diff options
Diffstat (limited to 'openmp/runtime/src/kmp_tasking.cpp')
-rw-r--r-- | openmp/runtime/src/kmp_tasking.cpp | 3162 |
1 files changed, 3162 insertions, 0 deletions
diff --git a/openmp/runtime/src/kmp_tasking.cpp b/openmp/runtime/src/kmp_tasking.cpp new file mode 100644 index 00000000000..07557890c4d --- /dev/null +++ b/openmp/runtime/src/kmp_tasking.cpp @@ -0,0 +1,3162 @@ +/* + * kmp_tasking.c -- OpenMP 3.0 tasking support. + */ + + +//===----------------------------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is dual licensed under the MIT and the University of Illinois Open +// Source Licenses. See LICENSE.txt for details. +// +//===----------------------------------------------------------------------===// + + +#include "kmp.h" +#include "kmp_i18n.h" +#include "kmp_itt.h" +#include "kmp_wait_release.h" +#include "kmp_stats.h" + +#if OMPT_SUPPORT +#include "ompt-specific.h" +#endif + +#include "tsan_annotations.h" + +/* ------------------------------------------------------------------------ */ +/* ------------------------------------------------------------------------ */ + + +/* forward declaration */ +static void __kmp_enable_tasking( kmp_task_team_t *task_team, kmp_info_t *this_thr ); +static void __kmp_alloc_task_deque( kmp_info_t *thread, kmp_thread_data_t *thread_data ); +static int __kmp_realloc_task_threads_data( kmp_info_t *thread, kmp_task_team_t *task_team ); + +#ifdef OMP_45_ENABLED +static void __kmp_bottom_half_finish_proxy( kmp_int32 gtid, kmp_task_t * ptask ); +#endif + +#ifdef BUILD_TIED_TASK_STACK + +//--------------------------------------------------------------------------- +// __kmp_trace_task_stack: print the tied tasks from the task stack in order +// from top do bottom +// +// gtid: global thread identifier for thread containing stack +// thread_data: thread data for task team thread containing stack +// threshold: value above which the trace statement triggers +// location: string identifying call site of this function (for trace) + +static void +__kmp_trace_task_stack( kmp_int32 gtid, kmp_thread_data_t *thread_data, int threshold, char *location ) +{ + kmp_task_stack_t *task_stack = & thread_data->td.td_susp_tied_tasks; + kmp_taskdata_t **stack_top = task_stack -> ts_top; + kmp_int32 entries = task_stack -> ts_entries; + kmp_taskdata_t *tied_task; + + KA_TRACE(threshold, ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, " + "first_block = %p, stack_top = %p \n", + location, gtid, entries, task_stack->ts_first_block, stack_top ) ); + + KMP_DEBUG_ASSERT( stack_top != NULL ); + KMP_DEBUG_ASSERT( entries > 0 ); + + while ( entries != 0 ) + { + KMP_DEBUG_ASSERT( stack_top != & task_stack->ts_first_block.sb_block[0] ); + // fix up ts_top if we need to pop from previous block + if ( entries & TASK_STACK_INDEX_MASK == 0 ) + { + kmp_stack_block_t *stack_block = (kmp_stack_block_t *) (stack_top) ; + + stack_block = stack_block -> sb_prev; + stack_top = & stack_block -> sb_block[TASK_STACK_BLOCK_SIZE]; + } + + // finish bookkeeping + stack_top--; + entries--; + + tied_task = * stack_top; + + KMP_DEBUG_ASSERT( tied_task != NULL ); + KMP_DEBUG_ASSERT( tied_task -> td_flags.tasktype == TASK_TIED ); + + KA_TRACE(threshold, ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, " + "stack_top=%p, tied_task=%p\n", + location, gtid, entries, stack_top, tied_task ) ); + } + KMP_DEBUG_ASSERT( stack_top == & task_stack->ts_first_block.sb_block[0] ); + + KA_TRACE(threshold, ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n", + location, gtid ) ); +} + +//--------------------------------------------------------------------------- +// __kmp_init_task_stack: initialize the task stack for the first time +// after a thread_data structure is created. +// It should not be necessary to do this again (assuming the stack works). +// +// gtid: global thread identifier of calling thread +// thread_data: thread data for task team thread containing stack + +static void +__kmp_init_task_stack( kmp_int32 gtid, kmp_thread_data_t *thread_data ) +{ + kmp_task_stack_t *task_stack = & thread_data->td.td_susp_tied_tasks; + kmp_stack_block_t *first_block; + + // set up the first block of the stack + first_block = & task_stack -> ts_first_block; + task_stack -> ts_top = (kmp_taskdata_t **) first_block; + memset( (void *) first_block, '\0', TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *)); + + // initialize the stack to be empty + task_stack -> ts_entries = TASK_STACK_EMPTY; + first_block -> sb_next = NULL; + first_block -> sb_prev = NULL; +} + + +//--------------------------------------------------------------------------- +// __kmp_free_task_stack: free the task stack when thread_data is destroyed. +// +// gtid: global thread identifier for calling thread +// thread_data: thread info for thread containing stack + +static void +__kmp_free_task_stack( kmp_int32 gtid, kmp_thread_data_t *thread_data ) +{ + kmp_task_stack_t *task_stack = & thread_data->td.td_susp_tied_tasks; + kmp_stack_block_t *stack_block = & task_stack -> ts_first_block; + + KMP_DEBUG_ASSERT( task_stack -> ts_entries == TASK_STACK_EMPTY ); + // free from the second block of the stack + while ( stack_block != NULL ) { + kmp_stack_block_t *next_block = (stack_block) ? stack_block -> sb_next : NULL; + + stack_block -> sb_next = NULL; + stack_block -> sb_prev = NULL; + if (stack_block != & task_stack -> ts_first_block) { + __kmp_thread_free( thread, stack_block ); // free the block, if not the first + } + stack_block = next_block; + } + // initialize the stack to be empty + task_stack -> ts_entries = 0; + task_stack -> ts_top = NULL; +} + + +//--------------------------------------------------------------------------- +// __kmp_push_task_stack: Push the tied task onto the task stack. +// Grow the stack if necessary by allocating another block. +// +// gtid: global thread identifier for calling thread +// thread: thread info for thread containing stack +// tied_task: the task to push on the stack + +static void +__kmp_push_task_stack( kmp_int32 gtid, kmp_info_t *thread, kmp_taskdata_t * tied_task ) +{ + // GEH - need to consider what to do if tt_threads_data not allocated yet + kmp_thread_data_t *thread_data = & thread -> th.th_task_team -> + tt.tt_threads_data[ __kmp_tid_from_gtid( gtid ) ]; + kmp_task_stack_t *task_stack = & thread_data->td.td_susp_tied_tasks ; + + if ( tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser ) { + return; // Don't push anything on stack if team or team tasks are serialized + } + + KMP_DEBUG_ASSERT( tied_task -> td_flags.tasktype == TASK_TIED ); + KMP_DEBUG_ASSERT( task_stack -> ts_top != NULL ); + + KA_TRACE(20, ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n", + gtid, thread, tied_task ) ); + // Store entry + * (task_stack -> ts_top) = tied_task; + + // Do bookkeeping for next push + task_stack -> ts_top++; + task_stack -> ts_entries++; + + if ( task_stack -> ts_entries & TASK_STACK_INDEX_MASK == 0 ) + { + // Find beginning of this task block + kmp_stack_block_t *stack_block = + (kmp_stack_block_t *) (task_stack -> ts_top - TASK_STACK_BLOCK_SIZE); + + // Check if we already have a block + if ( stack_block -> sb_next != NULL ) + { // reset ts_top to beginning of next block + task_stack -> ts_top = & stack_block -> sb_next -> sb_block[0]; + } + else + { // Alloc new block and link it up + kmp_stack_block_t *new_block = (kmp_stack_block_t *) + __kmp_thread_calloc(thread, sizeof(kmp_stack_block_t)); + + task_stack -> ts_top = & new_block -> sb_block[0]; + stack_block -> sb_next = new_block; + new_block -> sb_prev = stack_block; + new_block -> sb_next = NULL; + + KA_TRACE(30, ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n", + gtid, tied_task, new_block ) ); + } + } + KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid, tied_task ) ); +} + +//--------------------------------------------------------------------------- +// __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return +// the task, just check to make sure it matches the ending task passed in. +// +// gtid: global thread identifier for the calling thread +// thread: thread info structure containing stack +// tied_task: the task popped off the stack +// ending_task: the task that is ending (should match popped task) + +static void +__kmp_pop_task_stack( kmp_int32 gtid, kmp_info_t *thread, kmp_taskdata_t *ending_task ) +{ + // GEH - need to consider what to do if tt_threads_data not allocated yet + kmp_thread_data_t *thread_data = & thread -> th.th_task_team -> tt_threads_data[ __kmp_tid_from_gtid( gtid ) ]; + kmp_task_stack_t *task_stack = & thread_data->td.td_susp_tied_tasks ; + kmp_taskdata_t *tied_task; + + if ( ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser ) { + return; // Don't pop anything from stack if team or team tasks are serialized + } + + KMP_DEBUG_ASSERT( task_stack -> ts_top != NULL ); + KMP_DEBUG_ASSERT( task_stack -> ts_entries > 0 ); + + KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid, thread ) ); + + // fix up ts_top if we need to pop from previous block + if ( task_stack -> ts_entries & TASK_STACK_INDEX_MASK == 0 ) + { + kmp_stack_block_t *stack_block = + (kmp_stack_block_t *) (task_stack -> ts_top) ; + + stack_block = stack_block -> sb_prev; + task_stack -> ts_top = & stack_block -> sb_block[TASK_STACK_BLOCK_SIZE]; + } + + // finish bookkeeping + task_stack -> ts_top--; + task_stack -> ts_entries--; + + tied_task = * (task_stack -> ts_top ); + + KMP_DEBUG_ASSERT( tied_task != NULL ); + KMP_DEBUG_ASSERT( tied_task -> td_flags.tasktype == TASK_TIED ); + KMP_DEBUG_ASSERT( tied_task == ending_task ); // If we built the stack correctly + + KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid, tied_task ) ); + return; +} +#endif /* BUILD_TIED_TASK_STACK */ + +//--------------------------------------------------- +// __kmp_push_task: Add a task to the thread's deque + +static kmp_int32 +__kmp_push_task(kmp_int32 gtid, kmp_task_t * task ) +{ + kmp_info_t * thread = __kmp_threads[ gtid ]; + kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task); + kmp_task_team_t * task_team = thread->th.th_task_team; + kmp_int32 tid = __kmp_tid_from_gtid( gtid ); + kmp_thread_data_t * thread_data; + + KA_TRACE(20, ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata ) ); + + if ( taskdata->td_flags.tiedness == TASK_UNTIED ) { + // untied task needs to increment counter so that the task structure is not freed prematurely + kmp_int32 counter = 1 + KMP_TEST_THEN_INC32(&taskdata->td_untied_count); + KA_TRACE(20, ( "__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n", + gtid, counter, taskdata ) ); + } + + // The first check avoids building task_team thread data if serialized + if ( taskdata->td_flags.task_serial ) { + KA_TRACE(20, ( "__kmp_push_task: T#%d team serialized; returning TASK_NOT_PUSHED for task %p\n", + gtid, taskdata ) ); + return TASK_NOT_PUSHED; + } + + // Now that serialized tasks have returned, we can assume that we are not in immediate exec mode + KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec ); + if ( ! KMP_TASKING_ENABLED(task_team) ) { + __kmp_enable_tasking( task_team, thread ); + } + KMP_DEBUG_ASSERT( TCR_4(task_team -> tt.tt_found_tasks) == TRUE ); + KMP_DEBUG_ASSERT( TCR_PTR(task_team -> tt.tt_threads_data) != NULL ); + + // Find tasking deque specific to encountering thread + thread_data = & task_team -> tt.tt_threads_data[ tid ]; + + // No lock needed since only owner can allocate + if (thread_data -> td.td_deque == NULL ) { + __kmp_alloc_task_deque( thread, thread_data ); + } + + // Check if deque is full + if ( TCR_4(thread_data -> td.td_deque_ntasks) >= TASK_DEQUE_SIZE(thread_data->td) ) + { + KA_TRACE(20, ( "__kmp_push_task: T#%d deque is full; returning TASK_NOT_PUSHED for task %p\n", + gtid, taskdata ) ); + return TASK_NOT_PUSHED; + } + + // Lock the deque for the task push operation + __kmp_acquire_bootstrap_lock( & thread_data -> td.td_deque_lock ); + +#if OMP_45_ENABLED + // Need to recheck as we can get a proxy task from a thread outside of OpenMP + if ( TCR_4(thread_data -> td.td_deque_ntasks) >= TASK_DEQUE_SIZE(thread_data->td) ) + { + __kmp_release_bootstrap_lock( & thread_data -> td.td_deque_lock ); + KA_TRACE(20, ( "__kmp_push_task: T#%d deque is full on 2nd check; returning TASK_NOT_PUSHED for task %p\n", + gtid, taskdata ) ); + return TASK_NOT_PUSHED; + } +#else + // Must have room since no thread can add tasks but calling thread + KMP_DEBUG_ASSERT( TCR_4(thread_data -> td.td_deque_ntasks) < TASK_DEQUE_SIZE(thread_data->td) ); +#endif + + thread_data -> td.td_deque[ thread_data -> td.td_deque_tail ] = taskdata; // Push taskdata + // Wrap index. + thread_data -> td.td_deque_tail = ( thread_data -> td.td_deque_tail + 1 ) & TASK_DEQUE_MASK(thread_data->td); + TCW_4(thread_data -> td.td_deque_ntasks, TCR_4(thread_data -> td.td_deque_ntasks) + 1); // Adjust task count + + KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: " + "task=%p ntasks=%d head=%u tail=%u\n", + gtid, taskdata, thread_data->td.td_deque_ntasks, + thread_data->td.td_deque_head, thread_data->td.td_deque_tail) ); + + __kmp_release_bootstrap_lock( & thread_data->td.td_deque_lock ); + + return TASK_SUCCESSFULLY_PUSHED; +} + + +//----------------------------------------------------------------------------------------- +// __kmp_pop_current_task_from_thread: set up current task from called thread when team ends +// this_thr: thread structure to set current_task in. + +void +__kmp_pop_current_task_from_thread( kmp_info_t *this_thr ) +{ + KF_TRACE( 10, ("__kmp_pop_current_task_from_thread(enter): T#%d this_thread=%p, curtask=%p, " + "curtask_parent=%p\n", + 0, this_thr, this_thr -> th.th_current_task, + this_thr -> th.th_current_task -> td_parent ) ); + + this_thr -> th.th_current_task = this_thr -> th.th_current_task -> td_parent; + + KF_TRACE( 10, ("__kmp_pop_current_task_from_thread(exit): T#%d this_thread=%p, curtask=%p, " + "curtask_parent=%p\n", + 0, this_thr, this_thr -> th.th_current_task, + this_thr -> th.th_current_task -> td_parent ) ); +} + + +//--------------------------------------------------------------------------------------- +// __kmp_push_current_task_to_thread: set up current task in called thread for a new team +// this_thr: thread structure to set up +// team: team for implicit task data +// tid: thread within team to set up + +void +__kmp_push_current_task_to_thread( kmp_info_t *this_thr, kmp_team_t *team, int tid ) +{ + // current task of the thread is a parent of the new just created implicit tasks of new team + KF_TRACE( 10, ( "__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p curtask=%p " + "parent_task=%p\n", + tid, this_thr, this_thr->th.th_current_task, + team->t.t_implicit_task_taskdata[tid].td_parent ) ); + + KMP_DEBUG_ASSERT (this_thr != NULL); + + if( tid == 0 ) { + if( this_thr->th.th_current_task != & team -> t.t_implicit_task_taskdata[ 0 ] ) { + team -> t.t_implicit_task_taskdata[ 0 ].td_parent = this_thr->th.th_current_task; + this_thr->th.th_current_task = & team -> t.t_implicit_task_taskdata[ 0 ]; + } + } else { + team -> t.t_implicit_task_taskdata[ tid ].td_parent = team -> t.t_implicit_task_taskdata[ 0 ].td_parent; + this_thr->th.th_current_task = & team -> t.t_implicit_task_taskdata[ tid ]; + } + + KF_TRACE( 10, ( "__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p curtask=%p " + "parent_task=%p\n", + tid, this_thr, this_thr->th.th_current_task, + team->t.t_implicit_task_taskdata[tid].td_parent ) ); +} + + +//---------------------------------------------------------------------- +// __kmp_task_start: bookkeeping for a task starting execution +// GTID: global thread id of calling thread +// task: task starting execution +// current_task: task suspending + +static void +__kmp_task_start( kmp_int32 gtid, kmp_task_t * task, kmp_taskdata_t * current_task ) +{ + kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task); + kmp_info_t * thread = __kmp_threads[ gtid ]; + + KA_TRACE(10, ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n", + gtid, taskdata, current_task) ); + + KMP_DEBUG_ASSERT( taskdata -> td_flags.tasktype == TASK_EXPLICIT ); + + // mark currently executing task as suspended + // TODO: GEH - make sure root team implicit task is initialized properly. + // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 ); + current_task -> td_flags.executing = 0; + + // Add task to stack if tied +#ifdef BUILD_TIED_TASK_STACK + if ( taskdata -> td_flags.tiedness == TASK_TIED ) + { + __kmp_push_task_stack( gtid, thread, taskdata ); + } +#endif /* BUILD_TIED_TASK_STACK */ + + // mark starting task as executing and as current task + thread -> th.th_current_task = taskdata; + + KMP_DEBUG_ASSERT( taskdata->td_flags.started == 0 || taskdata->td_flags.tiedness == TASK_UNTIED ); + KMP_DEBUG_ASSERT( taskdata->td_flags.executing == 0 || taskdata->td_flags.tiedness == TASK_UNTIED ); + taskdata -> td_flags.started = 1; + taskdata -> td_flags.executing = 1; + KMP_DEBUG_ASSERT( taskdata -> td_flags.complete == 0 ); + KMP_DEBUG_ASSERT( taskdata -> td_flags.freed == 0 ); + + // GEH TODO: shouldn't we pass some sort of location identifier here? + // APT: yes, we will pass location here. + // need to store current thread state (in a thread or taskdata structure) + // before setting work_state, otherwise wrong state is set after end of task + + KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", + gtid, taskdata ) ); + +#if OMPT_SUPPORT + if (ompt_enabled && + ompt_callbacks.ompt_callback(ompt_event_task_begin)) { + kmp_taskdata_t *parent = taskdata->td_parent; + ompt_callbacks.ompt_callback(ompt_event_task_begin)( + parent ? parent->ompt_task_info.task_id : ompt_task_id_none, + parent ? &(parent->ompt_task_info.frame) : NULL, + taskdata->ompt_task_info.task_id, + taskdata->ompt_task_info.function); + } +#endif +#if OMP_40_ENABLED && OMPT_SUPPORT && OMPT_TRACE + /* OMPT emit all dependences if requested by the tool */ + if (ompt_enabled && taskdata->ompt_task_info.ndeps > 0 && + ompt_callbacks.ompt_callback(ompt_event_task_dependences)) + { + ompt_callbacks.ompt_callback(ompt_event_task_dependences)( + taskdata->ompt_task_info.task_id, + taskdata->ompt_task_info.deps, + taskdata->ompt_task_info.ndeps + ); + /* We can now free the allocated memory for the dependencies */ + KMP_OMPT_DEPS_FREE (thread, taskdata->ompt_task_info.deps); + taskdata->ompt_task_info.deps = NULL; + taskdata->ompt_task_info.ndeps = 0; + } +#endif /* OMP_40_ENABLED && OMPT_SUPPORT && OMPT_TRACE */ + + return; +} + + +//---------------------------------------------------------------------- +// __kmpc_omp_task_begin_if0: report that a given serialized task has started execution +// loc_ref: source location information; points to beginning of task block. +// gtid: global thread number. +// task: task thunk for the started task. + +void +__kmpc_omp_task_begin_if0( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * task ) +{ + kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task); + kmp_taskdata_t * current_task = __kmp_threads[ gtid ] -> th.th_current_task; + + KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p current_task=%p\n", + gtid, loc_ref, taskdata, current_task ) ); + + if ( taskdata->td_flags.tiedness == TASK_UNTIED ) { + // untied task needs to increment counter so that the task structure is not freed prematurely + kmp_int32 counter = 1 + KMP_TEST_THEN_INC32(&taskdata->td_untied_count); + KA_TRACE(20, ( "__kmpc_omp_task_begin_if0: T#%d untied_count (%d) incremented for task %p\n", + gtid, counter, taskdata ) ); + } + + taskdata -> td_flags.task_serial = 1; // Execute this task immediately, not deferred. + __kmp_task_start( gtid, task, current_task ); + + KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", + gtid, loc_ref, taskdata ) ); + + return; +} + +#ifdef TASK_UNUSED +//---------------------------------------------------------------------- +// __kmpc_omp_task_begin: report that a given task has started execution +// NEVER GENERATED BY COMPILER, DEPRECATED!!! + +void +__kmpc_omp_task_begin( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * task ) +{ + kmp_taskdata_t * current_task = __kmp_threads[ gtid ] -> th.th_current_task; + + KA_TRACE(10, ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n", + gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task ) ); + + __kmp_task_start( gtid, task, current_task ); + + KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", + gtid, loc_ref, KMP_TASK_TO_TASKDATA(task) ) ); + + return; +} +#endif // TASK_UNUSED + + +//------------------------------------------------------------------------------------- +// __kmp_free_task: free the current task space and the space for shareds +// gtid: Global thread ID of calling thread +// taskdata: task to free +// thread: thread data structure of caller + +static void +__kmp_free_task( kmp_int32 gtid, kmp_taskdata_t * taskdata, kmp_info_t * thread ) +{ + KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", + gtid, taskdata) ); + + // Check to make sure all flags and counters have the correct values + KMP_DEBUG_ASSERT( taskdata->td_flags.tasktype == TASK_EXPLICIT ); + KMP_DEBUG_ASSERT( taskdata->td_flags.executing == 0 ); + KMP_DEBUG_ASSERT( taskdata->td_flags.complete == 1 ); + KMP_DEBUG_ASSERT( taskdata->td_flags.freed == 0 ); + KMP_DEBUG_ASSERT( TCR_4(taskdata->td_allocated_child_tasks) == 0 || taskdata->td_flags.task_serial == 1); + KMP_DEBUG_ASSERT( TCR_4(taskdata->td_incomplete_child_tasks) == 0 ); + + taskdata->td_flags.freed = 1; + ANNOTATE_HAPPENS_BEFORE(taskdata); + // deallocate the taskdata and shared variable blocks associated with this task + #if USE_FAST_MEMORY + __kmp_fast_free( thread, taskdata ); + #else /* ! USE_FAST_MEMORY */ + __kmp_thread_free( thread, taskdata ); + #endif + + KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", + gtid, taskdata) ); +} + +//------------------------------------------------------------------------------------- +// __kmp_free_task_and_ancestors: free the current task and ancestors without children +// +// gtid: Global thread ID of calling thread +// taskdata: task to free +// thread: thread data structure of caller + +static void +__kmp_free_task_and_ancestors( kmp_int32 gtid, kmp_taskdata_t * taskdata, kmp_info_t * thread ) +{ +#if OMP_45_ENABLED + // Proxy tasks must always be allowed to free their parents + // because they can be run in background even in serial mode. + kmp_int32 team_serial = ( taskdata->td_flags.team_serial || + taskdata->td_flags.tasking_ser ) && !taskdata->td_flags.proxy; +#else + kmp_int32 team_serial = taskdata->td_flags.team_serial || + taskdata->td_flags.tasking_ser; +#endif + KMP_DEBUG_ASSERT( taskdata -> td_flags.tasktype == TASK_EXPLICIT ); + + kmp_int32 children = KMP_TEST_THEN_DEC32( (kmp_int32 *)(& taskdata -> td_allocated_child_tasks) ) - 1; + KMP_DEBUG_ASSERT( children >= 0 ); + + // Now, go up the ancestor tree to see if any ancestors can now be freed. + while ( children == 0 ) + { + kmp_taskdata_t * parent_taskdata = taskdata -> td_parent; + + KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete " + "and freeing itself\n", gtid, taskdata) ); + + // --- Deallocate my ancestor task --- + __kmp_free_task( gtid, taskdata, thread ); + + taskdata = parent_taskdata; + + // Stop checking ancestors at implicit task + // instead of walking up ancestor tree to avoid premature deallocation of ancestors. + if ( team_serial || taskdata -> td_flags.tasktype == TASK_IMPLICIT ) + return; + + // Predecrement simulated by "- 1" calculation + children = KMP_TEST_THEN_DEC32( (kmp_int32 *)(& taskdata -> td_allocated_child_tasks) ) - 1; + KMP_DEBUG_ASSERT( children >= 0 ); + } + + KA_TRACE(20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; " + "not freeing it yet\n", gtid, taskdata, children) ); +} + +//--------------------------------------------------------------------- +// __kmp_task_finish: bookkeeping to do when a task finishes execution +// gtid: global thread ID for calling thread +// task: task to be finished +// resumed_task: task to be resumed. (may be NULL if task is serialized) + +static void +__kmp_task_finish( kmp_int32 gtid, kmp_task_t *task, kmp_taskdata_t *resumed_task ) +{ + kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task); + kmp_info_t * thread = __kmp_threads[ gtid ]; + kmp_task_team_t * task_team = thread->th.th_task_team; // might be NULL for serial teams... + kmp_int32 children = 0; + +#if OMPT_SUPPORT + if (ompt_enabled && + ompt_callbacks.ompt_callback(ompt_event_task_end)) { + kmp_taskdata_t *parent = taskdata->td_parent; + ompt_callbacks.ompt_callback(ompt_event_task_end)( + taskdata->ompt_task_info.task_id); + } +#endif + + KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming task %p\n", + gtid, taskdata, resumed_task) ); + + KMP_DEBUG_ASSERT( taskdata -> td_flags.tasktype == TASK_EXPLICIT ); + + // Pop task from stack if tied +#ifdef BUILD_TIED_TASK_STACK + if ( taskdata -> td_flags.tiedness == TASK_TIED ) + { + __kmp_pop_task_stack( gtid, thread, taskdata ); + } +#endif /* BUILD_TIED_TASK_STACK */ + + if ( taskdata->td_flags.tiedness == TASK_UNTIED ) { + // untied task needs to check the counter so that the task structure is not freed prematurely + kmp_int32 counter = KMP_TEST_THEN_DEC32(&taskdata->td_untied_count) - 1; + KA_TRACE(20, ( "__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n", + gtid, counter, taskdata ) ); + if ( counter > 0 ) { + // untied task is not done, to be continued possibly by other thread, do not free it now + if (resumed_task == NULL) { + KMP_DEBUG_ASSERT( taskdata->td_flags.task_serial ); + resumed_task = taskdata->td_parent; // In a serialized task, the resumed task is the parent + } + thread->th.th_current_task = resumed_task; // restore current_task + resumed_task->td_flags.executing = 1; // resume previous task + KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, resuming task %p\n", + gtid, taskdata, resumed_task) ); + return; + } + } + + KMP_DEBUG_ASSERT( taskdata -> td_flags.complete == 0 ); + taskdata -> td_flags.complete = 1; // mark the task as completed + KMP_DEBUG_ASSERT( taskdata -> td_flags.started == 1 ); + KMP_DEBUG_ASSERT( taskdata -> td_flags.freed == 0 ); + + // Only need to keep track of count if team parallel and tasking not serialized + if ( !( taskdata -> td_flags.team_serial || taskdata -> td_flags.tasking_ser ) ) { + // Predecrement simulated by "- 1" calculation + children = KMP_TEST_THEN_DEC32( (kmp_int32 *)(& taskdata -> td_parent -> td_incomplete_child_tasks) ) - 1; + KMP_DEBUG_ASSERT( children >= 0 ); +#if OMP_40_ENABLED + if ( taskdata->td_taskgroup ) + KMP_TEST_THEN_DEC32( (kmp_int32 *)(& taskdata->td_taskgroup->count) ); +#if OMP_45_ENABLED + } + // if we found proxy tasks there could exist a dependency chain + // with the proxy task as origin + if ( !( taskdata -> td_flags.team_serial || taskdata -> td_flags.tasking_ser ) || (task_team && task_team->tt.tt_found_proxy_tasks) ) { +#endif + __kmp_release_deps(gtid,taskdata); +#endif + } + + // td_flags.executing must be marked as 0 after __kmp_release_deps has been called + // Othertwise, if a task is executed immediately from the release_deps code + // the flag will be reset to 1 again by this same function + KMP_DEBUG_ASSERT( taskdata -> td_flags.executing == 1 ); + taskdata -> td_flags.executing = 0; // suspend the finishing task + + KA_TRACE(20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n", + gtid, taskdata, children) ); + +#if OMP_40_ENABLED + /* If the tasks' destructor thunk flag has been set, we need to invoke the + destructor thunk that has been generated by the compiler. + The code is placed here, since at this point other tasks might have been released + hence overlapping the destructor invokations with some other work in the + released tasks. The OpenMP spec is not specific on when the destructors are + invoked, so we should be free to choose. + */ + if (taskdata->td_flags.destructors_thunk) { + kmp_routine_entry_t destr_thunk = task->data1.destructors; + KMP_ASSERT(destr_thunk); + destr_thunk(gtid, task); + } +#endif // OMP_40_ENABLED + + // bookkeeping for resuming task: + // GEH - note tasking_ser => task_serial + KMP_DEBUG_ASSERT( (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) == + taskdata->td_flags.task_serial); + if ( taskdata->td_flags.task_serial ) + { + if (resumed_task == NULL) { + resumed_task = taskdata->td_parent; // In a serialized task, the resumed task is the parent + } + else +#if OMP_45_ENABLED + if ( !(task_team && task_team->tt.tt_found_proxy_tasks) ) +#endif + { + // verify resumed task passed in points to parent + KMP_DEBUG_ASSERT( resumed_task == taskdata->td_parent ); + } + } + else { + KMP_DEBUG_ASSERT( resumed_task != NULL ); // verify that resumed task is passed as arguemnt + } + + // Free this task and then ancestor tasks if they have no children. + // Restore th_current_task first as suggested by John: + // johnmc: if an asynchronous inquiry peers into the runtime system + // it doesn't see the freed task as the current task. + thread->th.th_current_task = resumed_task; + __kmp_free_task_and_ancestors(gtid, taskdata, thread); + + // TODO: GEH - make sure root team implicit task is initialized properly. + // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 ); + resumed_task->td_flags.executing = 1; // resume previous task + + KA_TRACE(10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n", + gtid, taskdata, resumed_task) ); + + return; +} + +//--------------------------------------------------------------------- +// __kmpc_omp_task_complete_if0: report that a task has completed execution +// loc_ref: source location information; points to end of task block. +// gtid: global thread number. +// task: task thunk for the completed task. + +void +__kmpc_omp_task_complete_if0( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task ) +{ + KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n", + gtid, loc_ref, KMP_TASK_TO_TASKDATA(task) ) ); + + __kmp_task_finish( gtid, task, NULL ); // this routine will provide task to resume + + KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n", + gtid, loc_ref, KMP_TASK_TO_TASKDATA(task) ) ); + + return; +} + +#ifdef TASK_UNUSED +//--------------------------------------------------------------------- +// __kmpc_omp_task_complete: report that a task has completed execution +// NEVER GENERATED BY COMPILER, DEPRECATED!!! + +void +__kmpc_omp_task_complete( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task ) +{ + KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", + gtid, loc_ref, KMP_TASK_TO_TASKDATA(task) ) ); + + __kmp_task_finish( gtid, task, NULL ); // Not sure how to find task to resume + + KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", + gtid, loc_ref, KMP_TASK_TO_TASKDATA(task) ) ); + return; +} +#endif // TASK_UNUSED + + +#if OMPT_SUPPORT +//---------------------------------------------------------------------------------------------------- +// __kmp_task_init_ompt: +// Initialize OMPT fields maintained by a task. This will only be called after +// ompt_tool, so we already know whether ompt is enabled or not. + +static inline void +__kmp_task_init_ompt( kmp_taskdata_t * task, int tid, void * function ) +{ + if (ompt_enabled) { + task->ompt_task_info.task_id = __ompt_task_id_new(tid); + task->ompt_task_info.function = function; + task->ompt_task_info.frame.exit_runtime_frame = NULL; + task->ompt_task_info.frame.reenter_runtime_frame = NULL; +#if OMP_40_ENABLED + task->ompt_task_info.ndeps = 0; + task->ompt_task_info.deps = NULL; +#endif /* OMP_40_ENABLED */ + } +} +#endif + + +//---------------------------------------------------------------------------------------------------- +// __kmp_init_implicit_task: Initialize the appropriate fields in the implicit task for a given thread +// +// loc_ref: reference to source location of parallel region +// this_thr: thread data structure corresponding to implicit task +// team: team for this_thr +// tid: thread id of given thread within team +// set_curr_task: TRUE if need to push current task to thread +// NOTE: Routine does not set up the implicit task ICVS. This is assumed to have already been done elsewhere. +// TODO: Get better loc_ref. Value passed in may be NULL + +void +__kmp_init_implicit_task( ident_t *loc_ref, kmp_info_t *this_thr, kmp_team_t *team, int tid, int set_curr_task ) +{ + kmp_taskdata_t * task = & team->t.t_implicit_task_taskdata[ tid ]; + + KF_TRACE(10, ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n", + tid, team, task, set_curr_task ? "TRUE" : "FALSE" ) ); + + task->td_task_id = KMP_GEN_TASK_ID(); + task->td_team = team; +// task->td_parent = NULL; // fix for CQ230101 (broken parent task info in debugger) + task->td_ident = loc_ref; + task->td_taskwait_ident = NULL; + task->td_taskwait_counter = 0; + task->td_taskwait_thread = 0; + + task->td_flags.tiedness = TASK_TIED; + task->td_flags.tasktype = TASK_IMPLICIT; +#if OMP_45_ENABLED + task->td_flags.proxy = TASK_FULL; +#endif + + // All implicit tasks are executed immediately, not deferred + task->td_flags.task_serial = 1; + task->td_flags.tasking_ser = ( __kmp_tasking_mode == tskm_immediate_exec ); + task->td_flags.team_serial = ( team->t.t_serialized ) ? 1 : 0; + + task->td_flags.started = 1; + task->td_flags.executing = 1; + task->td_flags.complete = 0; + task->td_flags.freed = 0; + +#if OMP_40_ENABLED + task->td_depnode = NULL; +#endif + + if (set_curr_task) { // only do this initialization the first time a thread is created + task->td_incomplete_child_tasks = 0; + task->td_allocated_child_tasks = 0; // Not used because do not need to deallocate implicit task +#if OMP_40_ENABLED + task->td_taskgroup = NULL; // An implicit task does not have taskgroup + task->td_dephash = NULL; +#endif + __kmp_push_current_task_to_thread( this_thr, team, tid ); + } else { + KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0); + KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0); + } + +#if OMPT_SUPPORT + __kmp_task_init_ompt(task, tid, NULL); +#endif + + KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", + tid, team, task ) ); +} + + +//----------------------------------------------------------------------------- +//// __kmp_finish_implicit_task: Release resources associated to implicit tasks +//// at the end of parallel regions. Some resources are kept for reuse in the +//// next parallel region. +//// +//// thread: thread data structure corresponding to implicit task +// +void +__kmp_finish_implicit_task(kmp_info_t *thread) +{ + kmp_taskdata_t *task = thread->th.th_current_task; + if (task->td_dephash) + __kmp_dephash_free_entries(thread, task->td_dephash); +} + + +//----------------------------------------------------------------------------- +//// __kmp_free_implicit_task: Release resources associated to implicit tasks +//// when these are destroyed regions +//// +//// thread: thread data structure corresponding to implicit task +// +void +__kmp_free_implicit_task(kmp_info_t *thread) +{ + kmp_taskdata_t *task = thread->th.th_current_task; + if (task->td_dephash) + __kmp_dephash_free(thread, task->td_dephash); + task->td_dephash = NULL; +} + + +// Round up a size to a power of two specified by val +// Used to insert padding between structures co-allocated using a single malloc() call +static size_t +__kmp_round_up_to_val( size_t size, size_t val ) { + if ( size & ( val - 1 ) ) { + size &= ~ ( val - 1 ); + if ( size <= KMP_SIZE_T_MAX - val ) { + size += val; // Round up if there is no overflow. + }; // if + }; // if + return size; +} // __kmp_round_up_to_va + + +//--------------------------------------------------------------------------------- +// __kmp_task_alloc: Allocate the taskdata and task data structures for a task +// +// loc_ref: source location information +// gtid: global thread number. +// flags: include tiedness & task type (explicit vs. implicit) of the ''new'' task encountered. +// Converted from kmp_int32 to kmp_tasking_flags_t in routine. +// sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including private vars accessed in task. +// sizeof_shareds: Size in bytes of array of pointers to shared vars accessed in task. +// task_entry: Pointer to task code entry point generated by compiler. +// returns: a pointer to the allocated kmp_task_t structure (task). + +kmp_task_t * +__kmp_task_alloc( ident_t *loc_ref, kmp_int32 gtid, kmp_tasking_flags_t *flags, + size_t sizeof_kmp_task_t, size_t sizeof_shareds, + kmp_routine_entry_t task_entry ) +{ + kmp_task_t *task; + kmp_taskdata_t *taskdata; + kmp_info_t *thread = __kmp_threads[ gtid ]; + kmp_team_t *team = thread->th.th_team; + kmp_taskdata_t *parent_task = thread->th.th_current_task; + size_t shareds_offset; + + KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) " + "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", + gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t, + sizeof_shareds, task_entry) ); + + if ( parent_task->td_flags.final ) { + if (flags->merged_if0) { + } + flags->final = 1; + } + +#if OMP_45_ENABLED + if ( flags->proxy == TASK_PROXY ) { + flags->tiedness = TASK_UNTIED; + flags->merged_if0 = 1; + + /* are we running in a sequential parallel or tskm_immediate_exec... we need tasking support enabled */ + if ( (thread->th.th_task_team) == NULL ) { + /* This should only happen if the team is serialized + setup a task team and propagate it to the thread + */ + KMP_DEBUG_ASSERT(team->t.t_serialized); + KA_TRACE(30,("T#%d creating task team in __kmp_task_alloc for proxy task\n", gtid)); + __kmp_task_team_setup(thread,team,1); // 1 indicates setup the current team regardless of nthreads + thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state]; + } + kmp_task_team_t * task_team = thread->th.th_task_team; + + /* tasking must be enabled now as the task might not be pushed */ + if ( !KMP_TASKING_ENABLED( task_team ) ) { + KA_TRACE(30,("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid)); + __kmp_enable_tasking( task_team, thread ); + kmp_int32 tid = thread->th.th_info.ds.ds_tid; + kmp_thread_data_t * thread_data = & task_team -> tt.tt_threads_data[ tid ]; + // No lock needed since only owner can allocate + if (thread_data -> td.td_deque == NULL ) { + __kmp_alloc_task_deque( thread, thread_data ); + } + } + + if ( task_team->tt.tt_found_proxy_tasks == FALSE ) + TCW_4(task_team -> tt.tt_found_proxy_tasks, TRUE); + } +#endif + + // Calculate shared structure offset including padding after kmp_task_t struct + // to align pointers in shared struct + shareds_offset = sizeof( kmp_taskdata_t ) + sizeof_kmp_task_t; + shareds_offset = __kmp_round_up_to_val( shareds_offset, sizeof( void * )); + + // Allocate a kmp_taskdata_t block and a kmp_task_t block. + KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", + gtid, shareds_offset) ); + KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", + gtid, sizeof_shareds) ); + + // Avoid double allocation here by combining shareds with taskdata + #if USE_FAST_MEMORY + taskdata = (kmp_taskdata_t *) __kmp_fast_allocate( thread, shareds_offset + sizeof_shareds ); + #else /* ! USE_FAST_MEMORY */ + taskdata = (kmp_taskdata_t *) __kmp_thread_malloc( thread, shareds_offset + sizeof_shareds ); + #endif /* USE_FAST_MEMORY */ + ANNOTATE_HAPPENS_AFTER(taskdata); + + task = KMP_TASKDATA_TO_TASK(taskdata); + + // Make sure task & taskdata are aligned appropriately +#if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD + KMP_DEBUG_ASSERT( ( ((kmp_uintptr_t)taskdata) & (sizeof(double)-1) ) == 0 ); + KMP_DEBUG_ASSERT( ( ((kmp_uintptr_t)task) & (sizeof(double)-1) ) == 0 ); +#else + KMP_DEBUG_ASSERT( ( ((kmp_uintptr_t)taskdata) & (sizeof(_Quad)-1) ) == 0 ); + KMP_DEBUG_ASSERT( ( ((kmp_uintptr_t)task) & (sizeof(_Quad)-1) ) == 0 ); +#endif + if (sizeof_shareds > 0) { + // Avoid double allocation here by combining shareds with taskdata + task->shareds = & ((char *) taskdata)[ shareds_offset ]; + // Make sure shareds struct is aligned to pointer size + KMP_DEBUG_ASSERT( ( ((kmp_uintptr_t)task->shareds) & (sizeof(void *)-1) ) == 0 ); + } else { + task->shareds = NULL; + } + task->routine = task_entry; + task->part_id = 0; // AC: Always start with 0 part id + + taskdata->td_task_id = KMP_GEN_TASK_ID(); + taskdata->td_team = team; + taskdata->td_alloc_thread = thread; + taskdata->td_parent = parent_task; + taskdata->td_level = parent_task->td_level + 1; // increment nesting level + taskdata->td_untied_count = 0; + taskdata->td_ident = loc_ref; + taskdata->td_taskwait_ident = NULL; + taskdata->td_taskwait_counter = 0; + taskdata->td_taskwait_thread = 0; + KMP_DEBUG_ASSERT( taskdata->td_parent != NULL ); +#if OMP_45_ENABLED + // avoid copying icvs for proxy tasks + if ( flags->proxy == TASK_FULL ) +#endif + copy_icvs( &taskdata->td_icvs, &taskdata->td_parent->td_icvs ); + + taskdata->td_flags.tiedness = flags->tiedness; + taskdata->td_flags.final = flags->final; + taskdata->td_flags.merged_if0 = flags->merged_if0; +#if OMP_40_ENABLED + taskdata->td_flags.destructors_thunk = flags->destructors_thunk; +#endif // OMP_40_ENABLED +#if OMP_45_ENABLED + taskdata->td_flags.proxy = flags->proxy; + taskdata->td_task_team = thread->th.th_task_team; + taskdata->td_size_alloc = shareds_offset + sizeof_shareds; +#endif + taskdata->td_flags.tasktype = TASK_EXPLICIT; + + // GEH - TODO: fix this to copy parent task's value of tasking_ser flag + taskdata->td_flags.tasking_ser = ( __kmp_tasking_mode == tskm_immediate_exec ); + + // GEH - TODO: fix this to copy parent task's value of team_serial flag + taskdata->td_flags.team_serial = ( team->t.t_serialized ) ? 1 : 0; + + // GEH - Note we serialize the task if the team is serialized to make sure implicit parallel region + // tasks are not left until program termination to execute. Also, it helps locality to execute + // immediately. + taskdata->td_flags.task_serial = ( parent_task->td_flags.final + || taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser ); + + taskdata->td_flags.started = 0; + taskdata->td_flags.executing = 0; + taskdata->td_flags.complete = 0; + taskdata->td_flags.freed = 0; + + taskdata->td_flags.native = flags->native; + + taskdata->td_incomplete_child_tasks = 0; + taskdata->td_allocated_child_tasks = 1; // start at one because counts current task and children +#if OMP_40_ENABLED + taskdata->td_taskgroup = parent_task->td_taskgroup; // task inherits the taskgroup from the parent task + taskdata->td_dephash = NULL; + taskdata->td_depnode = NULL; +#endif + + // Only need to keep track of child task counts if team parallel and tasking not serialized or if it is a proxy task +#if OMP_45_ENABLED + if ( flags->proxy == TASK_PROXY || !( taskdata -> td_flags.team_serial || taskdata -> td_flags.tasking_ser ) ) +#else + if ( !( taskdata -> td_flags.team_serial || taskdata -> td_flags.tasking_ser ) ) +#endif + { + KMP_TEST_THEN_INC32( (kmp_int32 *)(& parent_task->td_incomplete_child_tasks) ); +#if OMP_40_ENABLED + if ( parent_task->td_taskgroup ) + KMP_TEST_THEN_INC32( (kmp_int32 *)(& parent_task->td_taskgroup->count) ); +#endif + // Only need to keep track of allocated child tasks for explicit tasks since implicit not deallocated + if ( taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT ) { + KMP_TEST_THEN_INC32( (kmp_int32 *)(& taskdata->td_parent->td_allocated_child_tasks) ); + } + } + + KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n", + gtid, taskdata, taskdata->td_parent) ); + ANNOTATE_HAPPENS_BEFORE(task); + +#if OMPT_SUPPORT + __kmp_task_init_ompt(taskdata, gtid, (void*) task_entry); +#endif + + return task; +} + + +kmp_task_t * +__kmpc_omp_task_alloc( ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, + size_t sizeof_kmp_task_t, size_t sizeof_shareds, + kmp_routine_entry_t task_entry ) +{ + kmp_task_t *retval; + kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *) & flags; + + input_flags->native = FALSE; + // __kmp_task_alloc() sets up all other runtime flags + +#if OMP_45_ENABLED + KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s) " + "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", + gtid, loc_ref, input_flags->tiedness ? "tied " : "untied", + input_flags->proxy ? "proxy" : "", + sizeof_kmp_task_t, sizeof_shareds, task_entry) ); +#else + KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s) " + "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", + gtid, loc_ref, input_flags->tiedness ? "tied " : "untied", + sizeof_kmp_task_t, sizeof_shareds, task_entry) ); +#endif + + retval = __kmp_task_alloc( loc_ref, gtid, input_flags, sizeof_kmp_task_t, + sizeof_shareds, task_entry ); + + KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval) ); + + return retval; +} + +//----------------------------------------------------------- +// __kmp_invoke_task: invoke the specified task +// +// gtid: global thread ID of caller +// task: the task to invoke +// current_task: the task to resume after task invokation + +static void +__kmp_invoke_task( kmp_int32 gtid, kmp_task_t *task, kmp_taskdata_t * current_task ) +{ + kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task); + kmp_uint64 cur_time; +#if OMP_40_ENABLED + int discard = 0 /* false */; +#endif + KA_TRACE(30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n", + gtid, taskdata, current_task) ); + KMP_DEBUG_ASSERT(task); +#if OMP_45_ENABLED + if ( taskdata->td_flags.proxy == TASK_PROXY && + taskdata->td_flags.complete == 1) + { + // This is a proxy task that was already completed but it needs to run + // its bottom-half finish + KA_TRACE(30, ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n", + gtid, taskdata) ); + + __kmp_bottom_half_finish_proxy(gtid,task); + + KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for proxy task %p, resuming task %p\n", gtid, taskdata, current_task) ); + + return; + } +#endif + +#if USE_ITT_BUILD && USE_ITT_NOTIFY + if(__kmp_forkjoin_frames_mode == 3) { + // Get the current time stamp to measure task execution time to correct barrier imbalance time + cur_time = __itt_get_timestamp(); + } +#endif + +#if OMP_45_ENABLED + // Proxy tasks are not handled by the runtime + if ( taskdata->td_flags.proxy != TASK_PROXY ) { +#endif + ANNOTATE_HAPPENS_AFTER(task); + __kmp_task_start( gtid, task, current_task ); +#if OMP_45_ENABLED + } +#endif + +#if OMPT_SUPPORT + ompt_thread_info_t oldInfo; + kmp_info_t * thread; + if (ompt_enabled) { + // Store the threads states and restore them after the task + thread = __kmp_threads[ gtid ]; + oldInfo = thread->th.ompt_thread_info; + thread->th.ompt_thread_info.wait_id = 0; + thread->th.ompt_thread_info.state = ompt_state_work_parallel; + taskdata->ompt_task_info.frame.exit_runtime_frame = __builtin_frame_address(0); + } +#endif + +#if OMP_40_ENABLED + // TODO: cancel tasks if the parallel region has also been cancelled + // TODO: check if this sequence can be hoisted above __kmp_task_start + // if cancellation has been enabled for this run ... + if (__kmp_omp_cancellation) { + kmp_info_t *this_thr = __kmp_threads [ gtid ]; + kmp_team_t * this_team = this_thr->th.th_team; + kmp_taskgroup_t * taskgroup = taskdata->td_taskgroup; + if ((taskgroup && taskgroup->cancel_request) || (this_team->t.t_cancel_request == cancel_parallel)) { + KMP_COUNT_BLOCK(TASK_cancelled); + // this task belongs to a task group and we need to cancel it + discard = 1 /* true */; + } + } + + // + // Invoke the task routine and pass in relevant data. + // Thunks generated by gcc take a different argument list. + // + if (!discard) { +#if KMP_STATS_ENABLED + KMP_COUNT_BLOCK(TASK_executed); + switch(KMP_GET_THREAD_STATE()) { + case FORK_JOIN_BARRIER: KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar); break; + case PLAIN_BARRIER: KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar); break; + case TASKYIELD: KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield); break; + case TASKWAIT: KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait); break; + case TASKGROUP: KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup); break; + default: KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate); break; + } +#endif // KMP_STATS_ENABLED +#endif // OMP_40_ENABLED + +#if OMPT_SUPPORT && OMPT_TRACE + /* let OMPT know that we're about to run this task */ + if (ompt_enabled && + ompt_callbacks.ompt_callback(ompt_event_task_switch)) + { + ompt_callbacks.ompt_callback(ompt_event_task_switch)( + current_task->ompt_task_info.task_id, + taskdata->ompt_task_info.task_id); + } +#endif + +#ifdef KMP_GOMP_COMPAT + if (taskdata->td_flags.native) { + ((void (*)(void *))(*(task->routine)))(task->shareds); + } + else +#endif /* KMP_GOMP_COMPAT */ + { + (*(task->routine))(gtid, task); + } + KMP_POP_PARTITIONED_TIMER(); + +#if OMPT_SUPPORT && OMPT_TRACE + /* let OMPT know that we're returning to the callee task */ + if (ompt_enabled && + ompt_callbacks.ompt_callback(ompt_event_task_switch)) + { + ompt_callbacks.ompt_callback(ompt_event_task_switch)( + taskdata->ompt_task_info.task_id, + current_task->ompt_task_info.task_id); + } +#endif + +#if OMP_40_ENABLED + } +#endif // OMP_40_ENABLED + + +#if OMPT_SUPPORT + if (ompt_enabled) { + thread->th.ompt_thread_info = oldInfo; + taskdata->ompt_task_info.frame.exit_runtime_frame = NULL; + } +#endif + +#if OMP_45_ENABLED + // Proxy tasks are not handled by the runtime + if ( taskdata->td_flags.proxy != TASK_PROXY ) { +#endif + ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent); + __kmp_task_finish( gtid, task, current_task ); +#if OMP_45_ENABLED + } +#endif + +#if USE_ITT_BUILD && USE_ITT_NOTIFY + // Barrier imbalance - correct arrive time after the task finished + if(__kmp_forkjoin_frames_mode == 3) { + kmp_info_t *this_thr = __kmp_threads [ gtid ]; + if(this_thr->th.th_bar_arrive_time) { + this_thr->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time); + } + } +#endif + KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n", + gtid, taskdata, current_task) ); + return; +} + +//----------------------------------------------------------------------- +// __kmpc_omp_task_parts: Schedule a thread-switchable task for execution +// +// loc_ref: location of original task pragma (ignored) +// gtid: Global Thread ID of encountering thread +// new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task'' +// Returns: +// TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to be resumed later. +// TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be resumed later. + +kmp_int32 +__kmpc_omp_task_parts( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * new_task) +{ + kmp_taskdata_t * new_taskdata = KMP_TASK_TO_TASKDATA(new_task); + + KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", + gtid, loc_ref, new_taskdata ) ); + + /* Should we execute the new task or queue it? For now, let's just always try to + queue it. If the queue fills up, then we'll execute it. */ + + if ( __kmp_push_task( gtid, new_task ) == TASK_NOT_PUSHED ) // if cannot defer + { // Execute this task immediately + kmp_taskdata_t * current_task = __kmp_threads[ gtid ] -> th.th_current_task; + new_taskdata->td_flags.task_serial = 1; + __kmp_invoke_task( gtid, new_task, current_task ); + } + + KA_TRACE(10, ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: " + "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n", gtid, loc_ref, + new_taskdata ) ); + + ANNOTATE_HAPPENS_BEFORE(new_task); + return TASK_CURRENT_NOT_QUEUED; +} + +//--------------------------------------------------------------------- +// __kmp_omp_task: Schedule a non-thread-switchable task for execution +// gtid: Global Thread ID of encountering thread +// new_task: non-thread-switchable task thunk allocated by __kmp_omp_task_alloc() +// serialize_immediate: if TRUE then if the task is executed immediately its execution will be serialized +// returns: +// +// TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to be resumed later. +// TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be resumed later. +kmp_int32 +__kmp_omp_task( kmp_int32 gtid, kmp_task_t * new_task, bool serialize_immediate ) +{ + kmp_taskdata_t * new_taskdata = KMP_TASK_TO_TASKDATA(new_task); + +#if OMPT_SUPPORT + if (ompt_enabled) { + new_taskdata->ompt_task_info.frame.reenter_runtime_frame = + __builtin_frame_address(1); + } +#endif + + /* Should we execute the new task or queue it? For now, let's just always try to + queue it. If the queue fills up, then we'll execute it. */ +#if OMP_45_ENABLED + if ( new_taskdata->td_flags.proxy == TASK_PROXY || __kmp_push_task( gtid, new_task ) == TASK_NOT_PUSHED ) // if cannot defer +#else + if ( __kmp_push_task( gtid, new_task ) == TASK_NOT_PUSHED ) // if cannot defer +#endif + { // Execute this task immediately + kmp_taskdata_t * current_task = __kmp_threads[ gtid ] -> th.th_current_task; + if ( serialize_immediate ) + new_taskdata -> td_flags.task_serial = 1; + __kmp_invoke_task( gtid, new_task, current_task ); + } + +#if OMPT_SUPPORT + if (ompt_enabled) { + new_taskdata->ompt_task_info.frame.reenter_runtime_frame = NULL; + } +#endif + + ANNOTATE_HAPPENS_BEFORE(new_task); + return TASK_CURRENT_NOT_QUEUED; +} + +//--------------------------------------------------------------------- +// __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a non-thread-switchable task from +// the parent thread only! +// loc_ref: location of original task pragma (ignored) +// gtid: Global Thread ID of encountering thread +// new_task: non-thread-switchable task thunk allocated by __kmp_omp_task_alloc() +// returns: +// +// TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to be resumed later. +// TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be resumed later. + +kmp_int32 +__kmpc_omp_task( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * new_task) +{ + kmp_int32 res; + KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); + +#if KMP_DEBUG + kmp_taskdata_t * new_taskdata = KMP_TASK_TO_TASKDATA(new_task); +#endif + KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", + gtid, loc_ref, new_taskdata ) ); + + res = __kmp_omp_task(gtid,new_task,true); + + KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", + gtid, loc_ref, new_taskdata ) ); + return res; +} + +//------------------------------------------------------------------------------------- +// __kmpc_omp_taskwait: Wait until all tasks generated by the current task are complete + +kmp_int32 +__kmpc_omp_taskwait( ident_t *loc_ref, kmp_int32 gtid ) +{ + kmp_taskdata_t * taskdata; + kmp_info_t * thread; + int thread_finished = FALSE; + KMP_SET_THREAD_STATE_BLOCK(TASKWAIT); + + KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref) ); + + if ( __kmp_tasking_mode != tskm_immediate_exec ) { + // GEH TODO: shouldn't we have some sort of OMPRAP API calls here to mark begin wait? + + thread = __kmp_threads[ gtid ]; + taskdata = thread -> th.th_current_task; + +#if OMPT_SUPPORT && OMPT_TRACE + ompt_task_id_t my_task_id; + ompt_parallel_id_t my_parallel_id; + + if (ompt_enabled) { + kmp_team_t *team = thread->th.th_team; + my_task_id = taskdata->ompt_task_info.task_id; + my_parallel_id = team->t.ompt_team_info.parallel_id; + + taskdata->ompt_task_info.frame.reenter_runtime_frame = __builtin_frame_address(1); + if (ompt_callbacks.ompt_callback(ompt_event_taskwait_begin)) { + ompt_callbacks.ompt_callback(ompt_event_taskwait_begin)( + my_parallel_id, my_task_id); + } + } +#endif + + // Debugger: The taskwait is active. Store location and thread encountered the taskwait. +#if USE_ITT_BUILD + // Note: These values are used by ITT events as well. +#endif /* USE_ITT_BUILD */ + taskdata->td_taskwait_counter += 1; + taskdata->td_taskwait_ident = loc_ref; + taskdata->td_taskwait_thread = gtid + 1; + +#if USE_ITT_BUILD + void * itt_sync_obj = __kmp_itt_taskwait_object( gtid ); + if ( itt_sync_obj != NULL ) + __kmp_itt_taskwait_starting( gtid, itt_sync_obj ); +#endif /* USE_ITT_BUILD */ + + bool must_wait = ! taskdata->td_flags.team_serial && ! taskdata->td_flags.final; + +#if OMP_45_ENABLED + must_wait = must_wait || (thread->th.th_task_team != NULL && thread->th.th_task_team->tt.tt_found_proxy_tasks); +#endif + if (must_wait) + { + kmp_flag_32 flag(&(taskdata->td_incomplete_child_tasks), 0U); + while ( TCR_4(taskdata -> td_incomplete_child_tasks) != 0 ) { + flag.execute_tasks(thread, gtid, FALSE, &thread_finished + USE_ITT_BUILD_ARG(itt_sync_obj), __kmp_task_stealing_constraint ); + } + } +#if USE_ITT_BUILD + if ( itt_sync_obj != NULL ) + __kmp_itt_taskwait_finished( gtid, itt_sync_obj ); +#endif /* USE_ITT_BUILD */ + + // GEH TODO: shouldn't we have some sort of OMPRAP API calls here to mark end of wait? + // Debugger: The taskwait is completed. Location remains, but thread is negated. + taskdata->td_taskwait_thread = - taskdata->td_taskwait_thread; + +#if OMPT_SUPPORT && OMPT_TRACE + if (ompt_enabled) { + if (ompt_callbacks.ompt_callback(ompt_event_taskwait_end)) { + ompt_callbacks.ompt_callback(ompt_event_taskwait_end)( + my_parallel_id, my_task_id); + } + taskdata->ompt_task_info.frame.reenter_runtime_frame = NULL; + } +#endif + ANNOTATE_HAPPENS_AFTER(taskdata); + } + + KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, " + "returning TASK_CURRENT_NOT_QUEUED\n", gtid, taskdata) ); + + return TASK_CURRENT_NOT_QUEUED; +} + + +//------------------------------------------------- +// __kmpc_omp_taskyield: switch to a different task + +kmp_int32 +__kmpc_omp_taskyield( ident_t *loc_ref, kmp_int32 gtid, int end_part ) +{ + kmp_taskdata_t * taskdata; + kmp_info_t * thread; + int thread_finished = FALSE; + + KMP_COUNT_BLOCK(OMP_TASKYIELD); + KMP_SET_THREAD_STATE_BLOCK(TASKYIELD); + + KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n", + gtid, loc_ref, end_part) ); + + if ( __kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel ) { + // GEH TODO: shouldn't we have some sort of OMPRAP API calls here to mark begin wait? + + thread = __kmp_threads[ gtid ]; + taskdata = thread -> th.th_current_task; + // Should we model this as a task wait or not? + // Debugger: The taskwait is active. Store location and thread encountered the taskwait. +#if USE_ITT_BUILD + // Note: These values are used by ITT events as well. +#endif /* USE_ITT_BUILD */ + taskdata->td_taskwait_counter += 1; + taskdata->td_taskwait_ident = loc_ref; + taskdata->td_taskwait_thread = gtid + 1; + +#if USE_ITT_BUILD + void * itt_sync_obj = __kmp_itt_taskwait_object( gtid ); + if ( itt_sync_obj != NULL ) + __kmp_itt_taskwait_starting( gtid, itt_sync_obj ); +#endif /* USE_ITT_BUILD */ + if ( ! taskdata->td_flags.team_serial ) { + kmp_task_team_t * task_team = thread->th.th_task_team; + if (task_team != NULL) { + if (KMP_TASKING_ENABLED(task_team)) { + __kmp_execute_tasks_32( thread, gtid, NULL, FALSE, &thread_finished + USE_ITT_BUILD_ARG(itt_sync_obj), __kmp_task_stealing_constraint ); + } + } + } +#if USE_ITT_BUILD + if ( itt_sync_obj != NULL ) + __kmp_itt_taskwait_finished( gtid, itt_sync_obj ); +#endif /* USE_ITT_BUILD */ + + // GEH TODO: shouldn't we have some sort of OMPRAP API calls here to mark end of wait? + // Debugger: The taskwait is completed. Location remains, but thread is negated. + taskdata->td_taskwait_thread = - taskdata->td_taskwait_thread; + } + + KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, " + "returning TASK_CURRENT_NOT_QUEUED\n", gtid, taskdata) ); + + return TASK_CURRENT_NOT_QUEUED; +} + + +#if OMP_40_ENABLED +//------------------------------------------------------------------------------------- +// __kmpc_taskgroup: Start a new taskgroup + +void +__kmpc_taskgroup( ident_t* loc, int gtid ) +{ + kmp_info_t * thread = __kmp_threads[ gtid ]; + kmp_taskdata_t * taskdata = thread->th.th_current_task; + kmp_taskgroup_t * tg_new = + (kmp_taskgroup_t *)__kmp_thread_malloc( thread, sizeof( kmp_taskgroup_t ) ); + KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new) ); + tg_new->count = 0; + tg_new->cancel_request = cancel_noreq; + tg_new->parent = taskdata->td_taskgroup; + taskdata->td_taskgroup = tg_new; +} + + +//------------------------------------------------------------------------------------- +// __kmpc_end_taskgroup: Wait until all tasks generated by the current task +// and its descendants are complete + +void +__kmpc_end_taskgroup( ident_t* loc, int gtid ) +{ + kmp_info_t * thread = __kmp_threads[ gtid ]; + kmp_taskdata_t * taskdata = thread->th.th_current_task; + kmp_taskgroup_t * taskgroup = taskdata->td_taskgroup; + int thread_finished = FALSE; + + KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc) ); + KMP_DEBUG_ASSERT( taskgroup != NULL ); + KMP_SET_THREAD_STATE_BLOCK(TASKGROUP); + + if ( __kmp_tasking_mode != tskm_immediate_exec ) { +#if USE_ITT_BUILD + // For ITT the taskgroup wait is similar to taskwait until we need to distinguish them + void * itt_sync_obj = __kmp_itt_taskwait_object( gtid ); + if ( itt_sync_obj != NULL ) + __kmp_itt_taskwait_starting( gtid, itt_sync_obj ); +#endif /* USE_ITT_BUILD */ + +#if OMP_45_ENABLED + if ( ! taskdata->td_flags.team_serial || (thread->th.th_task_team != NULL && thread->th.th_task_team->tt.tt_found_proxy_tasks) ) +#else + if ( ! taskdata->td_flags.team_serial ) +#endif + { + kmp_flag_32 flag(&(taskgroup->count), 0U); + while ( TCR_4(taskgroup->count) != 0 ) { + flag.execute_tasks(thread, gtid, FALSE, &thread_finished + USE_ITT_BUILD_ARG(itt_sync_obj), __kmp_task_stealing_constraint ); + } + } + +#if USE_ITT_BUILD + if ( itt_sync_obj != NULL ) + __kmp_itt_taskwait_finished( gtid, itt_sync_obj ); +#endif /* USE_ITT_BUILD */ + } + KMP_DEBUG_ASSERT( taskgroup->count == 0 ); + + // Restore parent taskgroup for the current task + taskdata->td_taskgroup = taskgroup->parent; + __kmp_thread_free( thread, taskgroup ); + + KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n", gtid, taskdata) ); + ANNOTATE_HAPPENS_AFTER(taskdata); +} +#endif + + +//------------------------------------------------------ +// __kmp_remove_my_task: remove a task from my own deque + +static kmp_task_t * +__kmp_remove_my_task( kmp_info_t * thread, kmp_int32 gtid, kmp_task_team_t *task_team, + kmp_int32 is_constrained ) +{ + kmp_task_t * task; + kmp_taskdata_t * taskdata; + kmp_thread_data_t *thread_data; + kmp_uint32 tail; + + KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec ); + KMP_DEBUG_ASSERT( task_team -> tt.tt_threads_data != NULL ); // Caller should check this condition + + thread_data = & task_team -> tt.tt_threads_data[ __kmp_tid_from_gtid( gtid ) ]; + + KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n", + gtid, thread_data->td.td_deque_ntasks, thread_data->td.td_deque_head, + thread_data->td.td_deque_tail) ); + + if (TCR_4(thread_data -> td.td_deque_ntasks) == 0) { + KA_TRACE(10, ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: ntasks=%d head=%u tail=%u\n", + gtid, thread_data->td.td_deque_ntasks, thread_data->td.td_deque_head, + thread_data->td.td_deque_tail) ); + return NULL; + } + + __kmp_acquire_bootstrap_lock( & thread_data -> td.td_deque_lock ); + + if (TCR_4(thread_data -> td.td_deque_ntasks) == 0) { + __kmp_release_bootstrap_lock( & thread_data -> td.td_deque_lock ); + KA_TRACE(10, ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: ntasks=%d head=%u tail=%u\n", + gtid, thread_data->td.td_deque_ntasks, thread_data->td.td_deque_head, + thread_data->td.td_deque_tail) ); + return NULL; + } + + tail = ( thread_data -> td.td_deque_tail - 1 ) & TASK_DEQUE_MASK(thread_data->td); // Wrap index. + taskdata = thread_data -> td.td_deque[ tail ]; + + if (is_constrained && (taskdata->td_flags.tiedness == TASK_TIED)) { + // we need to check if the candidate obeys task scheduling constraint: + // only child of current task can be scheduled + kmp_taskdata_t * current = thread->th.th_current_task; + kmp_int32 level = current->td_level; + kmp_taskdata_t * parent = taskdata->td_parent; + while ( parent != current && parent->td_level > level ) { + parent = parent->td_parent; // check generation up to the level of the current task + KMP_DEBUG_ASSERT(parent != NULL); + } + if ( parent != current ) { + // If the tail task is not a child, then no other child can appear in the deque. + __kmp_release_bootstrap_lock( & thread_data -> td.td_deque_lock ); + KA_TRACE(10, ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: ntasks=%d head=%u tail=%u\n", + gtid, thread_data->td.td_deque_ntasks, thread_data->td.td_deque_head, + thread_data->td.td_deque_tail) ); + return NULL; + } + } + + thread_data -> td.td_deque_tail = tail; + TCW_4(thread_data -> td.td_deque_ntasks, thread_data -> td.td_deque_ntasks - 1); + + __kmp_release_bootstrap_lock( & thread_data->td.td_deque_lock ); + + KA_TRACE(10, ("__kmp_remove_my_task(exit #2): T#%d task %p removed: ntasks=%d head=%u tail=%u\n", + gtid, taskdata, thread_data->td.td_deque_ntasks, thread_data->td.td_deque_head, + thread_data->td.td_deque_tail) ); + + task = KMP_TASKDATA_TO_TASK( taskdata ); + return task; +} + + +//----------------------------------------------------------- +// __kmp_steal_task: remove a task from another thread's deque +// Assume that calling thread has already checked existence of +// task_team thread_data before calling this routine. + +static kmp_task_t * +__kmp_steal_task( kmp_info_t *victim, kmp_int32 gtid, kmp_task_team_t *task_team, + volatile kmp_uint32 *unfinished_threads, int *thread_finished, + kmp_int32 is_constrained ) +{ + kmp_task_t * task; + kmp_taskdata_t * taskdata; + kmp_thread_data_t *victim_td, *threads_data; + kmp_int32 victim_tid; + + KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec ); + + threads_data = task_team -> tt.tt_threads_data; + KMP_DEBUG_ASSERT( threads_data != NULL ); // Caller should check this condition + + victim_tid = victim->th.th_info.ds.ds_tid; + victim_td = & threads_data[ victim_tid ]; + + KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: task_team=%p ntasks=%d " + "head=%u tail=%u\n", + gtid, __kmp_gtid_from_thread( victim ), task_team, victim_td->td.td_deque_ntasks, + victim_td->td.td_deque_head, victim_td->td.td_deque_tail) ); + + if ( (TCR_4(victim_td -> td.td_deque_ntasks) == 0) || // Caller should not check this condition + (TCR_PTR(victim->th.th_task_team) != task_team)) // GEH: why would this happen? + { + KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: task_team=%p " + "ntasks=%d head=%u tail=%u\n", + gtid, __kmp_gtid_from_thread( victim ), task_team, victim_td->td.td_deque_ntasks, + victim_td->td.td_deque_head, victim_td->td.td_deque_tail) ); + return NULL; + } + + __kmp_acquire_bootstrap_lock( & victim_td -> td.td_deque_lock ); + + // Check again after we acquire the lock + if ( (TCR_4(victim_td -> td.td_deque_ntasks) == 0) || + (TCR_PTR(victim->th.th_task_team) != task_team)) // GEH: why would this happen? + { + __kmp_release_bootstrap_lock( & victim_td -> td.td_deque_lock ); + KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: task_team=%p " + "ntasks=%d head=%u tail=%u\n", + gtid, __kmp_gtid_from_thread( victim ), task_team, victim_td->td.td_deque_ntasks, + victim_td->td.td_deque_head, victim_td->td.td_deque_tail) ); + return NULL; + } + + KMP_DEBUG_ASSERT( victim_td -> td.td_deque != NULL ); + + taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head]; + if ( is_constrained ) { + // we need to check if the candidate obeys task scheduling constraint: + // only descendant of current task can be scheduled + kmp_taskdata_t * current = __kmp_threads[ gtid ]->th.th_current_task; + kmp_int32 level = current->td_level; + kmp_taskdata_t * parent = taskdata->td_parent; + while ( parent != current && parent->td_level > level ) { + parent = parent->td_parent; // check generation up to the level of the current task + KMP_DEBUG_ASSERT(parent != NULL); + } + if ( parent != current ) { + // If the head task is not a descendant of the current task then do not + // steal it. No other task in victim's deque can be a descendant of the + // current task. + __kmp_release_bootstrap_lock( & victim_td -> td.td_deque_lock ); + KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: task_team=%p " + "ntasks=%d head=%u tail=%u\n", + gtid, __kmp_gtid_from_thread( threads_data[victim_tid].td.td_thr ), + task_team, victim_td->td.td_deque_ntasks, + victim_td->td.td_deque_head, victim_td->td.td_deque_tail) ); + return NULL; + } + } + // Bump head pointer and Wrap. + victim_td->td.td_deque_head = (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td); + if (*thread_finished) { + // We need to un-mark this victim as a finished victim. This must be done before + // releasing the lock, or else other threads (starting with the master victim) + // might be prematurely released from the barrier!!! + kmp_uint32 count; + + count = KMP_TEST_THEN_INC32( (kmp_int32 *)unfinished_threads ); + + KA_TRACE(20, ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n", + gtid, count + 1, task_team) ); + + *thread_finished = FALSE; + } + TCW_4(victim_td -> td.td_deque_ntasks, TCR_4(victim_td -> td.td_deque_ntasks) - 1); + + __kmp_release_bootstrap_lock( & victim_td -> td.td_deque_lock ); + + KMP_COUNT_BLOCK(TASK_stolen); + KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d stole task %p from T#%d: task_team=%p " + "ntasks=%d head=%u tail=%u\n", + gtid, taskdata, __kmp_gtid_from_thread( victim ), task_team, + victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, + victim_td->td.td_deque_tail) ); + + task = KMP_TASKDATA_TO_TASK( taskdata ); + return task; +} + + +//----------------------------------------------------------------------------- +// __kmp_execute_tasks_template: Choose and execute tasks until either the condition +// is statisfied (return true) or there are none left (return false). +// final_spin is TRUE if this is the spin at the release barrier. +// thread_finished indicates whether the thread is finished executing all +// the tasks it has on its deque, and is at the release barrier. +// spinner is the location on which to spin. +// spinner == NULL means only execute a single task and return. +// checker is the value to check to terminate the spin. +template <class C> +static inline int __kmp_execute_tasks_template(kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin, + int *thread_finished + USE_ITT_BUILD_ARG(void * itt_sync_obj), kmp_int32 is_constrained) +{ + kmp_task_team_t * task_team = thread->th.th_task_team; + kmp_thread_data_t * threads_data; + kmp_task_t * task; + kmp_info_t * other_thread; + kmp_taskdata_t * current_task = thread -> th.th_current_task; + volatile kmp_uint32 * unfinished_threads; + kmp_int32 nthreads, victim=-2, use_own_tasks=1, new_victim=0, tid=thread->th.th_info.ds.ds_tid; + + KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec ); + KMP_DEBUG_ASSERT( thread == __kmp_threads[ gtid ] ); + + if (task_team == NULL) return FALSE; + + KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d *thread_finished=%d\n", + gtid, final_spin, *thread_finished) ); + + threads_data = (kmp_thread_data_t *)TCR_PTR(task_team -> tt.tt_threads_data); + KMP_DEBUG_ASSERT( threads_data != NULL ); + + nthreads = task_team -> tt.tt_nproc; + unfinished_threads = &(task_team -> tt.tt_unfinished_threads); +#if OMP_45_ENABLED + KMP_DEBUG_ASSERT( nthreads > 1 || task_team->tt.tt_found_proxy_tasks); +#else + KMP_DEBUG_ASSERT( nthreads > 1 ); +#endif + KMP_DEBUG_ASSERT( (int)(TCR_4(*unfinished_threads)) >= 0 ); + + while (1) { // Outer loop keeps trying to find tasks in case of single thread getting tasks from target constructs + while (1) { // Inner loop to find a task and execute it + task = NULL; + if (use_own_tasks) { // check on own queue first + task = __kmp_remove_my_task( thread, gtid, task_team, is_constrained ); + } + if ((task == NULL) && (nthreads > 1)) { // Steal a task + int asleep = 1; + use_own_tasks = 0; + // Try to steal from the last place I stole from successfully. + if (victim == -2) { // haven't stolen anything yet + victim = threads_data[tid].td.td_deque_last_stolen; + if (victim != -1) // if we have a last stolen from victim, get the thread + other_thread = threads_data[victim].td.td_thr; + } + if (victim != -1) { // found last victim + asleep = 0; + } + else if (!new_victim) { // no recent steals and we haven't already used a new victim; select a random thread + do { // Find a different thread to steal work from. + // Pick a random thread. Initial plan was to cycle through all the threads, and only return if + // we tried to steal from every thread, and failed. Arch says that's not such a great idea. + victim = __kmp_get_random(thread) % (nthreads - 1); + if (victim >= tid) { + ++victim; // Adjusts random distribution to exclude self + } + // Found a potential victim + other_thread = threads_data[victim].td.td_thr; + // There is a slight chance that __kmp_enable_tasking() did not wake up all threads + // waiting at the barrier. If victim is sleeping, then wake it up. Since we were going to + // pay the cache miss penalty for referencing another thread's kmp_info_t struct anyway, + // the check shouldn't cost too much performance at this point. In extra barrier mode, tasks + // do not sleep at the separate tasking barrier, so this isn't a problem. + asleep = 0; + if ( ( __kmp_tasking_mode == tskm_task_teams ) && + (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) && + (TCR_PTR(other_thread->th.th_sleep_loc) != NULL)) { + asleep = 1; + __kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread), other_thread->th.th_sleep_loc); + // A sleeping thread should not have any tasks on it's queue. There is a slight + // possibility that it resumes, steals a task from another thread, which spawns more + // tasks, all in the time that it takes this thread to check => don't write an assertion + // that the victim's queue is empty. Try stealing from a different thread. + } + } while (asleep); + } + + if (!asleep) { + // We have a victim to try to steal from + task = __kmp_steal_task(other_thread, gtid, task_team, unfinished_threads, thread_finished, is_constrained); + } + if (task != NULL) { // set last stolen to victim + if (threads_data[tid].td.td_deque_last_stolen != victim) { + threads_data[tid].td.td_deque_last_stolen = victim; + // The pre-refactored code did not try more than 1 successful new vicitm, + // unless the last one generated more local tasks; new_victim keeps track of this + new_victim = 1; + } + } + else { // No tasks found; unset last_stolen + KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1); + victim = -2; // no successful victim found + } + } + + if (task == NULL) // break out of tasking loop + break; + + // Found a task; execute it +#if USE_ITT_BUILD && USE_ITT_NOTIFY + if ( __itt_sync_create_ptr || KMP_ITT_DEBUG ) { + if ( itt_sync_obj == NULL ) { // we are at fork barrier where we could not get the object reliably + itt_sync_obj = __kmp_itt_barrier_object( gtid, bs_forkjoin_barrier ); + } + __kmp_itt_task_starting( itt_sync_obj ); + } +#endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ + __kmp_invoke_task( gtid, task, current_task ); +#if USE_ITT_BUILD + if ( itt_sync_obj != NULL ) __kmp_itt_task_finished( itt_sync_obj ); +#endif /* USE_ITT_BUILD */ + // If this thread is only partway through the barrier and the condition is met, then return now, + // so that the barrier gather/release pattern can proceed. If this thread is in the last spin loop + // in the barrier, waiting to be released, we know that the termination condition will not be + // satisified, so don't waste any cycles checking it. + if (flag == NULL || (!final_spin && flag->done_check())) { + KA_TRACE(15, ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", gtid) ); + return TRUE; + } + if (thread->th.th_task_team == NULL) { + break; + } + KMP_YIELD( __kmp_library == library_throughput ); // Yield before executing next task + // If execution of a stolen task results in more tasks being placed on our run queue, reset use_own_tasks + if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) { + KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned other tasks, restart\n", gtid)); + use_own_tasks = 1; + new_victim = 0; + } + } + + // The task source has been exhausted. If in final spin loop of barrier, check if termination condition is satisfied. +#if OMP_45_ENABLED + // The work queue may be empty but there might be proxy tasks still executing + if (final_spin && TCR_4(current_task->td_incomplete_child_tasks) == 0) +#else + if (final_spin) +#endif + { + // First, decrement the #unfinished threads, if that has not already been done. This decrement + // might be to the spin location, and result in the termination condition being satisfied. + if (! *thread_finished) { + kmp_uint32 count; + + count = KMP_TEST_THEN_DEC32( (kmp_int32 *)unfinished_threads ) - 1; + KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec unfinished_threads to %d task_team=%p\n", + gtid, count, task_team) ); + *thread_finished = TRUE; + } + + // It is now unsafe to reference thread->th.th_team !!! + // Decrementing task_team->tt.tt_unfinished_threads can allow the master thread to pass through + // the barrier, where it might reset each thread's th.th_team field for the next parallel region. + // If we can steal more work, we know that this has not happened yet. + if (flag != NULL && flag->done_check()) { + KA_TRACE(15, ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", gtid) ); + return TRUE; + } + } + + // If this thread's task team is NULL, master has recognized that there are no more tasks; bail out + if (thread->th.th_task_team == NULL) { + KA_TRACE(15, ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid) ); + return FALSE; + } + +#if OMP_45_ENABLED + // We could be getting tasks from target constructs; if this is the only thread, keep trying to execute + // tasks from own queue + if (nthreads == 1) + use_own_tasks = 1; + else +#endif + { + KA_TRACE(15, ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid) ); + return FALSE; + } + } +} + +int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32 *flag, int final_spin, + int *thread_finished + USE_ITT_BUILD_ARG(void * itt_sync_obj), kmp_int32 is_constrained) +{ + return __kmp_execute_tasks_template(thread, gtid, flag, final_spin, thread_finished + USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); +} + +int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64 *flag, int final_spin, + int *thread_finished + USE_ITT_BUILD_ARG(void * itt_sync_obj), kmp_int32 is_constrained) +{ + return __kmp_execute_tasks_template(thread, gtid, flag, final_spin, thread_finished + USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); +} + +int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin, + int *thread_finished + USE_ITT_BUILD_ARG(void * itt_sync_obj), kmp_int32 is_constrained) +{ + return __kmp_execute_tasks_template(thread, gtid, flag, final_spin, thread_finished + USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); +} + + + +//----------------------------------------------------------------------------- +// __kmp_enable_tasking: Allocate task team and resume threads sleeping at the +// next barrier so they can assist in executing enqueued tasks. +// First thread in allocates the task team atomically. + +static void +__kmp_enable_tasking( kmp_task_team_t *task_team, kmp_info_t *this_thr ) +{ + kmp_thread_data_t *threads_data; + int nthreads, i, is_init_thread; + + KA_TRACE( 10, ( "__kmp_enable_tasking(enter): T#%d\n", + __kmp_gtid_from_thread( this_thr ) ) ); + + KMP_DEBUG_ASSERT(task_team != NULL); + KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL); + + nthreads = task_team->tt.tt_nproc; + KMP_DEBUG_ASSERT(nthreads > 0); + KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc); + + // Allocate or increase the size of threads_data if necessary + is_init_thread = __kmp_realloc_task_threads_data( this_thr, task_team ); + + if (!is_init_thread) { + // Some other thread already set up the array. + KA_TRACE( 20, ( "__kmp_enable_tasking(exit): T#%d: threads array already set up.\n", + __kmp_gtid_from_thread( this_thr ) ) ); + return; + } + threads_data = (kmp_thread_data_t *)TCR_PTR(task_team -> tt.tt_threads_data); + KMP_DEBUG_ASSERT( threads_data != NULL ); + + if ( ( __kmp_tasking_mode == tskm_task_teams ) && + ( __kmp_dflt_blocktime != KMP_MAX_BLOCKTIME ) ) + { + // Release any threads sleeping at the barrier, so that they can steal + // tasks and execute them. In extra barrier mode, tasks do not sleep + // at the separate tasking barrier, so this isn't a problem. + for (i = 0; i < nthreads; i++) { + volatile void *sleep_loc; + kmp_info_t *thread = threads_data[i].td.td_thr; + + if (i == this_thr->th.th_info.ds.ds_tid) { + continue; + } + // Since we haven't locked the thread's suspend mutex lock at this + // point, there is a small window where a thread might be putting + // itself to sleep, but hasn't set the th_sleep_loc field yet. + // To work around this, __kmp_execute_tasks_template() periodically checks + // see if other threads are sleeping (using the same random + // mechanism that is used for task stealing) and awakens them if + // they are. + if ( ( sleep_loc = TCR_PTR( thread -> th.th_sleep_loc) ) != NULL ) + { + KF_TRACE( 50, ( "__kmp_enable_tasking: T#%d waking up thread T#%d\n", + __kmp_gtid_from_thread( this_thr ), + __kmp_gtid_from_thread( thread ) ) ); + __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc); + } + else { + KF_TRACE( 50, ( "__kmp_enable_tasking: T#%d don't wake up thread T#%d\n", + __kmp_gtid_from_thread( this_thr ), + __kmp_gtid_from_thread( thread ) ) ); + } + } + } + + KA_TRACE( 10, ( "__kmp_enable_tasking(exit): T#%d\n", + __kmp_gtid_from_thread( this_thr ) ) ); +} + + +/* ------------------------------------------------------------------------ */ +/* // TODO: Check the comment consistency + * Utility routines for "task teams". A task team (kmp_task_t) is kind of + * like a shadow of the kmp_team_t data struct, with a different lifetime. + * After a child * thread checks into a barrier and calls __kmp_release() from + * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no + * longer assume that the kmp_team_t structure is intact (at any moment, the + * master thread may exit the barrier code and free the team data structure, + * and return the threads to the thread pool). + * + * This does not work with the the tasking code, as the thread is still + * expected to participate in the execution of any tasks that may have been + * spawned my a member of the team, and the thread still needs access to all + * to each thread in the team, so that it can steal work from it. + * + * Enter the existence of the kmp_task_team_t struct. It employs a reference + * counting mechanims, and is allocated by the master thread before calling + * __kmp_<barrier_kind>_release, and then is release by the last thread to + * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes + * of the kmp_task_team_t structs for consecutive barriers can overlap + * (and will, unless the master thread is the last thread to exit the barrier + * release phase, which is not typical). + * + * The existence of such a struct is useful outside the context of tasking, + * but for now, I'm trying to keep it specific to the OMP_30_ENABLED macro, + * so that any performance differences show up when comparing the 2.5 vs. 3.0 + * libraries. + * + * We currently use the existence of the threads array as an indicator that + * tasks were spawned since the last barrier. If the structure is to be + * useful outside the context of tasking, then this will have to change, but + * not settting the field minimizes the performance impact of tasking on + * barriers, when no explicit tasks were spawned (pushed, actually). + */ + + +static kmp_task_team_t *__kmp_free_task_teams = NULL; // Free list for task_team data structures +// Lock for task team data structures +static kmp_bootstrap_lock_t __kmp_task_team_lock = KMP_BOOTSTRAP_LOCK_INITIALIZER( __kmp_task_team_lock ); + + +//------------------------------------------------------------------------------ +// __kmp_alloc_task_deque: +// Allocates a task deque for a particular thread, and initialize the necessary +// data structures relating to the deque. This only happens once per thread +// per task team since task teams are recycled. +// No lock is needed during allocation since each thread allocates its own +// deque. + +static void +__kmp_alloc_task_deque( kmp_info_t *thread, kmp_thread_data_t *thread_data ) +{ + __kmp_init_bootstrap_lock( & thread_data -> td.td_deque_lock ); + KMP_DEBUG_ASSERT( thread_data -> td.td_deque == NULL ); + + // Initialize last stolen task field to "none" + thread_data -> td.td_deque_last_stolen = -1; + + KMP_DEBUG_ASSERT( TCR_4(thread_data -> td.td_deque_ntasks) == 0 ); + KMP_DEBUG_ASSERT( thread_data -> td.td_deque_head == 0 ); + KMP_DEBUG_ASSERT( thread_data -> td.td_deque_tail == 0 ); + + KE_TRACE( 10, ( "__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n", + __kmp_gtid_from_thread( thread ), INITIAL_TASK_DEQUE_SIZE, thread_data ) ); + // Allocate space for task deque, and zero the deque + // Cannot use __kmp_thread_calloc() because threads not around for + // kmp_reap_task_team( ). + thread_data -> td.td_deque = (kmp_taskdata_t **) + __kmp_allocate( INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); + thread_data -> td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; +} + +//------------------------------------------------------------------------------ +// __kmp_realloc_task_deque: +// Re-allocates a task deque for a particular thread, copies the content from the old deque +// and adjusts the necessary data structures relating to the deque. +// This operation must be done with a the deque_lock being held + +static void __kmp_realloc_task_deque ( kmp_info_t *thread, kmp_thread_data_t *thread_data ) +{ + kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td); + kmp_int32 new_size = 2 * size; + + KE_TRACE( 10, ( "__kmp_realloc_task_deque: T#%d reallocating deque[from %d to %d] for thread_data %p\n", + __kmp_gtid_from_thread( thread ), size, new_size, thread_data ) ); + + kmp_taskdata_t ** new_deque = (kmp_taskdata_t **) __kmp_allocate( new_size * sizeof(kmp_taskdata_t *)); + + int i,j; + for ( i = thread_data->td.td_deque_head, j = 0; j < size; i = (i+1) & TASK_DEQUE_MASK(thread_data->td), j++ ) + new_deque[j] = thread_data->td.td_deque[i]; + + __kmp_free(thread_data->td.td_deque); + + thread_data -> td.td_deque_head = 0; + thread_data -> td.td_deque_tail = size; + thread_data -> td.td_deque = new_deque; + thread_data -> td.td_deque_size = new_size; +} + +//------------------------------------------------------------------------------ +// __kmp_free_task_deque: +// Deallocates a task deque for a particular thread. +// Happens at library deallocation so don't need to reset all thread data fields. + +static void +__kmp_free_task_deque( kmp_thread_data_t *thread_data ) +{ + __kmp_acquire_bootstrap_lock( & thread_data -> td.td_deque_lock ); + + if ( thread_data -> td.td_deque != NULL ) { + TCW_4(thread_data -> td.td_deque_ntasks, 0); + __kmp_free( thread_data -> td.td_deque ); + thread_data -> td.td_deque = NULL; + } + __kmp_release_bootstrap_lock( & thread_data -> td.td_deque_lock ); + +#ifdef BUILD_TIED_TASK_STACK + // GEH: Figure out what to do here for td_susp_tied_tasks + if ( thread_data -> td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY ) { + __kmp_free_task_stack( __kmp_thread_from_gtid( gtid ), thread_data ); + } +#endif // BUILD_TIED_TASK_STACK +} + + +//------------------------------------------------------------------------------ +// __kmp_realloc_task_threads_data: +// Allocates a threads_data array for a task team, either by allocating an initial +// array or enlarging an existing array. Only the first thread to get the lock +// allocs or enlarges the array and re-initializes the array eleemnts. +// That thread returns "TRUE", the rest return "FALSE". +// Assumes that the new array size is given by task_team -> tt.tt_nproc. +// The current size is given by task_team -> tt.tt_max_threads. + +static int +__kmp_realloc_task_threads_data( kmp_info_t *thread, kmp_task_team_t *task_team ) +{ + kmp_thread_data_t ** threads_data_p; + kmp_int32 nthreads, maxthreads; + int is_init_thread = FALSE; + + if ( TCR_4(task_team -> tt.tt_found_tasks) ) { + // Already reallocated and initialized. + return FALSE; + } + + threads_data_p = & task_team -> tt.tt_threads_data; + nthreads = task_team -> tt.tt_nproc; + maxthreads = task_team -> tt.tt_max_threads; + + // All threads must lock when they encounter the first task of the implicit task + // region to make sure threads_data fields are (re)initialized before used. + __kmp_acquire_bootstrap_lock( & task_team -> tt.tt_threads_lock ); + + if ( ! TCR_4(task_team -> tt.tt_found_tasks) ) { + // first thread to enable tasking + kmp_team_t *team = thread -> th.th_team; + int i; + + is_init_thread = TRUE; + if ( maxthreads < nthreads ) { + + if ( *threads_data_p != NULL ) { + kmp_thread_data_t *old_data = *threads_data_p; + kmp_thread_data_t *new_data = NULL; + + KE_TRACE( 10, ( "__kmp_realloc_task_threads_data: T#%d reallocating " + "threads data for task_team %p, new_size = %d, old_size = %d\n", + __kmp_gtid_from_thread( thread ), task_team, + nthreads, maxthreads ) ); + // Reallocate threads_data to have more elements than current array + // Cannot use __kmp_thread_realloc() because threads not around for + // kmp_reap_task_team( ). Note all new array entries are initialized + // to zero by __kmp_allocate(). + new_data = (kmp_thread_data_t *) + __kmp_allocate( nthreads * sizeof(kmp_thread_data_t) ); + // copy old data to new data + KMP_MEMCPY_S( (void *) new_data, nthreads * sizeof(kmp_thread_data_t), + (void *) old_data, + maxthreads * sizeof(kmp_taskdata_t *) ); + +#ifdef BUILD_TIED_TASK_STACK + // GEH: Figure out if this is the right thing to do + for (i = maxthreads; i < nthreads; i++) { + kmp_thread_data_t *thread_data = & (*threads_data_p)[i]; + __kmp_init_task_stack( __kmp_gtid_from_thread( thread ), thread_data ); + } +#endif // BUILD_TIED_TASK_STACK + // Install the new data and free the old data + (*threads_data_p) = new_data; + __kmp_free( old_data ); + } + else { + KE_TRACE( 10, ( "__kmp_realloc_task_threads_data: T#%d allocating " + "threads data for task_team %p, size = %d\n", + __kmp_gtid_from_thread( thread ), task_team, nthreads ) ); + // Make the initial allocate for threads_data array, and zero entries + // Cannot use __kmp_thread_calloc() because threads not around for + // kmp_reap_task_team( ). + ANNOTATE_IGNORE_WRITES_BEGIN(); + *threads_data_p = (kmp_thread_data_t *) + __kmp_allocate( nthreads * sizeof(kmp_thread_data_t) ); + ANNOTATE_IGNORE_WRITES_END(); +#ifdef BUILD_TIED_TASK_STACK + // GEH: Figure out if this is the right thing to do + for (i = 0; i < nthreads; i++) { + kmp_thread_data_t *thread_data = & (*threads_data_p)[i]; + __kmp_init_task_stack( __kmp_gtid_from_thread( thread ), thread_data ); + } +#endif // BUILD_TIED_TASK_STACK + } + task_team -> tt.tt_max_threads = nthreads; + } + else { + // If array has (more than) enough elements, go ahead and use it + KMP_DEBUG_ASSERT( *threads_data_p != NULL ); + } + + // initialize threads_data pointers back to thread_info structures + for (i = 0; i < nthreads; i++) { + kmp_thread_data_t *thread_data = & (*threads_data_p)[i]; + thread_data -> td.td_thr = team -> t.t_threads[i]; + + if ( thread_data -> td.td_deque_last_stolen >= nthreads) { + // The last stolen field survives across teams / barrier, and the number + // of threads may have changed. It's possible (likely?) that a new + // parallel region will exhibit the same behavior as the previous region. + thread_data -> td.td_deque_last_stolen = -1; + } + } + + KMP_MB(); + TCW_SYNC_4(task_team -> tt.tt_found_tasks, TRUE); + } + + __kmp_release_bootstrap_lock( & task_team -> tt.tt_threads_lock ); + return is_init_thread; +} + + +//------------------------------------------------------------------------------ +// __kmp_free_task_threads_data: +// Deallocates a threads_data array for a task team, including any attached +// tasking deques. Only occurs at library shutdown. + +static void +__kmp_free_task_threads_data( kmp_task_team_t *task_team ) +{ + __kmp_acquire_bootstrap_lock( & task_team -> tt.tt_threads_lock ); + if ( task_team -> tt.tt_threads_data != NULL ) { + int i; + for (i = 0; i < task_team->tt.tt_max_threads; i++ ) { + __kmp_free_task_deque( & task_team -> tt.tt_threads_data[i] ); + } + __kmp_free( task_team -> tt.tt_threads_data ); + task_team -> tt.tt_threads_data = NULL; + } + __kmp_release_bootstrap_lock( & task_team -> tt.tt_threads_lock ); +} + + +//------------------------------------------------------------------------------ +// __kmp_allocate_task_team: +// Allocates a task team associated with a specific team, taking it from +// the global task team free list if possible. Also initializes data structures. + +static kmp_task_team_t * +__kmp_allocate_task_team( kmp_info_t *thread, kmp_team_t *team ) +{ + kmp_task_team_t *task_team = NULL; + int nthreads; + + KA_TRACE( 20, ( "__kmp_allocate_task_team: T#%d entering; team = %p\n", + (thread ? __kmp_gtid_from_thread( thread ) : -1), team ) ); + + if (TCR_PTR(__kmp_free_task_teams) != NULL) { + // Take a task team from the task team pool + __kmp_acquire_bootstrap_lock( &__kmp_task_team_lock ); + if (__kmp_free_task_teams != NULL) { + task_team = __kmp_free_task_teams; + TCW_PTR(__kmp_free_task_teams, task_team -> tt.tt_next); + task_team -> tt.tt_next = NULL; + } + __kmp_release_bootstrap_lock( &__kmp_task_team_lock ); + } + + if (task_team == NULL) { + KE_TRACE( 10, ( "__kmp_allocate_task_team: T#%d allocating " + "task team for team %p\n", + __kmp_gtid_from_thread( thread ), team ) ); + // Allocate a new task team if one is not available. + // Cannot use __kmp_thread_malloc() because threads not around for + // kmp_reap_task_team( ). + task_team = (kmp_task_team_t *) __kmp_allocate( sizeof(kmp_task_team_t) ); + __kmp_init_bootstrap_lock( & task_team -> tt.tt_threads_lock ); + //task_team -> tt.tt_threads_data = NULL; // AC: __kmp_allocate zeroes returned memory + //task_team -> tt.tt_max_threads = 0; + //task_team -> tt.tt_next = NULL; + } + + TCW_4(task_team -> tt.tt_found_tasks, FALSE); +#if OMP_45_ENABLED + TCW_4(task_team -> tt.tt_found_proxy_tasks, FALSE); +#endif + task_team -> tt.tt_nproc = nthreads = team->t.t_nproc; + + TCW_4( task_team -> tt.tt_unfinished_threads, nthreads ); + TCW_4( task_team -> tt.tt_active, TRUE ); + + KA_TRACE( 20, ( "__kmp_allocate_task_team: T#%d exiting; task_team = %p unfinished_threads init'd to %d\n", + (thread ? __kmp_gtid_from_thread( thread ) : -1), task_team, task_team -> tt.tt_unfinished_threads) ); + return task_team; +} + + +//------------------------------------------------------------------------------ +// __kmp_free_task_team: +// Frees the task team associated with a specific thread, and adds it +// to the global task team free list. + +void +__kmp_free_task_team( kmp_info_t *thread, kmp_task_team_t *task_team ) +{ + KA_TRACE( 20, ( "__kmp_free_task_team: T#%d task_team = %p\n", + thread ? __kmp_gtid_from_thread( thread ) : -1, task_team ) ); + + // Put task team back on free list + __kmp_acquire_bootstrap_lock( & __kmp_task_team_lock ); + + KMP_DEBUG_ASSERT( task_team -> tt.tt_next == NULL ); + task_team -> tt.tt_next = __kmp_free_task_teams; + TCW_PTR(__kmp_free_task_teams, task_team); + + __kmp_release_bootstrap_lock( & __kmp_task_team_lock ); +} + + +//------------------------------------------------------------------------------ +// __kmp_reap_task_teams: +// Free all the task teams on the task team free list. +// Should only be done during library shutdown. +// Cannot do anything that needs a thread structure or gtid since they are already gone. + +void +__kmp_reap_task_teams( void ) +{ + kmp_task_team_t *task_team; + + if ( TCR_PTR(__kmp_free_task_teams) != NULL ) { + // Free all task_teams on the free list + __kmp_acquire_bootstrap_lock( &__kmp_task_team_lock ); + while ( ( task_team = __kmp_free_task_teams ) != NULL ) { + __kmp_free_task_teams = task_team -> tt.tt_next; + task_team -> tt.tt_next = NULL; + + // Free threads_data if necessary + if ( task_team -> tt.tt_threads_data != NULL ) { + __kmp_free_task_threads_data( task_team ); + } + __kmp_free( task_team ); + } + __kmp_release_bootstrap_lock( &__kmp_task_team_lock ); + } +} + +//------------------------------------------------------------------------------ +// __kmp_wait_to_unref_task_teams: +// Some threads could still be in the fork barrier release code, possibly +// trying to steal tasks. Wait for each thread to unreference its task team. +// +void +__kmp_wait_to_unref_task_teams(void) +{ + kmp_info_t *thread; + kmp_uint32 spins; + int done; + + KMP_INIT_YIELD( spins ); + + for (;;) { + done = TRUE; + + // TODO: GEH - this may be is wrong because some sync would be necessary + // in case threads are added to the pool during the traversal. + // Need to verify that lock for thread pool is held when calling + // this routine. + for (thread = (kmp_info_t *)__kmp_thread_pool; + thread != NULL; + thread = thread->th.th_next_pool) + { +#if KMP_OS_WINDOWS + DWORD exit_val; +#endif + if ( TCR_PTR(thread->th.th_task_team) == NULL ) { + KA_TRACE( 10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n", + __kmp_gtid_from_thread( thread ) ) ); + continue; + } +#if KMP_OS_WINDOWS + // TODO: GEH - add this check for Linux* OS / OS X* as well? + if (!__kmp_is_thread_alive(thread, &exit_val)) { + thread->th.th_task_team = NULL; + continue; + } +#endif + + done = FALSE; // Because th_task_team pointer is not NULL for this thread + + KA_TRACE( 10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to unreference task_team\n", + __kmp_gtid_from_thread( thread ) ) ); + + if ( __kmp_dflt_blocktime != KMP_MAX_BLOCKTIME ) { + volatile void *sleep_loc; + // If the thread is sleeping, awaken it. + if ( ( sleep_loc = TCR_PTR( thread->th.th_sleep_loc) ) != NULL ) { + KA_TRACE( 10, ( "__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n", + __kmp_gtid_from_thread( thread ), __kmp_gtid_from_thread( thread ) ) ); + __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc); + } + } + } + if (done) { + break; + } + + // If we are oversubscribed, + // or have waited a bit (and library mode is throughput), yield. + // Pause is in the following code. + KMP_YIELD( TCR_4(__kmp_nth) > __kmp_avail_proc ); + KMP_YIELD_SPIN( spins ); // Yields only if KMP_LIBRARY=throughput + } +} + + +//------------------------------------------------------------------------------ +// __kmp_task_team_setup: Create a task_team for the current team, but use +// an already created, unused one if it already exists. +void +__kmp_task_team_setup( kmp_info_t *this_thr, kmp_team_t *team, int always ) +{ + KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec ); + + // If this task_team hasn't been created yet, allocate it. It will be used in the region after the next. + // If it exists, it is the current task team and shouldn't be touched yet as it may still be in use. + if (team->t.t_task_team[this_thr->th.th_task_state] == NULL && (always || team->t.t_nproc > 1) ) { + team->t.t_task_team[this_thr->th.th_task_state] = __kmp_allocate_task_team( this_thr, team ); + KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created new task_team %p for team %d at parity=%d\n", + __kmp_gtid_from_thread(this_thr), team->t.t_task_team[this_thr->th.th_task_state], + ((team != NULL) ? team->t.t_id : -1), this_thr->th.th_task_state)); + } + + // After threads exit the release, they will call sync, and then point to this other task_team; make sure it is + // allocated and properly initialized. As threads spin in the barrier release phase, they will continue to use the + // previous task_team struct(above), until they receive the signal to stop checking for tasks (they can't safely + // reference the kmp_team_t struct, which could be reallocated by the master thread). No task teams are formed for + // serialized teams. + if (team->t.t_nproc > 1) { + int other_team = 1 - this_thr->th.th_task_state; + if (team->t.t_task_team[other_team] == NULL) { // setup other team as well + team->t.t_task_team[other_team] = __kmp_allocate_task_team( this_thr, team ); + KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created second new task_team %p for team %d at parity=%d\n", + __kmp_gtid_from_thread( this_thr ), team->t.t_task_team[other_team], + ((team != NULL) ? team->t.t_id : -1), other_team )); + } + else { // Leave the old task team struct in place for the upcoming region; adjust as needed + kmp_task_team_t *task_team = team->t.t_task_team[other_team]; + if (!task_team->tt.tt_active || team->t.t_nproc != task_team->tt.tt_nproc) { + TCW_4(task_team->tt.tt_nproc, team->t.t_nproc); + TCW_4(task_team->tt.tt_found_tasks, FALSE); +#if OMP_45_ENABLED + TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); +#endif + TCW_4(task_team->tt.tt_unfinished_threads, team->t.t_nproc ); + TCW_4(task_team->tt.tt_active, TRUE ); + } + // if team size has changed, the first thread to enable tasking will realloc threads_data if necessary + KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d reset next task_team %p for team %d at parity=%d\n", + __kmp_gtid_from_thread( this_thr ), team->t.t_task_team[other_team], + ((team != NULL) ? team->t.t_id : -1), other_team )); + } + } +} + + +//------------------------------------------------------------------------------ +// __kmp_task_team_sync: Propagation of task team data from team to threads +// which happens just after the release phase of a team barrier. This may be +// called by any thread, but only for teams with # threads > 1. + +void +__kmp_task_team_sync( kmp_info_t *this_thr, kmp_team_t *team ) +{ + KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec ); + + // Toggle the th_task_state field, to switch which task_team this thread refers to + this_thr->th.th_task_state = 1 - this_thr->th.th_task_state; + // It is now safe to propagate the task team pointer from the team struct to the current thread. + TCW_PTR(this_thr->th.th_task_team, team->t.t_task_team[this_thr->th.th_task_state]); + KA_TRACE(20, ("__kmp_task_team_sync: Thread T#%d task team switched to task_team %p from Team #%d (parity=%d)\n", + __kmp_gtid_from_thread( this_thr ), this_thr->th.th_task_team, + ((team != NULL) ? team->t.t_id : -1), this_thr->th.th_task_state)); +} + + +//-------------------------------------------------------------------------------------------- +// __kmp_task_team_wait: Master thread waits for outstanding tasks after the barrier gather +// phase. Only called by master thread if #threads in team > 1 or if proxy tasks were created. +// wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off by passing in 0 +// optionally as the last argument. When wait is zero, master thread does not wait for +// unfinished_threads to reach 0. +void +__kmp_task_team_wait( kmp_info_t *this_thr, kmp_team_t *team + USE_ITT_BUILD_ARG(void * itt_sync_obj) + , int wait) +{ + kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state]; + + KMP_DEBUG_ASSERT( __kmp_tasking_mode != tskm_immediate_exec ); + KMP_DEBUG_ASSERT( task_team == this_thr->th.th_task_team ); + + if ( ( task_team != NULL ) && KMP_TASKING_ENABLED(task_team) ) { + if (wait) { + KA_TRACE(20, ("__kmp_task_team_wait: Master T#%d waiting for all tasks (for unfinished_threads to reach 0) on task_team = %p\n", + __kmp_gtid_from_thread(this_thr), task_team)); + // Worker threads may have dropped through to release phase, but could still be executing tasks. Wait + // here for tasks to complete. To avoid memory contention, only master thread checks termination condition. + kmp_flag_32 flag(&task_team->tt.tt_unfinished_threads, 0U); + flag.wait(this_thr, TRUE + USE_ITT_BUILD_ARG(itt_sync_obj)); + } + // Deactivate the old task team, so that the worker threads will stop referencing it while spinning. + KA_TRACE(20, ("__kmp_task_team_wait: Master T#%d deactivating task_team %p: " + "setting active to false, setting local and team's pointer to NULL\n", + __kmp_gtid_from_thread(this_thr), task_team)); +#if OMP_45_ENABLED + KMP_DEBUG_ASSERT( task_team->tt.tt_nproc > 1 || task_team->tt.tt_found_proxy_tasks == TRUE ); + TCW_SYNC_4( task_team->tt.tt_found_proxy_tasks, FALSE ); +#else + KMP_DEBUG_ASSERT( task_team->tt.tt_nproc > 1 ); +#endif + TCW_SYNC_4( task_team->tt.tt_active, FALSE ); + KMP_MB(); + + TCW_PTR(this_thr->th.th_task_team, NULL); + } +} + + +//------------------------------------------------------------------------------ +// __kmp_tasking_barrier: +// This routine may only called when __kmp_tasking_mode == tskm_extra_barrier. +// Internal function to execute all tasks prior to a regular barrier or a +// join barrier. It is a full barrier itself, which unfortunately turns +// regular barriers into double barriers and join barriers into 1 1/2 +// barriers. +void +__kmp_tasking_barrier( kmp_team_t *team, kmp_info_t *thread, int gtid ) +{ + volatile kmp_uint32 *spin = &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads; + int flag = FALSE; + KMP_DEBUG_ASSERT( __kmp_tasking_mode == tskm_extra_barrier ); + +#if USE_ITT_BUILD + KMP_FSYNC_SPIN_INIT( spin, (kmp_uint32*) NULL ); +#endif /* USE_ITT_BUILD */ + kmp_flag_32 spin_flag(spin, 0U); + while (! spin_flag.execute_tasks(thread, gtid, TRUE, &flag + USE_ITT_BUILD_ARG(NULL), 0 ) ) { +#if USE_ITT_BUILD + // TODO: What about itt_sync_obj?? + KMP_FSYNC_SPIN_PREPARE( spin ); +#endif /* USE_ITT_BUILD */ + + if( TCR_4(__kmp_global.g.g_done) ) { + if( __kmp_global.g.g_abort ) + __kmp_abort_thread( ); + break; + } + KMP_YIELD( TRUE ); // GH: We always yield here + } +#if USE_ITT_BUILD + KMP_FSYNC_SPIN_ACQUIRED( (void*) spin ); +#endif /* USE_ITT_BUILD */ +} + + +#if OMP_45_ENABLED + +/* __kmp_give_task puts a task into a given thread queue if: + - the queue for that thread was created + - there's space in that queue + + Because of this, __kmp_push_task needs to check if there's space after getting the lock + */ +static bool __kmp_give_task ( kmp_info_t *thread, kmp_int32 tid, kmp_task_t * task, kmp_int32 pass ) +{ + kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task); + kmp_task_team_t * task_team = taskdata->td_task_team; + + KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n", taskdata, tid ) ); + + // If task_team is NULL something went really bad... + KMP_DEBUG_ASSERT( task_team != NULL ); + + bool result = false; + kmp_thread_data_t * thread_data = & task_team -> tt.tt_threads_data[ tid ]; + + if (thread_data -> td.td_deque == NULL ) { + // There's no queue in this thread, go find another one + // We're guaranteed that at least one thread has a queue + KA_TRACE(30, ("__kmp_give_task: thread %d has no queue while giving task %p.\n", tid, taskdata ) ); + return result; + } + + if ( TCR_4(thread_data -> td.td_deque_ntasks) >= TASK_DEQUE_SIZE(thread_data->td) ) + { + KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to thread %d.\n", taskdata, tid ) ); + + // if this deque is bigger than the pass ratio give a chance to another thread + if ( TASK_DEQUE_SIZE(thread_data->td)/INITIAL_TASK_DEQUE_SIZE >= pass ) return result; + + __kmp_acquire_bootstrap_lock( & thread_data-> td.td_deque_lock ); + __kmp_realloc_task_deque(thread,thread_data); + + } else { + + __kmp_acquire_bootstrap_lock( & thread_data-> td.td_deque_lock ); + + if ( TCR_4(thread_data -> td.td_deque_ntasks) >= TASK_DEQUE_SIZE(thread_data->td) ) + { + KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to thread %d.\n", taskdata, tid ) ); + + // if this deque is bigger than the pass ratio give a chance to another thread + if ( TASK_DEQUE_SIZE(thread_data->td)/INITIAL_TASK_DEQUE_SIZE >= pass ) + goto release_and_exit; + + __kmp_realloc_task_deque(thread,thread_data); + } + } + + // lock is held here, and there is space in the deque + + thread_data -> td.td_deque[ thread_data -> td.td_deque_tail ] = taskdata; + // Wrap index. + thread_data -> td.td_deque_tail = ( thread_data -> td.td_deque_tail + 1 ) & TASK_DEQUE_MASK(thread_data->td); + TCW_4(thread_data -> td.td_deque_ntasks, TCR_4(thread_data -> td.td_deque_ntasks) + 1); + + result = true; + KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n", taskdata, tid ) ); + +release_and_exit: + __kmp_release_bootstrap_lock( & thread_data-> td.td_deque_lock ); + + return result; +} + + +/* The finish of the a proxy tasks is divided in two pieces: + - the top half is the one that can be done from a thread outside the team + - the bottom half must be run from a them within the team + + In order to run the bottom half the task gets queued back into one of the threads of the team. + Once the td_incomplete_child_task counter of the parent is decremented the threads can leave the barriers. + So, the bottom half needs to be queued before the counter is decremented. The top half is therefore divided in two parts: + - things that can be run before queuing the bottom half + - things that must be run after queuing the bottom half + + This creates a second race as the bottom half can free the task before the second top half is executed. To avoid this + we use the td_incomplete_child_task of the proxy task to synchronize the top and bottom half. +*/ + +static void __kmp_first_top_half_finish_proxy( kmp_taskdata_t * taskdata ) +{ + KMP_DEBUG_ASSERT( taskdata -> td_flags.tasktype == TASK_EXPLICIT ); + KMP_DEBUG_ASSERT( taskdata -> td_flags.proxy == TASK_PROXY ); + KMP_DEBUG_ASSERT( taskdata -> td_flags.complete == 0 ); + KMP_DEBUG_ASSERT( taskdata -> td_flags.freed == 0 ); + + taskdata -> td_flags.complete = 1; // mark the task as completed + + if ( taskdata->td_taskgroup ) + KMP_TEST_THEN_DEC32( (kmp_int32 *)(& taskdata->td_taskgroup->count) ); + + // Create an imaginary children for this task so the bottom half cannot release the task before we have completed the second top half + TCI_4(taskdata->td_incomplete_child_tasks); +} + +static void __kmp_second_top_half_finish_proxy( kmp_taskdata_t * taskdata ) +{ + kmp_int32 children = 0; + + // Predecrement simulated by "- 1" calculation + children = KMP_TEST_THEN_DEC32( (kmp_int32 *)(& taskdata -> td_parent -> td_incomplete_child_tasks) ) - 1; + KMP_DEBUG_ASSERT( children >= 0 ); + + // Remove the imaginary children + TCD_4(taskdata->td_incomplete_child_tasks); +} + +static void __kmp_bottom_half_finish_proxy( kmp_int32 gtid, kmp_task_t * ptask ) +{ + kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(ptask); + kmp_info_t * thread = __kmp_threads[ gtid ]; + + KMP_DEBUG_ASSERT( taskdata -> td_flags.proxy == TASK_PROXY ); + KMP_DEBUG_ASSERT( taskdata -> td_flags.complete == 1 ); // top half must run before bottom half + + // We need to wait to make sure the top half is finished + // Spinning here should be ok as this should happen quickly + while ( TCR_4(taskdata->td_incomplete_child_tasks) > 0 ) ; + + __kmp_release_deps(gtid,taskdata); + __kmp_free_task_and_ancestors(gtid, taskdata, thread); +} + +/*! +@ingroup TASKING +@param gtid Global Thread ID of encountering thread +@param ptask Task which execution is completed + +Execute the completation of a proxy task from a thread of that is part of the team. Run first and bottom halves directly. +*/ +void __kmpc_proxy_task_completed( kmp_int32 gtid, kmp_task_t *ptask ) +{ + KMP_DEBUG_ASSERT( ptask != NULL ); + kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(ptask); + KA_TRACE(10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n", gtid, taskdata ) ); + + KMP_DEBUG_ASSERT( taskdata->td_flags.proxy == TASK_PROXY ); + + __kmp_first_top_half_finish_proxy(taskdata); + __kmp_second_top_half_finish_proxy(taskdata); + __kmp_bottom_half_finish_proxy(gtid,ptask); + + KA_TRACE(10, ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n", gtid, taskdata ) ); +} + +/*! +@ingroup TASKING +@param ptask Task which execution is completed + +Execute the completation of a proxy task from a thread that could not belong to the team. +*/ +void __kmpc_proxy_task_completed_ooo ( kmp_task_t *ptask ) +{ + KMP_DEBUG_ASSERT( ptask != NULL ); + kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(ptask); + + KA_TRACE(10, ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n", taskdata ) ); + + KMP_DEBUG_ASSERT( taskdata->td_flags.proxy == TASK_PROXY ); + + __kmp_first_top_half_finish_proxy(taskdata); + + // Enqueue task to complete bottom half completion from a thread within the corresponding team + kmp_team_t * team = taskdata->td_team; + kmp_int32 nthreads = team->t.t_nproc; + kmp_info_t *thread; + + //This should be similar to start_k = __kmp_get_random( thread ) % nthreads but we cannot use __kmp_get_random here + kmp_int32 start_k = 0; + kmp_int32 pass = 1; + kmp_int32 k = start_k; + + do { + //For now we're just linearly trying to find a thread + thread = team->t.t_threads[k]; + k = (k+1) % nthreads; + + // we did a full pass through all the threads + if ( k == start_k ) pass = pass << 1; + + } while ( !__kmp_give_task( thread, k, ptask, pass ) ); + + __kmp_second_top_half_finish_proxy(taskdata); + + KA_TRACE(10, ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n", taskdata ) ); +} + +//--------------------------------------------------------------------------------- +// __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task for taskloop +// +// thread: allocating thread +// task_src: pointer to source task to be duplicated +// returns: a pointer to the allocated kmp_task_t structure (task). +kmp_task_t * +__kmp_task_dup_alloc( kmp_info_t *thread, kmp_task_t *task_src ) +{ + kmp_task_t *task; + kmp_taskdata_t *taskdata; + kmp_taskdata_t *taskdata_src; + kmp_taskdata_t *parent_task = thread->th.th_current_task; + size_t shareds_offset; + size_t task_size; + + KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread, task_src) ); + taskdata_src = KMP_TASK_TO_TASKDATA( task_src ); + KMP_DEBUG_ASSERT( taskdata_src->td_flags.proxy == TASK_FULL ); // it should not be proxy task + KMP_DEBUG_ASSERT( taskdata_src->td_flags.tasktype == TASK_EXPLICIT ); + task_size = taskdata_src->td_size_alloc; + + // Allocate a kmp_taskdata_t block and a kmp_task_t block. + KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread, task_size) ); + #if USE_FAST_MEMORY + taskdata = (kmp_taskdata_t *)__kmp_fast_allocate( thread, task_size ); + #else + taskdata = (kmp_taskdata_t *)__kmp_thread_malloc( thread, task_size ); + #endif /* USE_FAST_MEMORY */ + KMP_MEMCPY(taskdata, taskdata_src, task_size); + + task = KMP_TASKDATA_TO_TASK(taskdata); + + // Initialize new task (only specific fields not affected by memcpy) + taskdata->td_task_id = KMP_GEN_TASK_ID(); + if( task->shareds != NULL ) { // need setup shareds pointer + shareds_offset = (char*)task_src->shareds - (char*)taskdata_src; + task->shareds = &((char*)taskdata)[shareds_offset]; + KMP_DEBUG_ASSERT( (((kmp_uintptr_t)task->shareds) & (sizeof(void*)-1)) == 0 ); + } + taskdata->td_alloc_thread = thread; + taskdata->td_taskgroup = parent_task->td_taskgroup; // task inherits the taskgroup from the parent task + + // Only need to keep track of child task counts if team parallel and tasking not serialized + if ( !( taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser ) ) { + KMP_TEST_THEN_INC32( (kmp_int32 *)(& parent_task->td_incomplete_child_tasks) ); + if ( parent_task->td_taskgroup ) + KMP_TEST_THEN_INC32( (kmp_int32 *)(& parent_task->td_taskgroup->count) ); + // Only need to keep track of allocated child tasks for explicit tasks since implicit not deallocated + if ( taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT ) + KMP_TEST_THEN_INC32( (kmp_int32 *)(& taskdata->td_parent->td_allocated_child_tasks) ); + } + + KA_TRACE(20, ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n", + thread, taskdata, taskdata->td_parent) ); +#if OMPT_SUPPORT + __kmp_task_init_ompt(taskdata, thread->th.th_info.ds.ds_gtid, (void*)task->routine); +#endif + return task; +} + +// Routine optionally generated by th ecompiler for setting the lastprivate flag +// and calling needed constructors for private/firstprivate objects +// (used to form taskloop tasks from pattern task) +typedef void(*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32); + +//--------------------------------------------------------------------------------- +// __kmp_taskloop_linear: Start tasks of the taskloop linearly +// +// loc Source location information +// gtid Global thread ID +// task Task with whole loop iteration range +// lb Pointer to loop lower bound +// ub Pointer to loop upper bound +// st Loop stride +// sched Schedule specified 0/1/2 for none/grainsize/num_tasks +// grainsize Schedule value if specified +// task_dup Tasks duplication routine +void +__kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task, + kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, + int sched, kmp_uint64 grainsize, void *task_dup ) +{ + KMP_COUNT_BLOCK(OMP_TASKLOOP); + KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling); + p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; + kmp_uint64 tc; + kmp_uint64 lower = *lb; // compiler provides global bounds here + kmp_uint64 upper = *ub; + kmp_uint64 i, num_tasks = 0, extras = 0; + kmp_info_t *thread = __kmp_threads[gtid]; + kmp_taskdata_t *current_task = thread->th.th_current_task; + kmp_task_t *next_task; + kmp_int32 lastpriv = 0; + size_t lower_offset = (char*)lb - (char*)task; // remember offset of lb in the task structure + size_t upper_offset = (char*)ub - (char*)task; // remember offset of ub in the task structure + + // compute trip count + if ( st == 1 ) { // most common case + tc = upper - lower + 1; + } else if ( st < 0 ) { + tc = (lower - upper) / (-st) + 1; + } else { // st > 0 + tc = (upper - lower) / st + 1; + } + if(tc == 0) { + KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d zero-trip loop\n", gtid)); + // free the pattern task and exit + __kmp_task_start( gtid, task, current_task ); + // do not execute anything for zero-trip loop + __kmp_task_finish( gtid, task, current_task ); + return; + } + + // compute num_tasks/grainsize based on the input provided + switch( sched ) { + case 0: // no schedule clause specified, we can choose the default + // let's try to schedule (team_size*10) tasks + grainsize = thread->th.th_team_nproc * 10; + case 2: // num_tasks provided + if( grainsize > tc ) { + num_tasks = tc; // too big num_tasks requested, adjust values + grainsize = 1; + extras = 0; + } else { + num_tasks = grainsize; + grainsize = tc / num_tasks; + extras = tc % num_tasks; + } + break; + case 1: // grainsize provided + if( grainsize > tc ) { + num_tasks = 1; // too big grainsize requested, adjust values + grainsize = tc; + extras = 0; + } else { + num_tasks = tc / grainsize; + grainsize = tc / num_tasks; // adjust grainsize for balanced distribution of iterations + extras = tc % num_tasks; + } + break; + default: + KMP_ASSERT2(0, "unknown scheduling of taskloop"); + } + KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras); + KMP_DEBUG_ASSERT(num_tasks > extras); + KMP_DEBUG_ASSERT(num_tasks > 0); + KA_TRACE(20, ("__kmpc_taskloop: T#%d will launch: num_tasks %lld, grainsize %lld, extras %lld\n", + gtid, num_tasks, grainsize, extras)); + + // Main loop, launch num_tasks tasks, assign grainsize iterations each task + for( i = 0; i < num_tasks; ++i ) { + kmp_uint64 chunk_minus_1; + if( extras == 0 ) { + chunk_minus_1 = grainsize - 1; + } else { + chunk_minus_1 = grainsize; + --extras; // first extras iterations get bigger chunk (grainsize+1) + } + upper = lower + st * chunk_minus_1; + if( i == num_tasks - 1 ) { + // schedule the last task, set lastprivate flag + lastpriv = 1; +#if KMP_DEBUG + if( st == 1 ) + KMP_DEBUG_ASSERT(upper == *ub); + else if( st > 0 ) + KMP_DEBUG_ASSERT(upper+st > *ub); + else + KMP_DEBUG_ASSERT(upper+st < *ub); +#endif + } + next_task = __kmp_task_dup_alloc(thread, task); // allocate new task + *(kmp_uint64*)((char*)next_task + lower_offset) = lower; // adjust task-specific bounds + *(kmp_uint64*)((char*)next_task + upper_offset) = upper; + if( ptask_dup != NULL ) + ptask_dup(next_task, task, lastpriv); // set lastprivate flag, construct fistprivates, etc. + KA_TRACE(20, ("__kmpc_taskloop: T#%d schedule task %p: lower %lld, upper %lld (offsets %p %p)\n", + gtid, next_task, lower, upper, lower_offset, upper_offset)); + __kmp_omp_task(gtid, next_task, true); // schedule new task + lower = upper + st; // adjust lower bound for the next iteration + } + // free the pattern task and exit + __kmp_task_start( gtid, task, current_task ); + // do not execute the pattern task, just do bookkeeping + __kmp_task_finish( gtid, task, current_task ); +} + +/*! +@ingroup TASKING +@param loc Source location information +@param gtid Global thread ID +@param task Task structure +@param if_val Value of the if clause +@param lb Pointer to loop lower bound +@param ub Pointer to loop upper bound +@param st Loop stride +@param nogroup Flag, 1 if nogroup clause specified, 0 otherwise +@param sched Schedule specified 0/1/2 for none/grainsize/num_tasks +@param grainsize Schedule value if specified +@param task_dup Tasks duplication routine + +Execute the taskloop construct. +*/ +void +__kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, + kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, + int nogroup, int sched, kmp_uint64 grainsize, void *task_dup ) +{ + kmp_taskdata_t * taskdata = KMP_TASK_TO_TASKDATA(task); + KMP_DEBUG_ASSERT( task != NULL ); + + KA_TRACE(10, ("__kmpc_taskloop(enter): T#%d, pattern task %p, lb %lld ub %lld st %lld, grain %llu(%d)\n", + gtid, taskdata, *lb, *ub, st, grainsize, sched)); + + // check if clause value first + if( if_val == 0 ) { // if(0) specified, mark task as serial + taskdata->td_flags.task_serial = 1; + taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied + } + if( nogroup == 0 ) { + __kmpc_taskgroup( loc, gtid ); + } + + if( 1 /* AC: use some heuristic here to choose task scheduling method */ ) { + __kmp_taskloop_linear( loc, gtid, task, lb, ub, st, sched, grainsize, task_dup ); + } + + if( nogroup == 0 ) { + __kmpc_end_taskgroup( loc, gtid ); + } + KA_TRACE(10, ("__kmpc_taskloop(exit): T#%d\n", gtid)); +} + +#endif |