_ITT_BUILD_ARG(itt_sync_obj));
+ }
+ // Deactivate the old task team, so that the worker threads will stop referencing it while spinning.
+ KA_TRACE(20, ("__kmp_task_team_wait: Master T#%d deactivating task_team %p: "
+ "setting active to false, setting local and team's pointer to NULL\n",
+ __kmp_gtid_from_thread(this_thr), task_team));
+#if OMP_45_ENABLED
+ KMP_DEBUG_ASSERT( task_team->tt.tt_nproc > 1 || task_team->tt.tt_found_proxy_tasks == TRUE );
+ TCW_SYNC_4( task_team->tt.tt_found_proxy_tasks, FALSE );
+#else
+ KMP_DEBUG_ASSERT( task_team->tt.tt_nproc > 1 );
+#endif
+ TCW_SYNC_4( task_team->tt.tt_active, FALSE );
+ KMP_MB();
+
+ TCW_PTR(this_thr->th.th_task_team, NULL);
+ }
+}
+
+
+//------------------------------------------------------------------------------
+// __kmp_tasking_barrier:
+// This routine may only called when __kmp_tasking_mode == tskm_extra_barrier.
+// Internal function to execute all tasks prior to a regular barrier or a
+// join barrier. It is a full barrier itself, which unfortunately turns
+// regular barriers into double barriers and join barriers into 1 1/2
+// barriers.
+void
+__kmp_tasking_barrier( kmp_team_t *team, kmp_info_t *thread, int gtid )
+{
+ volatile kmp_uint32 *spin = &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads;
+ int flag = FALSE;
+ KMP_DEBUG_ASSERT( __kmp_tasking_mode == tskm_extra_barrier );
+
+#if USE_ITT_BUILD
+ KMP_FSYNC_SPIN_INIT( spin, (kmp_uint32*) NULL );
+#endif /* USE_ITT_BUILD */
+ kmp_flag_32 spin_flag(spin, 0U);
+ while (! spin_flag.execute_tasks(thread, gtid, TRUE, &flag
+ USE_ITT_BUILD_ARG(NULL), 0 ) ) {
+#if USE_ITT_BUILD
+ // TODO: What about itt_sync_obj??
+ KMP_FSYNC_SPIN_PREPARE( spin );
+#endif /* USE_ITT_BUILD */
+
+ if( TCR_4(__kmp_global.g.g_done) ) {
+ if( __kmp_global.g.g_abort )
+ __kmp_abort_thread( );
+ break;
+ }
+ KMP_YIELD( TRUE ); // GH: We always yield here
+ }
+#if USE_ITT_BUILD
+ KMP_FSYNC_SPIN_ACQUIRED( (void*) spin );
+#endif /* USE_ITT_BUILD */
+}
+
+
+#if OMP_45_ENABLED
+
+/* __kmp_give_task puts a task into a given thread queue if:
+ - the queue for that thread was created
+ - there's space in that queue
+
+ Because of this, __kmp_push_task needs to check if there's space after getting the lock
+ */
+static bool __kmp_give_task ( kmp_info_t *thread, kmp_int32 tid, kmp_task_t * task, kmp_int32 pass )
+{
+ kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task);
+ kmp_task_team_t * task_team = taskdata->td_task_team;
+
+ KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n", taskdata, tid ) );
+
+ // If task_team is NULL something went really bad...
+ KMP_DEBUG_ASSERT( task_team != NULL );
+
+ bool result = false;
+ kmp_thread_data_t * thread_data = & task_team -> tt.tt_threads_data[ tid ];
+
+ if (thread_data -> td.td_deque == NULL ) {
+ // There's no queue in this thread, go find another one
+ // We're guaranteed that at least one thread has a queue
+ KA_TRACE(30, ("__kmp_give_task: thread %d has no queue while giving task %p.\n", tid, taskdata ) );
+ return result;
+ }
+
+ if ( TCR_4(thread_data -> td.td_deque_ntasks) >= TASK_DEQUE_SIZE(thread_data->td) )
+ {
+ KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to thread %d.\n", taskdata, tid ) );
+
+ // if this deque is bigger than the pass ratio give a chance to another thread
+ if ( TASK_DEQUE_SIZE(thread_data->td)/INITIAL_TASK_DEQUE_SIZE >= pass ) return result;
+
+ __kmp_acquire_bootstrap_lock( & thread_data-> td.td_deque_lock );
+ __kmp_realloc_task_deque(thread,thread_data);
+
+ } else {
+
+ __kmp_acquire_bootstrap_lock( & thread_data-> td.td_deque_lock );
+
+ if ( TCR_4(thread_data -> td.td_deque_ntasks) >= TASK_DEQUE_SIZE(thread_data->td) )
+ {
+ KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to thread %d.\n", taskdata, tid ) );
+
+ // if this deque is bigger than the pass ratio give a chance to another thread
+ if ( TASK_DEQUE_SIZE(thread_data->td)/INITIAL_TASK_DEQUE_SIZE >= pass )
+ goto release_and_exit;
+
+ __kmp_realloc_task_deque(thread,thread_data);
+ }
+ }
+
+ // lock is held here, and there is space in the deque
+
+ thread_data -> td.td_deque[ thread_data -> td.td_deque_tail ] = taskdata;
+ // Wrap index.
+ thread_data -> td.td_deque_tail = ( thread_data -> td.td_deque_tail + 1 ) & TASK_DEQUE_MASK(thread_data->td);
+ TCW_4(thread_data -> td.td_deque_ntasks, TCR_4(thread_data -> td.td_deque_ntasks) + 1);
+
+ result = true;
+ KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n", taskdata, tid ) );
+
+release_and_exit:
+ __kmp_release_bootstrap_lock( & thread_data-> td.td_deque_lock );
+
+ return result;
+}
+
+
+/* The finish of the a proxy tasks is divided in two pieces:
+ - the top half is the one that can be done from a thread outside the team
+ - the bottom half must be run from a them within the team
+
+ In order to run the bottom half the task gets queued back into one of the threads of the team.
+ Once the td_incomplete_child_task counter of the parent is decremented the threads can leave the barriers.
+ So, the bottom half needs to be queued before the counter is decremented. The top half is therefore divided in two parts:
+ - things that can be run before queuing the bottom half
+ - things that must be run after queuing the bottom half
+
+ This creates a second race as the bottom half can free the task before the second top half is executed. To avoid this
+ we use the td_incomplete_child_task of the proxy task to synchronize the top and bottom half.
+*/
+
+static void __kmp_first_top_half_finish_proxy( kmp_taskdata_t * taskdata )
+{
+ KMP_DEBUG_ASSERT( taskdata -> td_flags.tasktype == TASK_EXPLICIT );
+ KMP_DEBUG_ASSERT( taskdata -> td_flags.proxy == TASK_PROXY );
+ KMP_DEBUG_ASSERT( taskdata -> td_flags.complete == 0 );
+ KMP_DEBUG_ASSERT( taskdata -> td_flags.freed == 0 );
+
+ taskdata -> td_flags.complete = 1; // mark the task as completed
+
+ if ( taskdata->td_taskgroup )
+ KMP_TEST_THEN_DEC32( (kmp_int32 *)(& taskdata->td_taskgroup->count) );
+
+ // Create an imaginary children for this task so the bottom half cannot release the task before we have completed the second top half
+ TCI_4(taskdata->td_incomplete_child_tasks);
+}
+
+static void __kmp_second_top_half_finish_proxy( kmp_taskdata_t * taskdata )
+{
+ kmp_int32 children = 0;
+
+ // Predecrement simulated by "- 1" calculation
+ children = KMP_TEST_THEN_DEC32( (kmp_int32 *)(& taskdata -> td_parent -> td_incomplete_child_tasks) ) - 1;
+ KMP_DEBUG_ASSERT( children >= 0 );
+
+ // Remove the imaginary children
+ TCD_4(taskdata->td_incomplete_child_tasks);
+}
+
+static void __kmp_bottom_half_finish_proxy( kmp_int32 gtid, kmp_task_t * ptask )
+{
+ kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(ptask);
+ kmp_info_t * thread = __kmp_threads[ gtid ];
+
+ KMP_DEBUG_ASSERT( taskdata -> td_flags.proxy == TASK_PROXY );
+ KMP_DEBUG_ASSERT( taskdata -> td_flags.complete == 1 ); // top half must run before bottom half
+
+ // We need to wait to make sure the top half is finished
+ // Spinning here should be ok as this should happen quickly
+ while ( TCR_4(taskdata->td_incomplete_child_tasks) > 0 ) ;
+
+ __kmp_release_deps(gtid,taskdata);
+ __kmp_free_task_and_ancestors(gtid, taskdata, thread);
+}
+
+/*!
+@ingroup TASKING
+@param gtid Global Thread ID of encountering thread
+@param ptask Task which execution is completed
+
+Execute the completation of a proxy task from a thread of that is part of the team. Run first and bottom halves directly.
+*/
+void __kmpc_proxy_task_completed( kmp_int32 gtid, kmp_task_t *ptask )
+{
+ KMP_DEBUG_ASSERT( ptask != NULL );
+ kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(ptask);
+ KA_TRACE(10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n", gtid, taskdata ) );
+
+ KMP_DEBUG_ASSERT( taskdata->td_flags.proxy == TASK_PROXY );
+
+ __kmp_first_top_half_finish_proxy(taskdata);
+ __kmp_second_top_half_finish_proxy(taskdata);
+ __kmp_bottom_half_finish_proxy(gtid,ptask);
+
+ KA_TRACE(10, ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n", gtid, taskdata ) );
+}
+
+/*!
+@ingroup TASKING
+@param ptask Task which execution is completed
+
+Execute the completation of a proxy task from a thread that could not belong to the team.
+*/
+void __kmpc_proxy_task_completed_ooo ( kmp_task_t *ptask )
+{
+ KMP_DEBUG_ASSERT( ptask != NULL );
+ kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(ptask);
+
+ KA_TRACE(10, ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n", taskdata ) );
+
+ KMP_DEBUG_ASSERT( taskdata->td_flags.proxy == TASK_PROXY );
+
+ __kmp_first_top_half_finish_proxy(taskdata);
+
+ // Enqueue task to complete bottom half completion from a thread within the corresponding team
+ kmp_team_t * team = taskdata->td_team;
+ kmp_int32 nthreads = team->t.t_nproc;
+ kmp_info_t *thread;
+
+ //This should be similar to start_k = __kmp_get_random( thread ) % nthreads but we cannot use __kmp_get_random here
+ kmp_int32 start_k = 0;
+ kmp_int32 pass = 1;
+ kmp_int32 k = start_k;
+
+ do {
+ //For now we're just linearly trying to find a thread
+ thread = team->t.t_threads[k];
+ k = (k+1) % nthreads;
+
+ // we did a full pass through all the threads
+ if ( k == start_k ) pass = pass << 1;
+
+ } while ( !__kmp_give_task( thread, k, ptask, pass ) );
+
+ __kmp_second_top_half_finish_proxy(taskdata);
+
+ KA_TRACE(10, ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n", taskdata ) );
+}
+
+//---------------------------------------------------------------------------------
+// __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task for taskloop
+//
+// thread: allocating thread
+// task_src: pointer to source task to be duplicated
+// returns: a pointer to the allocated kmp_task_t structure (task).
+kmp_task_t *
+__kmp_task_dup_alloc( kmp_info_t *thread, kmp_task_t *task_src )
+{
+ kmp_task_t *task;
+ kmp_taskdata_t *taskdata;
+ kmp_taskdata_t *taskdata_src;
+ kmp_taskdata_t *parent_task = thread->th.th_current_task;
+ size_t shareds_offset;
+ size_t task_size;
+
+ KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread, task_src) );
+ taskdata_src = KMP_TASK_TO_TASKDATA( task_src );
+ KMP_DEBUG_ASSERT( taskdata_src->td_flags.proxy == TASK_FULL ); // it should not be proxy task
+ KMP_DEBUG_ASSERT( taskdata_src->td_flags.tasktype == TASK_EXPLICIT );
+ task_size = taskdata_src->td_size_alloc;
+
+ // Allocate a kmp_taskdata_t block and a kmp_task_t block.
+ KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread, task_size) );
+ #if USE_FAST_MEMORY
+ taskdata = (kmp_taskdata_t *)__kmp_fast_allocate( thread, task_size );
+ #else
+ taskdata = (kmp_taskdata_t *)__kmp_thread_malloc( thread, task_size );
+ #endif /* USE_FAST_MEMORY */
+ KMP_MEMCPY(taskdata, taskdata_src, task_size);
+
+ task = KMP_TASKDATA_TO_TASK(taskdata);
+
+ // Initialize new task (only specific fields not affected by memcpy)
+ taskdata->td_task_id = KMP_GEN_TASK_ID();
+ if( task->shareds != NULL ) { // need setup shareds pointer
+ shareds_offset = (char*)task_src->shareds - (char*)taskdata_src;
+ task->shareds = &((char*)taskdata)[shareds_offset];
+ KMP_DEBUG_ASSERT( (((kmp_uintptr_t)task->shareds) & (sizeof(void*)-1)) == 0 );
+ }
+ taskdata->td_alloc_thread = thread;
+ taskdata->td_taskgroup = parent_task->td_taskgroup; // task inherits the taskgroup from the parent task
+
+ // Only need to keep track of child task counts if team parallel and tasking not serialized
+ if ( !( taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser ) ) {
+ KMP_TEST_THEN_INC32( (kmp_int32 *)(& parent_task->td_incomplete_child_tasks) );
+ if ( parent_task->td_taskgroup )
+ KMP_TEST_THEN_INC32( (kmp_int32 *)(& parent_task->td_taskgroup->count) );
+ // Only need to keep track of allocated child tasks for explicit tasks since implicit not deallocated
+ if ( taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT )
+ KMP_TEST_THEN_INC32( (kmp_int32 *)(& taskdata->td_parent->td_allocated_child_tasks) );
+ }
+
+ KA_TRACE(20, ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n",
+ thread, taskdata, taskdata->td_parent) );
+#if OMPT_SUPPORT
+ __kmp_task_init_ompt(taskdata, thread->th.th_info.ds.ds_gtid, (void*)task->routine);
+#endif
+ return task;
+}
+
+// Routine optionally generated by th ecompiler for setting the lastprivate flag
+// and calling needed constructors for private/firstprivate objects
+// (used to form taskloop tasks from pattern task)
+typedef void(*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32);
+
+//---------------------------------------------------------------------------------
+// __kmp_taskloop_linear: Start tasks of the taskloop linearly
+//
+// loc Source location information
+// gtid Global thread ID
+// task Task with whole loop iteration range
+// lb Pointer to loop lower bound
+// ub Pointer to loop upper bound
+// st Loop stride
+// sched Schedule specified 0/1/2 for none/grainsize/num_tasks
+// grainsize Schedule value if specified
+// task_dup Tasks duplication routine
+void
+__kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task,
+ kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
+ int sched, kmp_uint64 grainsize, void *task_dup )
+{
+ KMP_COUNT_BLOCK(OMP_TASKLOOP);
+ KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling);
+ p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
+ kmp_uint64 tc;
+ kmp_uint64 lower = *lb; // compiler provides global bounds here
+ kmp_uint64 upper = *ub;
+ kmp_uint64 i, num_tasks = 0, extras = 0;
+ kmp_info_t *thread = __kmp_threads[gtid];
+ kmp_taskdata_t *current_task = thread->th.th_current_task;
+ kmp_task_t *next_task;
+ kmp_int32 lastpriv = 0;
+ size_t lower_offset = (char*)lb - (char*)task; // remember offset of lb in the task structure
+ size_t upper_offset = (char*)ub - (char*)task; // remember offset of ub in the task structure
+
+ // compute trip count
+ if ( st == 1 ) { // most common case
+ tc = upper - lower + 1;
+ } else if ( st < 0 ) {
+ tc = (lower - upper) / (-st) + 1;
+ } else { // st > 0
+ tc = (upper - lower) / st + 1;
+ }
+ if(tc == 0) {
+ KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d zero-trip loop\n", gtid));
+ // free the pattern task and exit
+ __kmp_task_start( gtid, task, current_task );
+ // do not execute anything for zero-trip loop
+ __kmp_task_finish( gtid, task, current_task );
+ return;
+ }
+
+ // compute num_tasks/grainsize based on the input provided
+ switch( sched ) {
+ case 0: // no schedule clause specified, we can choose the default
+ // let's try to schedule (team_size*10) tasks
+ grainsize = thread->th.th_team_nproc * 10;
+ case 2: // num_tasks provided
+ if( grainsize > tc ) {
+ num_tasks = tc; // too big num_tasks requested, adjust values
+ grainsize = 1;
+ extras = 0;
+ } else {
+ num_tasks = grainsize;
+ grainsize = tc / num_tasks;
+ extras = tc % num_tasks;
+ }
+ break;
+ case 1: // grainsize provided
+ if( grainsize > tc ) {
+ num_tasks = 1; // too big grainsize requested, adjust values
+ grainsize = tc;
+ extras = 0;
+ } else {
+ num_tasks = tc / grainsize;
+ grainsize = tc / num_tasks; // adjust grainsize for balanced distribution of iterations
+ extras = tc % num_tasks;
+ }
+ break;
+ default:
+ KMP_ASSERT2(0, "unknown scheduling of taskloop");
+ }
+ KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras);
+ KMP_DEBUG_ASSERT(num_tasks > extras);
+ KMP_DEBUG_ASSERT(num_tasks > 0);
+ KA_TRACE(20, ("__kmpc_taskloop: T#%d will launch: num_tasks %lld, grainsize %lld, extras %lld\n",
+ gtid, num_tasks, grainsize, extras));
+
+ // Main loop, launch num_tasks tasks, assign grainsize iterations each task
+ for( i = 0; i < num_tasks; ++i ) {
+ kmp_uint64 chunk_minus_1;
+ if( extras == 0 ) {
+ chunk_minus_1 = grainsize - 1;
+ } else {
+ chunk_minus_1 = grainsize;
+ --extras; // first extras iterations get bigger chunk (grainsize+1)
+ }
+ upper = lower + st * chunk_minus_1;
+ if( i == num_tasks - 1 ) {
+ // schedule the last task, set lastprivate flag
+ lastpriv = 1;
+#if KMP_DEBUG
+ if( st == 1 )
+ KMP_DEBUG_ASSERT(upper == *ub);
+ else if( st > 0 )
+ KMP_DEBUG_ASSERT(upper+st > *ub);
+ else
+ KMP_DEBUG_ASSERT(upper+st < *ub);
+#endif
+ }
+ next_task = __kmp_task_dup_alloc(thread, task); // allocate new task
+ *(kmp_uint64*)((char*)next_task + lower_offset) = lower; // adjust task-specific bounds
+ *(kmp_uint64*)((char*)next_task + upper_offset) = upper;
+ if( ptask_dup != NULL )
+ ptask_dup(next_task, task, lastpriv); // set lastprivate flag, construct fistprivates, etc.
+ KA_TRACE(20, ("__kmpc_taskloop: T#%d schedule task %p: lower %lld, upper %lld (offsets %p %p)\n",
+ gtid, next_task, lower, upper, lower_offset, upper_offset));
+ __kmp_omp_task(gtid, next_task, true); // schedule new task
+ lower = upper + st; // adjust lower bound for the next iteration
+ }
+ // free the pattern task and exit
+ __kmp_task_start( gtid, task, current_task );
+ // do not execute the pattern task, just do bookkeeping
+ __kmp_task_finish( gtid, task, current_task );
+}
+
+/*!
+@ingroup TASKING
+@param loc Source location information
+@param gtid Global thread ID
+@param task Task structure
+@param if_val Value of the if clause
+@param lb Pointer to loop lower bound
+@param ub Pointer to loop upper bound
+@param st Loop stride
+@param nogroup Flag, 1 if nogroup clause specified, 0 otherwise
+@param sched Schedule specified 0/1/2 for none/grainsize/num_tasks
+@param grainsize Schedule value if specified
+@param task_dup Tasks duplication routine
+
+Execute the taskloop construct.
+*/
+void
+__kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
+ kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
+ int nogroup, int sched, kmp_uint64 grainsize, void *task_dup )
+{
+ kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task);
+ KMP_DEBUG_ASSERT( task != NULL );
+
+ KA_TRACE(10, ("__kmpc_taskloop(enter): T#%d, pattern task %p, lb %lld ub %lld st %lld, grain %llu(%d)\n",
+ gtid, taskdata, *lb, *ub, st, grainsize, sched));
+
+ // check if clause value first
+ if( if_val == 0 ) { // if(0) specified, mark task as serial
+ taskdata->td_flags.task_serial = 1;
+ taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied
+ }
+ if( nogroup == 0 ) {
+ __kmpc_taskgroup( loc, gtid );
+ }
+
+ if( 1 /* AC: use some heuristic here to choose task scheduling method */ ) {
+ __kmp_taskloop_linear( loc, gtid, task, lb, ub, st, sched, grainsize, task_dup );
+ }
+
+ if( nogroup == 0 ) {
+ __kmpc_end_taskgroup( loc, gtid );
+ }
+ KA_TRACE(10, ("__kmpc_taskloop(exit): T#%d\n", gtid));
+}
+
+#endif
OpenPOWER on IntegriCloud