summaryrefslogtreecommitdiffstats
path: root/mlir/lib/Dialect/StandardOps/Ops.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'mlir/lib/Dialect/StandardOps/Ops.cpp')
-rw-r--r--mlir/lib/Dialect/StandardOps/Ops.cpp2102
1 files changed, 2102 insertions, 0 deletions
diff --git a/mlir/lib/Dialect/StandardOps/Ops.cpp b/mlir/lib/Dialect/StandardOps/Ops.cpp
new file mode 100644
index 00000000000..4e484e6b50b
--- /dev/null
+++ b/mlir/lib/Dialect/StandardOps/Ops.cpp
@@ -0,0 +1,2102 @@
+//===- Ops.cpp - Standard MLIR Operations ---------------------------------===//
+//
+// Copyright 2019 The MLIR Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// =============================================================================
+
+#include "mlir/Dialect/StandardOps/Ops.h"
+
+#include "mlir/IR/AffineExpr.h"
+#include "mlir/IR/AffineMap.h"
+#include "mlir/IR/Builders.h"
+#include "mlir/IR/Function.h"
+#include "mlir/IR/Matchers.h"
+#include "mlir/IR/Module.h"
+#include "mlir/IR/OpImplementation.h"
+#include "mlir/IR/PatternMatch.h"
+#include "mlir/IR/StandardTypes.h"
+#include "mlir/IR/Value.h"
+#include "mlir/Support/MathExtras.h"
+#include "mlir/Support/STLExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/FormatVariadic.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace mlir;
+
+//===----------------------------------------------------------------------===//
+// StandardOpsDialect
+//===----------------------------------------------------------------------===//
+
+/// A custom binary operation printer that omits the "std." prefix from the
+/// operation names.
+static void printStandardBinaryOp(Operation *op, OpAsmPrinter *p) {
+ assert(op->getNumOperands() == 2 && "binary op should have two operands");
+ assert(op->getNumResults() == 1 && "binary op should have one result");
+
+ // If not all the operand and result types are the same, just use the
+ // generic assembly form to avoid omitting information in printing.
+ auto resultType = op->getResult(0)->getType();
+ if (op->getOperand(0)->getType() != resultType ||
+ op->getOperand(1)->getType() != resultType) {
+ p->printGenericOp(op);
+ return;
+ }
+
+ *p << op->getName().getStringRef().drop_front(strlen("std.")) << ' '
+ << *op->getOperand(0) << ", " << *op->getOperand(1);
+ p->printOptionalAttrDict(op->getAttrs());
+
+ // Now we can output only one type for all operands and the result.
+ *p << " : " << op->getResult(0)->getType();
+}
+
+/// A custom cast operation printer that omits the "std." prefix from the
+/// operation names.
+static void printStandardCastOp(Operation *op, OpAsmPrinter *p) {
+ *p << op->getName().getStringRef().drop_front(strlen("std.")) << ' '
+ << *op->getOperand(0) << " : " << op->getOperand(0)->getType() << " to "
+ << op->getResult(0)->getType();
+}
+
+/// A custom cast operation verifier.
+template <typename T> static LogicalResult verifyCastOp(T op) {
+ auto opType = op.getOperand()->getType();
+ auto resType = op.getType();
+ if (!T::areCastCompatible(opType, resType))
+ return op.emitError("operand type ") << opType << " and result type "
+ << resType << " are cast incompatible";
+
+ return success();
+}
+
+StandardOpsDialect::StandardOpsDialect(MLIRContext *context)
+ : Dialect(getDialectNamespace(), context) {
+ addOperations<DmaStartOp, DmaWaitOp,
+#define GET_OP_LIST
+#include "mlir/Dialect/StandardOps/Ops.cpp.inc"
+ >();
+}
+
+void mlir::printDimAndSymbolList(Operation::operand_iterator begin,
+ Operation::operand_iterator end,
+ unsigned numDims, OpAsmPrinter *p) {
+ *p << '(';
+ p->printOperands(begin, begin + numDims);
+ *p << ')';
+
+ if (begin + numDims != end) {
+ *p << '[';
+ p->printOperands(begin + numDims, end);
+ *p << ']';
+ }
+}
+
+// Parses dimension and symbol list, and sets 'numDims' to the number of
+// dimension operands parsed.
+// Returns 'false' on success and 'true' on error.
+ParseResult mlir::parseDimAndSymbolList(OpAsmParser *parser,
+ SmallVector<Value *, 4> &operands,
+ unsigned &numDims) {
+ SmallVector<OpAsmParser::OperandType, 8> opInfos;
+ if (parser->parseOperandList(opInfos, OpAsmParser::Delimiter::Paren))
+ return failure();
+ // Store number of dimensions for validation by caller.
+ numDims = opInfos.size();
+
+ // Parse the optional symbol operands.
+ auto affineIntTy = parser->getBuilder().getIndexType();
+ if (parser->parseOperandList(opInfos,
+ OpAsmParser::Delimiter::OptionalSquare) ||
+ parser->resolveOperands(opInfos, affineIntTy, operands))
+ return failure();
+ return success();
+}
+
+/// Matches a ConstantIndexOp.
+/// TODO: This should probably just be a general matcher that uses m_Constant
+/// and checks the operation for an index type.
+static detail::op_matcher<ConstantIndexOp> m_ConstantIndex() {
+ return detail::op_matcher<ConstantIndexOp>();
+}
+
+//===----------------------------------------------------------------------===//
+// Common canonicalization pattern support logic
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// This is a common class used for patterns of the form
+/// "someop(memrefcast) -> someop". It folds the source of any memref_cast
+/// into the root operation directly.
+struct MemRefCastFolder : public RewritePattern {
+ /// The rootOpName is the name of the root operation to match against.
+ MemRefCastFolder(StringRef rootOpName, MLIRContext *context)
+ : RewritePattern(rootOpName, 1, context) {}
+
+ PatternMatchResult match(Operation *op) const override {
+ for (auto *operand : op->getOperands())
+ if (matchPattern(operand, m_Op<MemRefCastOp>()))
+ return matchSuccess();
+
+ return matchFailure();
+ }
+
+ void rewrite(Operation *op, PatternRewriter &rewriter) const override {
+ for (unsigned i = 0, e = op->getNumOperands(); i != e; ++i)
+ if (auto *memref = op->getOperand(i)->getDefiningOp())
+ if (auto cast = dyn_cast<MemRefCastOp>(memref))
+ op->setOperand(i, cast.getOperand());
+ rewriter.updatedRootInPlace(op);
+ }
+};
+
+/// Performs const folding `calculate` with element-wise behavior on the two
+/// attributes in `operands` and returns the result if possible.
+template <class AttrElementT,
+ class ElementValueT = typename AttrElementT::ValueType,
+ class CalculationT =
+ std::function<ElementValueT(ElementValueT, ElementValueT)>>
+Attribute constFoldBinaryOp(ArrayRef<Attribute> operands,
+ const CalculationT &calculate) {
+ assert(operands.size() == 2 && "binary op takes two operands");
+
+ if (auto lhs = operands[0].dyn_cast_or_null<AttrElementT>()) {
+ auto rhs = operands[1].dyn_cast_or_null<AttrElementT>();
+ if (!rhs || lhs.getType() != rhs.getType())
+ return {};
+
+ return AttrElementT::get(lhs.getType(),
+ calculate(lhs.getValue(), rhs.getValue()));
+ } else if (auto lhs = operands[0].dyn_cast_or_null<SplatElementsAttr>()) {
+ auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>();
+ if (!rhs || lhs.getType() != rhs.getType())
+ return {};
+
+ auto elementResult = constFoldBinaryOp<AttrElementT>(
+ {lhs.getSplatValue(), rhs.getSplatValue()}, calculate);
+ if (!elementResult)
+ return {};
+
+ return DenseElementsAttr::get(lhs.getType(), elementResult);
+ }
+ return {};
+}
+} // end anonymous namespace.
+
+//===----------------------------------------------------------------------===//
+// AddFOp
+//===----------------------------------------------------------------------===//
+
+OpFoldResult AddFOp::fold(ArrayRef<Attribute> operands) {
+ return constFoldBinaryOp<FloatAttr>(
+ operands, [](APFloat a, APFloat b) { return a + b; });
+}
+
+//===----------------------------------------------------------------------===//
+// AddIOp
+//===----------------------------------------------------------------------===//
+
+OpFoldResult AddIOp::fold(ArrayRef<Attribute> operands) {
+ /// addi(x, 0) -> x
+ if (matchPattern(rhs(), m_Zero()))
+ return lhs();
+
+ return constFoldBinaryOp<IntegerAttr>(operands,
+ [](APInt a, APInt b) { return a + b; });
+}
+
+//===----------------------------------------------------------------------===//
+// AllocOp
+//===----------------------------------------------------------------------===//
+
+static void print(OpAsmPrinter *p, AllocOp op) {
+ *p << "alloc";
+
+ // Print dynamic dimension operands.
+ MemRefType type = op.getType();
+ printDimAndSymbolList(op.operand_begin(), op.operand_end(),
+ type.getNumDynamicDims(), p);
+ p->printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"map"});
+ *p << " : " << type;
+}
+
+static ParseResult parseAllocOp(OpAsmParser *parser, OperationState *result) {
+ MemRefType type;
+
+ // Parse the dimension operands and optional symbol operands, followed by a
+ // memref type.
+ unsigned numDimOperands;
+ if (parseDimAndSymbolList(parser, result->operands, numDimOperands) ||
+ parser->parseOptionalAttributeDict(result->attributes) ||
+ parser->parseColonType(type))
+ return failure();
+
+ // Check numDynamicDims against number of question marks in memref type.
+ // Note: this check remains here (instead of in verify()), because the
+ // partition between dim operands and symbol operands is lost after parsing.
+ // Verification still checks that the total number of operands matches
+ // the number of symbols in the affine map, plus the number of dynamic
+ // dimensions in the memref.
+ if (numDimOperands != type.getNumDynamicDims())
+ return parser->emitError(parser->getNameLoc())
+ << "dimension operand count does not equal memref dynamic dimension "
+ "count";
+ result->types.push_back(type);
+ return success();
+}
+
+static LogicalResult verify(AllocOp op) {
+ auto memRefType = op.getResult()->getType().dyn_cast<MemRefType>();
+ if (!memRefType)
+ return op.emitOpError("result must be a memref");
+
+ unsigned numSymbols = 0;
+ if (!memRefType.getAffineMaps().empty()) {
+ // Store number of symbols used in affine map (used in subsequent check).
+ AffineMap affineMap = memRefType.getAffineMaps()[0];
+ numSymbols = affineMap.getNumSymbols();
+ }
+
+ // Check that the total number of operands matches the number of symbols in
+ // the affine map, plus the number of dynamic dimensions specified in the
+ // memref type.
+ unsigned numDynamicDims = memRefType.getNumDynamicDims();
+ if (op.getOperation()->getNumOperands() != numDynamicDims + numSymbols)
+ return op.emitOpError(
+ "operand count does not equal dimension plus symbol operand count");
+
+ // Verify that all operands are of type Index.
+ for (auto operandType : op.getOperandTypes())
+ if (!operandType.isIndex())
+ return op.emitOpError("requires operands to be of type Index");
+ return success();
+}
+
+namespace {
+/// Fold constant dimensions into an alloc operation.
+struct SimplifyAllocConst : public OpRewritePattern<AllocOp> {
+ using OpRewritePattern<AllocOp>::OpRewritePattern;
+
+ PatternMatchResult matchAndRewrite(AllocOp alloc,
+ PatternRewriter &rewriter) const override {
+ // Check to see if any dimensions operands are constants. If so, we can
+ // substitute and drop them.
+ if (llvm::none_of(alloc.getOperands(), [](Value *operand) {
+ return matchPattern(operand, m_ConstantIndex());
+ }))
+ return matchFailure();
+
+ auto memrefType = alloc.getType();
+
+ // Ok, we have one or more constant operands. Collect the non-constant ones
+ // and keep track of the resultant memref type to build.
+ SmallVector<int64_t, 4> newShapeConstants;
+ newShapeConstants.reserve(memrefType.getRank());
+ SmallVector<Value *, 4> newOperands;
+ SmallVector<Value *, 4> droppedOperands;
+
+ unsigned dynamicDimPos = 0;
+ for (unsigned dim = 0, e = memrefType.getRank(); dim < e; ++dim) {
+ int64_t dimSize = memrefType.getDimSize(dim);
+ // If this is already static dimension, keep it.
+ if (dimSize != -1) {
+ newShapeConstants.push_back(dimSize);
+ continue;
+ }
+ auto *defOp = alloc.getOperand(dynamicDimPos)->getDefiningOp();
+ if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) {
+ // Dynamic shape dimension will be folded.
+ newShapeConstants.push_back(constantIndexOp.getValue());
+ // Record to check for zero uses later below.
+ droppedOperands.push_back(constantIndexOp);
+ } else {
+ // Dynamic shape dimension not folded; copy operand from old memref.
+ newShapeConstants.push_back(-1);
+ newOperands.push_back(alloc.getOperand(dynamicDimPos));
+ }
+ dynamicDimPos++;
+ }
+
+ // Create new memref type (which will have fewer dynamic dimensions).
+ auto newMemRefType = MemRefType::get(
+ newShapeConstants, memrefType.getElementType(),
+ memrefType.getAffineMaps(), memrefType.getMemorySpace());
+ assert(static_cast<int64_t>(newOperands.size()) ==
+ newMemRefType.getNumDynamicDims());
+
+ // Create and insert the alloc op for the new memref.
+ auto newAlloc =
+ rewriter.create<AllocOp>(alloc.getLoc(), newMemRefType, newOperands);
+ // Insert a cast so we have the same type as the old alloc.
+ auto resultCast = rewriter.create<MemRefCastOp>(alloc.getLoc(), newAlloc,
+ alloc.getType());
+
+ rewriter.replaceOp(alloc, {resultCast}, droppedOperands);
+ return matchSuccess();
+ }
+};
+
+/// Fold alloc operations with no uses. Alloc has side effects on the heap,
+/// but can still be deleted if it has zero uses.
+struct SimplifyDeadAlloc : public OpRewritePattern<AllocOp> {
+ using OpRewritePattern<AllocOp>::OpRewritePattern;
+
+ PatternMatchResult matchAndRewrite(AllocOp alloc,
+ PatternRewriter &rewriter) const override {
+ // Check if the alloc'ed value has any uses.
+ if (!alloc.use_empty())
+ return matchFailure();
+
+ // If it doesn't, we can eliminate it.
+ alloc.erase();
+ return matchSuccess();
+ }
+};
+} // end anonymous namespace.
+
+void AllocOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
+ MLIRContext *context) {
+ results.insert<SimplifyAllocConst, SimplifyDeadAlloc>(context);
+}
+
+//===----------------------------------------------------------------------===//
+// BranchOp
+//===----------------------------------------------------------------------===//
+
+static ParseResult parseBranchOp(OpAsmParser *parser, OperationState *result) {
+ Block *dest;
+ SmallVector<Value *, 4> destOperands;
+ if (parser->parseSuccessorAndUseList(dest, destOperands))
+ return failure();
+ result->addSuccessor(dest, destOperands);
+ return success();
+}
+
+static void print(OpAsmPrinter *p, BranchOp op) {
+ *p << "br ";
+ p->printSuccessorAndUseList(op.getOperation(), 0);
+}
+
+Block *BranchOp::getDest() { return getOperation()->getSuccessor(0); }
+
+void BranchOp::setDest(Block *block) {
+ return getOperation()->setSuccessor(block, 0);
+}
+
+void BranchOp::eraseOperand(unsigned index) {
+ getOperation()->eraseSuccessorOperand(0, index);
+}
+
+//===----------------------------------------------------------------------===//
+// CallOp
+//===----------------------------------------------------------------------===//
+
+static ParseResult parseCallOp(OpAsmParser *parser, OperationState *result) {
+ SymbolRefAttr calleeAttr;
+ FunctionType calleeType;
+ SmallVector<OpAsmParser::OperandType, 4> operands;
+ auto calleeLoc = parser->getNameLoc();
+ if (parser->parseAttribute(calleeAttr, "callee", result->attributes) ||
+ parser->parseOperandList(operands, OpAsmParser::Delimiter::Paren) ||
+ parser->parseOptionalAttributeDict(result->attributes) ||
+ parser->parseColonType(calleeType) ||
+ parser->addTypesToList(calleeType.getResults(), result->types) ||
+ parser->resolveOperands(operands, calleeType.getInputs(), calleeLoc,
+ result->operands))
+ return failure();
+
+ return success();
+}
+
+static void print(OpAsmPrinter *p, CallOp op) {
+ *p << "call " << op.getAttr("callee") << '(';
+ p->printOperands(op.getOperands());
+ *p << ')';
+ p->printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"callee"});
+ *p << " : ";
+ p->printType(op.getCalleeType());
+}
+
+static LogicalResult verify(CallOp op) {
+ // Check that the callee attribute was specified.
+ auto fnAttr = op.getAttrOfType<SymbolRefAttr>("callee");
+ if (!fnAttr)
+ return op.emitOpError("requires a 'callee' symbol reference attribute");
+ auto fn =
+ op.getParentOfType<ModuleOp>().lookupSymbol<FuncOp>(fnAttr.getValue());
+ if (!fn)
+ return op.emitOpError() << "'" << fnAttr.getValue()
+ << "' does not reference a valid function";
+
+ // Verify that the operand and result types match the callee.
+ auto fnType = fn.getType();
+ if (fnType.getNumInputs() != op.getNumOperands())
+ return op.emitOpError("incorrect number of operands for callee");
+
+ for (unsigned i = 0, e = fnType.getNumInputs(); i != e; ++i)
+ if (op.getOperand(i)->getType() != fnType.getInput(i))
+ return op.emitOpError("operand type mismatch");
+
+ if (fnType.getNumResults() != op.getNumResults())
+ return op.emitOpError("incorrect number of results for callee");
+
+ for (unsigned i = 0, e = fnType.getNumResults(); i != e; ++i)
+ if (op.getResult(i)->getType() != fnType.getResult(i))
+ return op.emitOpError("result type mismatch");
+
+ return success();
+}
+
+FunctionType CallOp::getCalleeType() {
+ SmallVector<Type, 4> resultTypes(getResultTypes());
+ SmallVector<Type, 8> argTypes(getOperandTypes());
+ return FunctionType::get(argTypes, resultTypes, getContext());
+}
+
+//===----------------------------------------------------------------------===//
+// CallIndirectOp
+//===----------------------------------------------------------------------===//
+namespace {
+/// Fold indirect calls that have a constant function as the callee operand.
+struct SimplifyIndirectCallWithKnownCallee
+ : public OpRewritePattern<CallIndirectOp> {
+ using OpRewritePattern<CallIndirectOp>::OpRewritePattern;
+
+ PatternMatchResult matchAndRewrite(CallIndirectOp indirectCall,
+ PatternRewriter &rewriter) const override {
+ // Check that the callee is a constant callee.
+ SymbolRefAttr calledFn;
+ if (!matchPattern(indirectCall.getCallee(), m_Constant(&calledFn)))
+ return matchFailure();
+
+ // Replace with a direct call.
+ SmallVector<Type, 8> callResults(indirectCall.getResultTypes());
+ SmallVector<Value *, 8> callOperands(indirectCall.getArgOperands());
+ rewriter.replaceOpWithNewOp<CallOp>(indirectCall, calledFn.getValue(),
+ callResults, callOperands);
+ return matchSuccess();
+ }
+};
+} // end anonymous namespace.
+
+static ParseResult parseCallIndirectOp(OpAsmParser *parser,
+ OperationState *result) {
+ FunctionType calleeType;
+ OpAsmParser::OperandType callee;
+ llvm::SMLoc operandsLoc;
+ SmallVector<OpAsmParser::OperandType, 4> operands;
+ return failure(
+ parser->parseOperand(callee) ||
+ parser->getCurrentLocation(&operandsLoc) ||
+ parser->parseOperandList(operands, OpAsmParser::Delimiter::Paren) ||
+ parser->parseOptionalAttributeDict(result->attributes) ||
+ parser->parseColonType(calleeType) ||
+ parser->resolveOperand(callee, calleeType, result->operands) ||
+ parser->resolveOperands(operands, calleeType.getInputs(), operandsLoc,
+ result->operands) ||
+ parser->addTypesToList(calleeType.getResults(), result->types));
+}
+
+static void print(OpAsmPrinter *p, CallIndirectOp op) {
+ *p << "call_indirect ";
+ p->printOperand(op.getCallee());
+ *p << '(';
+ p->printOperands(op.getArgOperands());
+ *p << ')';
+ p->printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"callee"});
+ *p << " : " << op.getCallee()->getType();
+}
+
+static LogicalResult verify(CallIndirectOp op) {
+ // The callee must be a function.
+ auto fnType = op.getCallee()->getType().dyn_cast<FunctionType>();
+ if (!fnType)
+ return op.emitOpError("callee must have function type");
+
+ // Verify that the operand and result types match the callee.
+ if (fnType.getNumInputs() != op.getNumOperands() - 1)
+ return op.emitOpError("incorrect number of operands for callee");
+
+ for (unsigned i = 0, e = fnType.getNumInputs(); i != e; ++i)
+ if (op.getOperand(i + 1)->getType() != fnType.getInput(i))
+ return op.emitOpError("operand type mismatch");
+
+ if (fnType.getNumResults() != op.getNumResults())
+ return op.emitOpError("incorrect number of results for callee");
+
+ for (unsigned i = 0, e = fnType.getNumResults(); i != e; ++i)
+ if (op.getResult(i)->getType() != fnType.getResult(i))
+ return op.emitOpError("result type mismatch");
+
+ return success();
+}
+
+void CallIndirectOp::getCanonicalizationPatterns(
+ OwningRewritePatternList &results, MLIRContext *context) {
+ results.insert<SimplifyIndirectCallWithKnownCallee>(context);
+}
+
+//===----------------------------------------------------------------------===//
+// General helpers for comparison ops
+//===----------------------------------------------------------------------===//
+
+// Return the type of the same shape (scalar, vector or tensor) containing i1.
+static Type getCheckedI1SameShape(Builder *build, Type type) {
+ auto i1Type = build->getI1Type();
+ if (type.isIntOrIndexOrFloat())
+ return i1Type;
+ if (auto tensorType = type.dyn_cast<RankedTensorType>())
+ return build->getTensorType(tensorType.getShape(), i1Type);
+ if (type.isa<UnrankedTensorType>())
+ return build->getTensorType(i1Type);
+ if (auto vectorType = type.dyn_cast<VectorType>())
+ return build->getVectorType(vectorType.getShape(), i1Type);
+ return Type();
+}
+
+static Type getI1SameShape(Builder *build, Type type) {
+ Type res = getCheckedI1SameShape(build, type);
+ assert(res && "expected type with valid i1 shape");
+ return res;
+}
+
+//===----------------------------------------------------------------------===//
+// CmpIOp
+//===----------------------------------------------------------------------===//
+
+// Returns an array of mnemonics for CmpIPredicates indexed by values thereof.
+static inline const char *const *getCmpIPredicateNames() {
+ static const char *predicateNames[]{
+ /*EQ*/ "eq",
+ /*NE*/ "ne",
+ /*SLT*/ "slt",
+ /*SLE*/ "sle",
+ /*SGT*/ "sgt",
+ /*SGE*/ "sge",
+ /*ULT*/ "ult",
+ /*ULE*/ "ule",
+ /*UGT*/ "ugt",
+ /*UGE*/ "uge",
+ };
+ static_assert(std::extent<decltype(predicateNames)>::value ==
+ (size_t)CmpIPredicate::NumPredicates,
+ "wrong number of predicate names");
+ return predicateNames;
+}
+
+// Returns a value of the predicate corresponding to the given mnemonic.
+// Returns NumPredicates (one-past-end) if there is no such mnemonic.
+CmpIPredicate CmpIOp::getPredicateByName(StringRef name) {
+ return llvm::StringSwitch<CmpIPredicate>(name)
+ .Case("eq", CmpIPredicate::EQ)
+ .Case("ne", CmpIPredicate::NE)
+ .Case("slt", CmpIPredicate::SLT)
+ .Case("sle", CmpIPredicate::SLE)
+ .Case("sgt", CmpIPredicate::SGT)
+ .Case("sge", CmpIPredicate::SGE)
+ .Case("ult", CmpIPredicate::ULT)
+ .Case("ule", CmpIPredicate::ULE)
+ .Case("ugt", CmpIPredicate::UGT)
+ .Case("uge", CmpIPredicate::UGE)
+ .Default(CmpIPredicate::NumPredicates);
+}
+
+static void buildCmpIOp(Builder *build, OperationState *result,
+ CmpIPredicate predicate, Value *lhs, Value *rhs) {
+ result->addOperands({lhs, rhs});
+ result->types.push_back(getI1SameShape(build, lhs->getType()));
+ result->addAttribute(
+ CmpIOp::getPredicateAttrName(),
+ build->getI64IntegerAttr(static_cast<int64_t>(predicate)));
+}
+
+static ParseResult parseCmpIOp(OpAsmParser *parser, OperationState *result) {
+ SmallVector<OpAsmParser::OperandType, 2> ops;
+ SmallVector<NamedAttribute, 4> attrs;
+ Attribute predicateNameAttr;
+ Type type;
+ if (parser->parseAttribute(predicateNameAttr, CmpIOp::getPredicateAttrName(),
+ attrs) ||
+ parser->parseComma() || parser->parseOperandList(ops, 2) ||
+ parser->parseOptionalAttributeDict(attrs) ||
+ parser->parseColonType(type) ||
+ parser->resolveOperands(ops, type, result->operands))
+ return failure();
+
+ if (!predicateNameAttr.isa<StringAttr>())
+ return parser->emitError(parser->getNameLoc(),
+ "expected string comparison predicate attribute");
+
+ // Rewrite string attribute to an enum value.
+ StringRef predicateName = predicateNameAttr.cast<StringAttr>().getValue();
+ auto predicate = CmpIOp::getPredicateByName(predicateName);
+ if (predicate == CmpIPredicate::NumPredicates)
+ return parser->emitError(parser->getNameLoc())
+ << "unknown comparison predicate \"" << predicateName << "\"";
+
+ auto builder = parser->getBuilder();
+ Type i1Type = getCheckedI1SameShape(&builder, type);
+ if (!i1Type)
+ return parser->emitError(parser->getNameLoc(),
+ "expected type with valid i1 shape");
+
+ attrs[0].second = builder.getI64IntegerAttr(static_cast<int64_t>(predicate));
+ result->attributes = attrs;
+
+ result->addTypes({i1Type});
+ return success();
+}
+
+static void print(OpAsmPrinter *p, CmpIOp op) {
+ *p << "cmpi ";
+
+ auto predicateValue =
+ op.getAttrOfType<IntegerAttr>(CmpIOp::getPredicateAttrName()).getInt();
+ assert(predicateValue >= static_cast<int>(CmpIPredicate::FirstValidValue) &&
+ predicateValue < static_cast<int>(CmpIPredicate::NumPredicates) &&
+ "unknown predicate index");
+ Builder b(op.getContext());
+ auto predicateStringAttr =
+ b.getStringAttr(getCmpIPredicateNames()[predicateValue]);
+ p->printAttribute(predicateStringAttr);
+
+ *p << ", ";
+ p->printOperand(op.lhs());
+ *p << ", ";
+ p->printOperand(op.rhs());
+ p->printOptionalAttrDict(op.getAttrs(),
+ /*elidedAttrs=*/{CmpIOp::getPredicateAttrName()});
+ *p << " : " << op.lhs()->getType();
+}
+
+static LogicalResult verify(CmpIOp op) {
+ auto predicateAttr =
+ op.getAttrOfType<IntegerAttr>(CmpIOp::getPredicateAttrName());
+ if (!predicateAttr)
+ return op.emitOpError("requires an integer attribute named 'predicate'");
+ auto predicate = predicateAttr.getInt();
+ if (predicate < (int64_t)CmpIPredicate::FirstValidValue ||
+ predicate >= (int64_t)CmpIPredicate::NumPredicates)
+ return op.emitOpError("'predicate' attribute value out of range");
+
+ return success();
+}
+
+// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer
+// comparison predicates.
+static bool applyCmpPredicate(CmpIPredicate predicate, const APInt &lhs,
+ const APInt &rhs) {
+ switch (predicate) {
+ case CmpIPredicate::EQ:
+ return lhs.eq(rhs);
+ case CmpIPredicate::NE:
+ return lhs.ne(rhs);
+ case CmpIPredicate::SLT:
+ return lhs.slt(rhs);
+ case CmpIPredicate::SLE:
+ return lhs.sle(rhs);
+ case CmpIPredicate::SGT:
+ return lhs.sgt(rhs);
+ case CmpIPredicate::SGE:
+ return lhs.sge(rhs);
+ case CmpIPredicate::ULT:
+ return lhs.ult(rhs);
+ case CmpIPredicate::ULE:
+ return lhs.ule(rhs);
+ case CmpIPredicate::UGT:
+ return lhs.ugt(rhs);
+ case CmpIPredicate::UGE:
+ return lhs.uge(rhs);
+ default:
+ llvm_unreachable("unknown comparison predicate");
+ }
+}
+
+// Constant folding hook for comparisons.
+OpFoldResult CmpIOp::fold(ArrayRef<Attribute> operands) {
+ assert(operands.size() == 2 && "cmpi takes two arguments");
+
+ auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
+ auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
+ if (!lhs || !rhs)
+ return {};
+
+ auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue());
+ return IntegerAttr::get(IntegerType::get(1, getContext()), APInt(1, val));
+}
+
+//===----------------------------------------------------------------------===//
+// CmpFOp
+//===----------------------------------------------------------------------===//
+
+// Returns an array of mnemonics for CmpFPredicates indexed by values thereof.
+static inline const char *const *getCmpFPredicateNames() {
+ static const char *predicateNames[] = {
+ /*AlwaysFalse*/ "false",
+ /*OEQ*/ "oeq",
+ /*OGT*/ "ogt",
+ /*OGE*/ "oge",
+ /*OLT*/ "olt",
+ /*OLE*/ "ole",
+ /*ONE*/ "one",
+ /*ORD*/ "ord",
+ /*UEQ*/ "ueq",
+ /*UGT*/ "ugt",
+ /*UGE*/ "uge",
+ /*ULT*/ "ult",
+ /*ULE*/ "ule",
+ /*UNE*/ "une",
+ /*UNO*/ "uno",
+ /*AlwaysTrue*/ "true",
+ };
+ static_assert(std::extent<decltype(predicateNames)>::value ==
+ (size_t)CmpFPredicate::NumPredicates,
+ "wrong number of predicate names");
+ return predicateNames;
+}
+
+// Returns a value of the predicate corresponding to the given mnemonic.
+// Returns NumPredicates (one-past-end) if there is no such mnemonic.
+CmpFPredicate CmpFOp::getPredicateByName(StringRef name) {
+ return llvm::StringSwitch<CmpFPredicate>(name)
+ .Case("false", CmpFPredicate::AlwaysFalse)
+ .Case("oeq", CmpFPredicate::OEQ)
+ .Case("ogt", CmpFPredicate::OGT)
+ .Case("oge", CmpFPredicate::OGE)
+ .Case("olt", CmpFPredicate::OLT)
+ .Case("ole", CmpFPredicate::OLE)
+ .Case("one", CmpFPredicate::ONE)
+ .Case("ord", CmpFPredicate::ORD)
+ .Case("ueq", CmpFPredicate::UEQ)
+ .Case("ugt", CmpFPredicate::UGT)
+ .Case("uge", CmpFPredicate::UGE)
+ .Case("ult", CmpFPredicate::ULT)
+ .Case("ule", CmpFPredicate::ULE)
+ .Case("une", CmpFPredicate::UNE)
+ .Case("uno", CmpFPredicate::UNO)
+ .Case("true", CmpFPredicate::AlwaysTrue)
+ .Default(CmpFPredicate::NumPredicates);
+}
+
+static void buildCmpFOp(Builder *build, OperationState *result,
+ CmpFPredicate predicate, Value *lhs, Value *rhs) {
+ result->addOperands({lhs, rhs});
+ result->types.push_back(getI1SameShape(build, lhs->getType()));
+ result->addAttribute(
+ CmpFOp::getPredicateAttrName(),
+ build->getI64IntegerAttr(static_cast<int64_t>(predicate)));
+}
+
+static ParseResult parseCmpFOp(OpAsmParser *parser, OperationState *result) {
+ SmallVector<OpAsmParser::OperandType, 2> ops;
+ SmallVector<NamedAttribute, 4> attrs;
+ Attribute predicateNameAttr;
+ Type type;
+ if (parser->parseAttribute(predicateNameAttr, CmpFOp::getPredicateAttrName(),
+ attrs) ||
+ parser->parseComma() || parser->parseOperandList(ops, 2) ||
+ parser->parseOptionalAttributeDict(attrs) ||
+ parser->parseColonType(type) ||
+ parser->resolveOperands(ops, type, result->operands))
+ return failure();
+
+ if (!predicateNameAttr.isa<StringAttr>())
+ return parser->emitError(parser->getNameLoc(),
+ "expected string comparison predicate attribute");
+
+ // Rewrite string attribute to an enum value.
+ StringRef predicateName = predicateNameAttr.cast<StringAttr>().getValue();
+ auto predicate = CmpFOp::getPredicateByName(predicateName);
+ if (predicate == CmpFPredicate::NumPredicates)
+ return parser->emitError(parser->getNameLoc(),
+ "unknown comparison predicate \"" + predicateName +
+ "\"");
+
+ auto builder = parser->getBuilder();
+ Type i1Type = getCheckedI1SameShape(&builder, type);
+ if (!i1Type)
+ return parser->emitError(parser->getNameLoc(),
+ "expected type with valid i1 shape");
+
+ attrs[0].second = builder.getI64IntegerAttr(static_cast<int64_t>(predicate));
+ result->attributes = attrs;
+
+ result->addTypes({i1Type});
+ return success();
+}
+
+static void print(OpAsmPrinter *p, CmpFOp op) {
+ *p << "cmpf ";
+
+ auto predicateValue =
+ op.getAttrOfType<IntegerAttr>(CmpFOp::getPredicateAttrName()).getInt();
+ assert(predicateValue >= static_cast<int>(CmpFPredicate::FirstValidValue) &&
+ predicateValue < static_cast<int>(CmpFPredicate::NumPredicates) &&
+ "unknown predicate index");
+ Builder b(op.getContext());
+ auto predicateStringAttr =
+ b.getStringAttr(getCmpFPredicateNames()[predicateValue]);
+ p->printAttribute(predicateStringAttr);
+
+ *p << ", ";
+ p->printOperand(op.lhs());
+ *p << ", ";
+ p->printOperand(op.rhs());
+ p->printOptionalAttrDict(op.getAttrs(),
+ /*elidedAttrs=*/{CmpFOp::getPredicateAttrName()});
+ *p << " : " << op.lhs()->getType();
+}
+
+static LogicalResult verify(CmpFOp op) {
+ auto predicateAttr =
+ op.getAttrOfType<IntegerAttr>(CmpFOp::getPredicateAttrName());
+ if (!predicateAttr)
+ return op.emitOpError("requires an integer attribute named 'predicate'");
+ auto predicate = predicateAttr.getInt();
+ if (predicate < (int64_t)CmpFPredicate::FirstValidValue ||
+ predicate >= (int64_t)CmpFPredicate::NumPredicates)
+ return op.emitOpError("'predicate' attribute value out of range");
+
+ return success();
+}
+
+// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point
+// comparison predicates.
+static bool applyCmpPredicate(CmpFPredicate predicate, const APFloat &lhs,
+ const APFloat &rhs) {
+ auto cmpResult = lhs.compare(rhs);
+ switch (predicate) {
+ case CmpFPredicate::AlwaysFalse:
+ return false;
+ case CmpFPredicate::OEQ:
+ return cmpResult == APFloat::cmpEqual;
+ case CmpFPredicate::OGT:
+ return cmpResult == APFloat::cmpGreaterThan;
+ case CmpFPredicate::OGE:
+ return cmpResult == APFloat::cmpGreaterThan ||
+ cmpResult == APFloat::cmpEqual;
+ case CmpFPredicate::OLT:
+ return cmpResult == APFloat::cmpLessThan;
+ case CmpFPredicate::OLE:
+ return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual;
+ case CmpFPredicate::ONE:
+ return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual;
+ case CmpFPredicate::ORD:
+ return cmpResult != APFloat::cmpUnordered;
+ case CmpFPredicate::UEQ:
+ return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual;
+ case CmpFPredicate::UGT:
+ return cmpResult == APFloat::cmpUnordered ||
+ cmpResult == APFloat::cmpGreaterThan;
+ case CmpFPredicate::UGE:
+ return cmpResult == APFloat::cmpUnordered ||
+ cmpResult == APFloat::cmpGreaterThan ||
+ cmpResult == APFloat::cmpEqual;
+ case CmpFPredicate::ULT:
+ return cmpResult == APFloat::cmpUnordered ||
+ cmpResult == APFloat::cmpLessThan;
+ case CmpFPredicate::ULE:
+ return cmpResult == APFloat::cmpUnordered ||
+ cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual;
+ case CmpFPredicate::UNE:
+ return cmpResult != APFloat::cmpEqual;
+ case CmpFPredicate::UNO:
+ return cmpResult == APFloat::cmpUnordered;
+ case CmpFPredicate::AlwaysTrue:
+ return true;
+ default:
+ llvm_unreachable("unknown comparison predicate");
+ }
+}
+
+// Constant folding hook for comparisons.
+OpFoldResult CmpFOp::fold(ArrayRef<Attribute> operands) {
+ assert(operands.size() == 2 && "cmpf takes two arguments");
+
+ auto lhs = operands.front().dyn_cast_or_null<FloatAttr>();
+ auto rhs = operands.back().dyn_cast_or_null<FloatAttr>();
+ if (!lhs || !rhs ||
+ // TODO(b/122019992) Implement and test constant folding for nan/inf when
+ // it is possible to have constant nan/inf
+ !lhs.getValue().isFinite() || !rhs.getValue().isFinite())
+ return {};
+
+ auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue());
+ return IntegerAttr::get(IntegerType::get(1, getContext()), APInt(1, val));
+}
+
+//===----------------------------------------------------------------------===//
+// CondBranchOp
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// cond_br true, ^bb1, ^bb2 -> br ^bb1
+/// cond_br false, ^bb1, ^bb2 -> br ^bb2
+///
+struct SimplifyConstCondBranchPred : public OpRewritePattern<CondBranchOp> {
+ using OpRewritePattern<CondBranchOp>::OpRewritePattern;
+
+ PatternMatchResult matchAndRewrite(CondBranchOp condbr,
+ PatternRewriter &rewriter) const override {
+ // Check that the condition is a constant.
+ if (!matchPattern(condbr.getCondition(), m_Op<ConstantOp>()))
+ return matchFailure();
+
+ Block *foldedDest;
+ SmallVector<Value *, 4> branchArgs;
+
+ // If the condition is known to evaluate to false we fold to a branch to the
+ // false destination. Otherwise, we fold to a branch to the true
+ // destination.
+ if (matchPattern(condbr.getCondition(), m_Zero())) {
+ foldedDest = condbr.getFalseDest();
+ branchArgs.assign(condbr.false_operand_begin(),
+ condbr.false_operand_end());
+ } else {
+ foldedDest = condbr.getTrueDest();
+ branchArgs.assign(condbr.true_operand_begin(), condbr.true_operand_end());
+ }
+
+ rewriter.replaceOpWithNewOp<BranchOp>(condbr, foldedDest, branchArgs);
+ return matchSuccess();
+ }
+};
+} // end anonymous namespace.
+
+static ParseResult parseCondBranchOp(OpAsmParser *parser,
+ OperationState *result) {
+ SmallVector<Value *, 4> destOperands;
+ Block *dest;
+ OpAsmParser::OperandType condInfo;
+
+ // Parse the condition.
+ Type int1Ty = parser->getBuilder().getI1Type();
+ if (parser->parseOperand(condInfo) || parser->parseComma() ||
+ parser->resolveOperand(condInfo, int1Ty, result->operands)) {
+ return parser->emitError(parser->getNameLoc(),
+ "expected condition type was boolean (i1)");
+ }
+
+ // Parse the true successor.
+ if (parser->parseSuccessorAndUseList(dest, destOperands))
+ return failure();
+ result->addSuccessor(dest, destOperands);
+
+ // Parse the false successor.
+ destOperands.clear();
+ if (parser->parseComma() ||
+ parser->parseSuccessorAndUseList(dest, destOperands))
+ return failure();
+ result->addSuccessor(dest, destOperands);
+
+ return success();
+}
+
+static void print(OpAsmPrinter *p, CondBranchOp op) {
+ *p << "cond_br ";
+ p->printOperand(op.getCondition());
+ *p << ", ";
+ p->printSuccessorAndUseList(op.getOperation(), CondBranchOp::trueIndex);
+ *p << ", ";
+ p->printSuccessorAndUseList(op.getOperation(), CondBranchOp::falseIndex);
+}
+
+void CondBranchOp::getCanonicalizationPatterns(
+ OwningRewritePatternList &results, MLIRContext *context) {
+ results.insert<SimplifyConstCondBranchPred>(context);
+}
+
+//===----------------------------------------------------------------------===//
+// Constant*Op
+//===----------------------------------------------------------------------===//
+
+static void print(OpAsmPrinter *p, ConstantOp &op) {
+ *p << "constant ";
+ p->printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"value"});
+
+ if (op.getAttrs().size() > 1)
+ *p << ' ';
+ p->printAttribute(op.getValue());
+
+ // If the value is a symbol reference, print a trailing type.
+ if (op.getValue().isa<SymbolRefAttr>())
+ *p << " : " << op.getType();
+}
+
+static ParseResult parseConstantOp(OpAsmParser *parser,
+ OperationState *result) {
+ Attribute valueAttr;
+ if (parser->parseOptionalAttributeDict(result->attributes) ||
+ parser->parseAttribute(valueAttr, "value", result->attributes))
+ return failure();
+
+ // If the attribute is a symbol reference, then we expect a trailing type.
+ Type type;
+ if (!valueAttr.isa<SymbolRefAttr>())
+ type = valueAttr.getType();
+ else if (parser->parseColonType(type))
+ return failure();
+
+ // Add the attribute type to the list.
+ return parser->addTypeToList(type, result->types);
+}
+
+/// The constant op requires an attribute, and furthermore requires that it
+/// matches the return type.
+static LogicalResult verify(ConstantOp &op) {
+ auto value = op.getValue();
+ if (!value)
+ return op.emitOpError("requires a 'value' attribute");
+
+ auto type = op.getType();
+ if (!value.getType().isa<NoneType>() && type != value.getType())
+ return op.emitOpError() << "requires attribute's type (" << value.getType()
+ << ") to match op's return type (" << type << ")";
+
+ if (type.isa<IndexType>() || value.isa<BoolAttr>())
+ return success();
+
+ if (auto intAttr = value.dyn_cast<IntegerAttr>()) {
+ // If the type has a known bitwidth we verify that the value can be
+ // represented with the given bitwidth.
+ auto bitwidth = type.cast<IntegerType>().getWidth();
+ auto intVal = intAttr.getValue();
+ if (!intVal.isSignedIntN(bitwidth) && !intVal.isIntN(bitwidth))
+ return op.emitOpError("requires 'value' to be an integer within the "
+ "range of the integer result type");
+ return success();
+ }
+
+ if (type.isa<FloatType>()) {
+ if (!value.isa<FloatAttr>())
+ return op.emitOpError("requires 'value' to be a floating point constant");
+ return success();
+ }
+
+ if (type.isa<ShapedType>()) {
+ if (!value.isa<ElementsAttr>())
+ return op.emitOpError("requires 'value' to be a shaped constant");
+ return success();
+ }
+
+ if (type.isa<FunctionType>()) {
+ auto fnAttr = value.dyn_cast<SymbolRefAttr>();
+ if (!fnAttr)
+ return op.emitOpError("requires 'value' to be a function reference");
+
+ // Try to find the referenced function.
+ auto fn =
+ op.getParentOfType<ModuleOp>().lookupSymbol<FuncOp>(fnAttr.getValue());
+ if (!fn)
+ return op.emitOpError("reference to undefined function 'bar'");
+
+ // Check that the referenced function has the correct type.
+ if (fn.getType() != type)
+ return op.emitOpError("reference to function with mismatched type");
+
+ return success();
+ }
+
+ if (type.isa<NoneType>() && value.isa<UnitAttr>())
+ return success();
+
+ return op.emitOpError("unsupported 'value' attribute: ") << value;
+}
+
+OpFoldResult ConstantOp::fold(ArrayRef<Attribute> operands) {
+ assert(operands.empty() && "constant has no operands");
+ return getValue();
+}
+
+/// Returns true if a constant operation can be built with the given value and
+/// result type.
+bool ConstantOp::isBuildableWith(Attribute value, Type type) {
+ // SymbolRefAttr can only be used with a function type.
+ if (value.isa<SymbolRefAttr>())
+ return type.isa<FunctionType>();
+ // Otherwise, the attribute must have the same type as 'type'.
+ if (value.getType() != type)
+ return false;
+ // Finally, check that the attribute kind is handled.
+ return value.isa<BoolAttr>() || value.isa<IntegerAttr>() ||
+ value.isa<FloatAttr>() || value.isa<ElementsAttr>() ||
+ value.isa<UnitAttr>();
+}
+
+void ConstantFloatOp::build(Builder *builder, OperationState *result,
+ const APFloat &value, FloatType type) {
+ ConstantOp::build(builder, result, type, builder->getFloatAttr(type, value));
+}
+
+bool ConstantFloatOp::classof(Operation *op) {
+ return ConstantOp::classof(op) &&
+ op->getResult(0)->getType().isa<FloatType>();
+}
+
+/// ConstantIntOp only matches values whose result type is an IntegerType.
+bool ConstantIntOp::classof(Operation *op) {
+ return ConstantOp::classof(op) &&
+ op->getResult(0)->getType().isa<IntegerType>();
+}
+
+void ConstantIntOp::build(Builder *builder, OperationState *result,
+ int64_t value, unsigned width) {
+ Type type = builder->getIntegerType(width);
+ ConstantOp::build(builder, result, type,
+ builder->getIntegerAttr(type, value));
+}
+
+/// Build a constant int op producing an integer with the specified type,
+/// which must be an integer type.
+void ConstantIntOp::build(Builder *builder, OperationState *result,
+ int64_t value, Type type) {
+ assert(type.isa<IntegerType>() && "ConstantIntOp can only have integer type");
+ ConstantOp::build(builder, result, type,
+ builder->getIntegerAttr(type, value));
+}
+
+/// ConstantIndexOp only matches values whose result type is Index.
+bool ConstantIndexOp::classof(Operation *op) {
+ return ConstantOp::classof(op) && op->getResult(0)->getType().isIndex();
+}
+
+void ConstantIndexOp::build(Builder *builder, OperationState *result,
+ int64_t value) {
+ Type type = builder->getIndexType();
+ ConstantOp::build(builder, result, type,
+ builder->getIntegerAttr(type, value));
+}
+
+//===----------------------------------------------------------------------===//
+// DeallocOp
+//===----------------------------------------------------------------------===//
+namespace {
+/// Fold Dealloc operations that are deallocating an AllocOp that is only used
+/// by other Dealloc operations.
+struct SimplifyDeadDealloc : public OpRewritePattern<DeallocOp> {
+ using OpRewritePattern<DeallocOp>::OpRewritePattern;
+
+ PatternMatchResult matchAndRewrite(DeallocOp dealloc,
+ PatternRewriter &rewriter) const override {
+ // Check that the memref operand's defining operation is an AllocOp.
+ Value *memref = dealloc.memref();
+ if (!isa_and_nonnull<AllocOp>(memref->getDefiningOp()))
+ return matchFailure();
+
+ // Check that all of the uses of the AllocOp are other DeallocOps.
+ for (auto *user : memref->getUsers())
+ if (!isa<DeallocOp>(user))
+ return matchFailure();
+
+ // Erase the dealloc operation.
+ rewriter.replaceOp(dealloc, llvm::None);
+ return matchSuccess();
+ }
+};
+} // end anonymous namespace.
+
+static void print(OpAsmPrinter *p, DeallocOp op) {
+ *p << "dealloc " << *op.memref() << " : " << op.memref()->getType();
+}
+
+static ParseResult parseDeallocOp(OpAsmParser *parser, OperationState *result) {
+ OpAsmParser::OperandType memrefInfo;
+ MemRefType type;
+
+ return failure(parser->parseOperand(memrefInfo) ||
+ parser->parseColonType(type) ||
+ parser->resolveOperand(memrefInfo, type, result->operands));
+}
+
+static LogicalResult verify(DeallocOp op) {
+ if (!op.memref()->getType().isa<MemRefType>())
+ return op.emitOpError("operand must be a memref");
+ return success();
+}
+
+void DeallocOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
+ MLIRContext *context) {
+ /// dealloc(memrefcast) -> dealloc
+ results.insert<MemRefCastFolder>(getOperationName(), context);
+ results.insert<SimplifyDeadDealloc>(context);
+}
+
+//===----------------------------------------------------------------------===//
+// DimOp
+//===----------------------------------------------------------------------===//
+
+static void print(OpAsmPrinter *p, DimOp op) {
+ *p << "dim " << *op.getOperand() << ", " << op.getIndex();
+ p->printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"index"});
+ *p << " : " << op.getOperand()->getType();
+}
+
+static ParseResult parseDimOp(OpAsmParser *parser, OperationState *result) {
+ OpAsmParser::OperandType operandInfo;
+ IntegerAttr indexAttr;
+ Type type;
+ Type indexType = parser->getBuilder().getIndexType();
+
+ return failure(parser->parseOperand(operandInfo) || parser->parseComma() ||
+ parser->parseAttribute(indexAttr, indexType, "index",
+ result->attributes) ||
+ parser->parseOptionalAttributeDict(result->attributes) ||
+ parser->parseColonType(type) ||
+ parser->resolveOperand(operandInfo, type, result->operands) ||
+ parser->addTypeToList(indexType, result->types));
+}
+
+static LogicalResult verify(DimOp op) {
+ // Check that we have an integer index operand.
+ auto indexAttr = op.getAttrOfType<IntegerAttr>("index");
+ if (!indexAttr)
+ return op.emitOpError("requires an integer attribute named 'index'");
+ int64_t index = indexAttr.getValue().getSExtValue();
+
+ auto type = op.getOperand()->getType();
+ if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
+ if (index >= tensorType.getRank())
+ return op.emitOpError("index is out of range");
+ } else if (auto memrefType = type.dyn_cast<MemRefType>()) {
+ if (index >= memrefType.getRank())
+ return op.emitOpError("index is out of range");
+
+ } else if (type.isa<UnrankedTensorType>()) {
+ // ok, assumed to be in-range.
+ } else {
+ return op.emitOpError("requires an operand with tensor or memref type");
+ }
+
+ return success();
+}
+
+OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) {
+ // Constant fold dim when the size along the index referred to is a constant.
+ auto opType = getOperand()->getType();
+ int64_t indexSize = -1;
+ if (auto tensorType = opType.dyn_cast<RankedTensorType>())
+ indexSize = tensorType.getShape()[getIndex()];
+ else if (auto memrefType = opType.dyn_cast<MemRefType>())
+ indexSize = memrefType.getShape()[getIndex()];
+
+ if (indexSize >= 0)
+ return IntegerAttr::get(IndexType::get(getContext()), indexSize);
+
+ return {};
+}
+
+//===----------------------------------------------------------------------===//
+// DivISOp
+//===----------------------------------------------------------------------===//
+
+OpFoldResult DivISOp::fold(ArrayRef<Attribute> operands) {
+ assert(operands.size() == 2 && "binary operation takes two operands");
+
+ auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
+ auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
+ if (!lhs || !rhs)
+ return {};
+
+ // Don't fold if it requires division by zero.
+ if (rhs.getValue().isNullValue())
+ return {};
+
+ // Don't fold if it would overflow.
+ bool overflow;
+ auto result = lhs.getValue().sdiv_ov(rhs.getValue(), overflow);
+ return overflow ? IntegerAttr() : IntegerAttr::get(lhs.getType(), result);
+}
+
+//===----------------------------------------------------------------------===//
+// DivIUOp
+//===----------------------------------------------------------------------===//
+
+OpFoldResult DivIUOp::fold(ArrayRef<Attribute> operands) {
+ assert(operands.size() == 2 && "binary operation takes two operands");
+
+ auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
+ auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
+ if (!lhs || !rhs)
+ return {};
+
+ // Don't fold if it requires division by zero.
+ auto rhsValue = rhs.getValue();
+ if (rhsValue.isNullValue())
+ return {};
+
+ return IntegerAttr::get(lhs.getType(), lhs.getValue().udiv(rhsValue));
+}
+
+// ---------------------------------------------------------------------------
+// DmaStartOp
+// ---------------------------------------------------------------------------
+
+void DmaStartOp::build(Builder *builder, OperationState *result,
+ Value *srcMemRef, ArrayRef<Value *> srcIndices,
+ Value *destMemRef, ArrayRef<Value *> destIndices,
+ Value *numElements, Value *tagMemRef,
+ ArrayRef<Value *> tagIndices, Value *stride,
+ Value *elementsPerStride) {
+ result->addOperands(srcMemRef);
+ result->addOperands(srcIndices);
+ result->addOperands(destMemRef);
+ result->addOperands(destIndices);
+ result->addOperands({numElements, tagMemRef});
+ result->addOperands(tagIndices);
+ if (stride)
+ result->addOperands({stride, elementsPerStride});
+}
+
+void DmaStartOp::print(OpAsmPrinter *p) {
+ *p << "dma_start " << *getSrcMemRef() << '[';
+ p->printOperands(getSrcIndices());
+ *p << "], " << *getDstMemRef() << '[';
+ p->printOperands(getDstIndices());
+ *p << "], " << *getNumElements();
+ *p << ", " << *getTagMemRef() << '[';
+ p->printOperands(getTagIndices());
+ *p << ']';
+ if (isStrided()) {
+ *p << ", " << *getStride();
+ *p << ", " << *getNumElementsPerStride();
+ }
+ p->printOptionalAttrDict(getAttrs());
+ *p << " : " << getSrcMemRef()->getType();
+ *p << ", " << getDstMemRef()->getType();
+ *p << ", " << getTagMemRef()->getType();
+}
+
+// Parse DmaStartOp.
+// Ex:
+// %dma_id = dma_start %src[%i, %j], %dst[%k, %l], %size,
+// %tag[%index], %stride, %num_elt_per_stride :
+// : memref<3076 x f32, 0>,
+// memref<1024 x f32, 2>,
+// memref<1 x i32>
+//
+ParseResult DmaStartOp::parse(OpAsmParser *parser, OperationState *result) {
+ OpAsmParser::OperandType srcMemRefInfo;
+ SmallVector<OpAsmParser::OperandType, 4> srcIndexInfos;
+ OpAsmParser::OperandType dstMemRefInfo;
+ SmallVector<OpAsmParser::OperandType, 4> dstIndexInfos;
+ OpAsmParser::OperandType numElementsInfo;
+ OpAsmParser::OperandType tagMemrefInfo;
+ SmallVector<OpAsmParser::OperandType, 4> tagIndexInfos;
+ SmallVector<OpAsmParser::OperandType, 2> strideInfo;
+
+ SmallVector<Type, 3> types;
+ auto indexType = parser->getBuilder().getIndexType();
+
+ // Parse and resolve the following list of operands:
+ // *) source memref followed by its indices (in square brackets).
+ // *) destination memref followed by its indices (in square brackets).
+ // *) dma size in KiB.
+ if (parser->parseOperand(srcMemRefInfo) ||
+ parser->parseOperandList(srcIndexInfos, OpAsmParser::Delimiter::Square) ||
+ parser->parseComma() || parser->parseOperand(dstMemRefInfo) ||
+ parser->parseOperandList(dstIndexInfos, OpAsmParser::Delimiter::Square) ||
+ parser->parseComma() || parser->parseOperand(numElementsInfo) ||
+ parser->parseComma() || parser->parseOperand(tagMemrefInfo) ||
+ parser->parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square))
+ return failure();
+
+ // Parse optional stride and elements per stride.
+ if (parser->parseTrailingOperandList(strideInfo))
+ return failure();
+
+ bool isStrided = strideInfo.size() == 2;
+ if (!strideInfo.empty() && !isStrided) {
+ return parser->emitError(parser->getNameLoc(),
+ "expected two stride related operands");
+ }
+
+ if (parser->parseColonTypeList(types))
+ return failure();
+ if (types.size() != 3)
+ return parser->emitError(parser->getNameLoc(), "fewer/more types expected");
+
+ if (parser->resolveOperand(srcMemRefInfo, types[0], result->operands) ||
+ parser->resolveOperands(srcIndexInfos, indexType, result->operands) ||
+ parser->resolveOperand(dstMemRefInfo, types[1], result->operands) ||
+ parser->resolveOperands(dstIndexInfos, indexType, result->operands) ||
+ // size should be an index.
+ parser->resolveOperand(numElementsInfo, indexType, result->operands) ||
+ parser->resolveOperand(tagMemrefInfo, types[2], result->operands) ||
+ // tag indices should be index.
+ parser->resolveOperands(tagIndexInfos, indexType, result->operands))
+ return failure();
+
+ auto memrefType0 = types[0].dyn_cast<MemRefType>();
+ if (!memrefType0)
+ return parser->emitError(parser->getNameLoc(),
+ "expected source to be of memref type");
+
+ auto memrefType1 = types[1].dyn_cast<MemRefType>();
+ if (!memrefType1)
+ return parser->emitError(parser->getNameLoc(),
+ "expected destination to be of memref type");
+
+ auto memrefType2 = types[2].dyn_cast<MemRefType>();
+ if (!memrefType2)
+ return parser->emitError(parser->getNameLoc(),
+ "expected tag to be of memref type");
+
+ if (isStrided) {
+ if (parser->resolveOperands(strideInfo, indexType, result->operands))
+ return failure();
+ }
+
+ // Check that source/destination index list size matches associated rank.
+ if (static_cast<int64_t>(srcIndexInfos.size()) != memrefType0.getRank() ||
+ static_cast<int64_t>(dstIndexInfos.size()) != memrefType1.getRank())
+ return parser->emitError(parser->getNameLoc(),
+ "memref rank not equal to indices count");
+ if (static_cast<int64_t>(tagIndexInfos.size()) != memrefType2.getRank())
+ return parser->emitError(parser->getNameLoc(),
+ "tag memref rank not equal to indices count");
+
+ return success();
+}
+
+LogicalResult DmaStartOp::verify() {
+ // DMAs from different memory spaces supported.
+ if (getSrcMemorySpace() == getDstMemorySpace())
+ return emitOpError("DMA should be between different memory spaces");
+
+ if (getNumOperands() != getTagMemRefRank() + getSrcMemRefRank() +
+ getDstMemRefRank() + 3 + 1 &&
+ getNumOperands() != getTagMemRefRank() + getSrcMemRefRank() +
+ getDstMemRefRank() + 3 + 1 + 2) {
+ return emitOpError("incorrect number of operands");
+ }
+ return success();
+}
+
+void DmaStartOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
+ MLIRContext *context) {
+ /// dma_start(memrefcast) -> dma_start
+ results.insert<MemRefCastFolder>(getOperationName(), context);
+}
+
+// ---------------------------------------------------------------------------
+// DmaWaitOp
+// ---------------------------------------------------------------------------
+
+void DmaWaitOp::build(Builder *builder, OperationState *result,
+ Value *tagMemRef, ArrayRef<Value *> tagIndices,
+ Value *numElements) {
+ result->addOperands(tagMemRef);
+ result->addOperands(tagIndices);
+ result->addOperands(numElements);
+}
+
+void DmaWaitOp::print(OpAsmPrinter *p) {
+ *p << "dma_wait ";
+ p->printOperand(getTagMemRef());
+ *p << '[';
+ p->printOperands(getTagIndices());
+ *p << "], ";
+ p->printOperand(getNumElements());
+ p->printOptionalAttrDict(getAttrs());
+ *p << " : " << getTagMemRef()->getType();
+}
+
+// Parse DmaWaitOp.
+// Eg:
+// dma_wait %tag[%index], %num_elements : memref<1 x i32, (d0) -> (d0), 4>
+//
+ParseResult DmaWaitOp::parse(OpAsmParser *parser, OperationState *result) {
+ OpAsmParser::OperandType tagMemrefInfo;
+ SmallVector<OpAsmParser::OperandType, 2> tagIndexInfos;
+ Type type;
+ auto indexType = parser->getBuilder().getIndexType();
+ OpAsmParser::OperandType numElementsInfo;
+
+ // Parse tag memref, its indices, and dma size.
+ if (parser->parseOperand(tagMemrefInfo) ||
+ parser->parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square) ||
+ parser->parseComma() || parser->parseOperand(numElementsInfo) ||
+ parser->parseColonType(type) ||
+ parser->resolveOperand(tagMemrefInfo, type, result->operands) ||
+ parser->resolveOperands(tagIndexInfos, indexType, result->operands) ||
+ parser->resolveOperand(numElementsInfo, indexType, result->operands))
+ return failure();
+
+ auto memrefType = type.dyn_cast<MemRefType>();
+ if (!memrefType)
+ return parser->emitError(parser->getNameLoc(),
+ "expected tag to be of memref type");
+
+ if (static_cast<int64_t>(tagIndexInfos.size()) != memrefType.getRank())
+ return parser->emitError(parser->getNameLoc(),
+ "tag memref rank not equal to indices count");
+
+ return success();
+}
+
+void DmaWaitOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
+ MLIRContext *context) {
+ /// dma_wait(memrefcast) -> dma_wait
+ results.insert<MemRefCastFolder>(getOperationName(), context);
+}
+
+//===----------------------------------------------------------------------===//
+// ExtractElementOp
+//===----------------------------------------------------------------------===//
+
+static void print(OpAsmPrinter *p, ExtractElementOp op) {
+ *p << "extract_element " << *op.getAggregate() << '[';
+ p->printOperands(op.getIndices());
+ *p << ']';
+ p->printOptionalAttrDict(op.getAttrs());
+ *p << " : " << op.getAggregate()->getType();
+}
+
+static ParseResult parseExtractElementOp(OpAsmParser *parser,
+ OperationState *result) {
+ OpAsmParser::OperandType aggregateInfo;
+ SmallVector<OpAsmParser::OperandType, 4> indexInfo;
+ ShapedType type;
+
+ auto affineIntTy = parser->getBuilder().getIndexType();
+ return failure(
+ parser->parseOperand(aggregateInfo) ||
+ parser->parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
+ parser->parseOptionalAttributeDict(result->attributes) ||
+ parser->parseColonType(type) ||
+ parser->resolveOperand(aggregateInfo, type, result->operands) ||
+ parser->resolveOperands(indexInfo, affineIntTy, result->operands) ||
+ parser->addTypeToList(type.getElementType(), result->types));
+}
+
+static LogicalResult verify(ExtractElementOp op) {
+ auto aggregateType = op.getAggregate()->getType().cast<ShapedType>();
+
+ // This should be possible with tablegen type constraints
+ if (op.getType() != aggregateType.getElementType())
+ return op.emitOpError("result type must match element type of aggregate");
+
+ // Verify the # indices match if we have a ranked type.
+ if (aggregateType.hasRank() &&
+ aggregateType.getRank() != op.getNumOperands() - 1)
+ return op.emitOpError("incorrect number of indices for extract_element");
+
+ return success();
+}
+
+OpFoldResult ExtractElementOp::fold(ArrayRef<Attribute> operands) {
+ assert(!operands.empty() && "extract_element takes atleast one operand");
+
+ // The aggregate operand must be a known constant.
+ Attribute aggregate = operands.front();
+ if (!aggregate)
+ return {};
+
+ // If this is a splat elements attribute, simply return the value. All of the
+ // elements of a splat attribute are the same.
+ if (auto splatAggregate = aggregate.dyn_cast<SplatElementsAttr>())
+ return splatAggregate.getSplatValue();
+
+ // Otherwise, collect the constant indices into the aggregate.
+ SmallVector<uint64_t, 8> indices;
+ for (Attribute indice : llvm::drop_begin(operands, 1)) {
+ if (!indice || !indice.isa<IntegerAttr>())
+ return {};
+ indices.push_back(indice.cast<IntegerAttr>().getInt());
+ }
+
+ // If this is an elements attribute, query the value at the given indices.
+ auto elementsAttr = aggregate.dyn_cast<ElementsAttr>();
+ if (elementsAttr && elementsAttr.isValidIndex(indices))
+ return elementsAttr.getValue(indices);
+ return {};
+}
+
+//===----------------------------------------------------------------------===//
+// IndexCastOp
+//===----------------------------------------------------------------------===//
+
+// Index cast is applicable from index to integer and backwards.
+bool IndexCastOp::areCastCompatible(Type a, Type b) {
+ return (a.isIndex() && b.isa<IntegerType>()) ||
+ (a.isa<IntegerType>() && b.isIndex());
+}
+
+//===----------------------------------------------------------------------===//
+// LoadOp
+//===----------------------------------------------------------------------===//
+
+static void print(OpAsmPrinter *p, LoadOp op) {
+ *p << "load " << *op.getMemRef() << '[';
+ p->printOperands(op.getIndices());
+ *p << ']';
+ p->printOptionalAttrDict(op.getAttrs());
+ *p << " : " << op.getMemRefType();
+}
+
+static ParseResult parseLoadOp(OpAsmParser *parser, OperationState *result) {
+ OpAsmParser::OperandType memrefInfo;
+ SmallVector<OpAsmParser::OperandType, 4> indexInfo;
+ MemRefType type;
+
+ auto affineIntTy = parser->getBuilder().getIndexType();
+ return failure(
+ parser->parseOperand(memrefInfo) ||
+ parser->parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
+ parser->parseOptionalAttributeDict(result->attributes) ||
+ parser->parseColonType(type) ||
+ parser->resolveOperand(memrefInfo, type, result->operands) ||
+ parser->resolveOperands(indexInfo, affineIntTy, result->operands) ||
+ parser->addTypeToList(type.getElementType(), result->types));
+}
+
+static LogicalResult verify(LoadOp op) {
+ if (op.getType() != op.getMemRefType().getElementType())
+ return op.emitOpError("result type must match element type of memref");
+
+ if (op.getMemRefType().getRank() != op.getNumOperands() - 1)
+ return op.emitOpError("incorrect number of indices for load");
+
+ for (auto *idx : op.getIndices())
+ if (!idx->getType().isIndex())
+ return op.emitOpError("index to load must have 'index' type");
+
+ // TODO: Verify we have the right number of indices.
+
+ // TODO: in Function verify that the indices are parameters, IV's, or the
+ // result of an affine.apply.
+ return success();
+}
+
+void LoadOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
+ MLIRContext *context) {
+ /// load(memrefcast) -> load
+ results.insert<MemRefCastFolder>(getOperationName(), context);
+}
+
+//===----------------------------------------------------------------------===//
+// MemRefCastOp
+//===----------------------------------------------------------------------===//
+
+bool MemRefCastOp::areCastCompatible(Type a, Type b) {
+ auto aT = a.dyn_cast<MemRefType>();
+ auto bT = b.dyn_cast<MemRefType>();
+
+ if (!aT || !bT)
+ return false;
+ if (aT.getElementType() != bT.getElementType())
+ return false;
+ if (aT.getAffineMaps() != bT.getAffineMaps())
+ return false;
+ if (aT.getMemorySpace() != bT.getMemorySpace())
+ return false;
+
+ // They must have the same rank, and any specified dimensions must match.
+ if (aT.getRank() != bT.getRank())
+ return false;
+
+ for (unsigned i = 0, e = aT.getRank(); i != e; ++i) {
+ int64_t aDim = aT.getDimSize(i), bDim = bT.getDimSize(i);
+ if (aDim != -1 && bDim != -1 && aDim != bDim)
+ return false;
+ }
+
+ return true;
+}
+
+OpFoldResult MemRefCastOp::fold(ArrayRef<Attribute> operands) {
+ return impl::foldCastOp(*this);
+}
+
+//===----------------------------------------------------------------------===//
+// MulFOp
+//===----------------------------------------------------------------------===//
+
+OpFoldResult MulFOp::fold(ArrayRef<Attribute> operands) {
+ return constFoldBinaryOp<FloatAttr>(
+ operands, [](APFloat a, APFloat b) { return a * b; });
+}
+
+//===----------------------------------------------------------------------===//
+// MulIOp
+//===----------------------------------------------------------------------===//
+
+OpFoldResult MulIOp::fold(ArrayRef<Attribute> operands) {
+ /// muli(x, 0) -> 0
+ if (matchPattern(rhs(), m_Zero()))
+ return rhs();
+ /// muli(x, 1) -> x
+ if (matchPattern(rhs(), m_One()))
+ return getOperand(0);
+
+ // TODO: Handle the overflow case.
+ return constFoldBinaryOp<IntegerAttr>(operands,
+ [](APInt a, APInt b) { return a * b; });
+}
+
+//===----------------------------------------------------------------------===//
+// RankOp
+//===----------------------------------------------------------------------===//
+
+static void print(OpAsmPrinter *p, RankOp op) {
+ *p << "rank " << *op.getOperand() << " : " << op.getOperand()->getType();
+}
+
+static ParseResult parseRankOp(OpAsmParser *parser, OperationState *result) {
+ OpAsmParser::OperandType operandInfo;
+ Type type;
+ Type indexType = parser->getBuilder().getIndexType();
+ return failure(parser->parseOperand(operandInfo) ||
+ parser->parseColonType(type) ||
+ parser->resolveOperand(operandInfo, type, result->operands) ||
+ parser->addTypeToList(indexType, result->types));
+}
+
+OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) {
+ // Constant fold rank when the rank of the tensor is known.
+ auto type = getOperand()->getType();
+ if (auto tensorType = type.dyn_cast<RankedTensorType>())
+ return IntegerAttr::get(IndexType::get(getContext()), tensorType.getRank());
+ return IntegerAttr();
+}
+
+//===----------------------------------------------------------------------===//
+// RemISOp
+//===----------------------------------------------------------------------===//
+
+OpFoldResult RemISOp::fold(ArrayRef<Attribute> operands) {
+ assert(operands.size() == 2 && "remis takes two operands");
+
+ auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
+ if (!rhs)
+ return {};
+ auto rhsValue = rhs.getValue();
+
+ // x % 1 = 0
+ if (rhsValue.isOneValue())
+ return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0));
+
+ // Don't fold if it requires division by zero.
+ if (rhsValue.isNullValue())
+ return {};
+
+ auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
+ if (!lhs)
+ return {};
+ return IntegerAttr::get(lhs.getType(), lhs.getValue().srem(rhsValue));
+}
+
+//===----------------------------------------------------------------------===//
+// RemIUOp
+//===----------------------------------------------------------------------===//
+
+OpFoldResult RemIUOp::fold(ArrayRef<Attribute> operands) {
+ assert(operands.size() == 2 && "remiu takes two operands");
+
+ auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
+ if (!rhs)
+ return {};
+ auto rhsValue = rhs.getValue();
+
+ // x % 1 = 0
+ if (rhsValue.isOneValue())
+ return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0));
+
+ // Don't fold if it requires division by zero.
+ if (rhsValue.isNullValue())
+ return {};
+
+ auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
+ if (!lhs)
+ return {};
+ return IntegerAttr::get(lhs.getType(), lhs.getValue().urem(rhsValue));
+}
+
+//===----------------------------------------------------------------------===//
+// ReturnOp
+//===----------------------------------------------------------------------===//
+
+static ParseResult parseReturnOp(OpAsmParser *parser, OperationState *result) {
+ SmallVector<OpAsmParser::OperandType, 2> opInfo;
+ SmallVector<Type, 2> types;
+ llvm::SMLoc loc = parser->getCurrentLocation();
+ return failure(parser->parseOperandList(opInfo) ||
+ (!opInfo.empty() && parser->parseColonTypeList(types)) ||
+ parser->resolveOperands(opInfo, types, loc, result->operands));
+}
+
+static void print(OpAsmPrinter *p, ReturnOp op) {
+ *p << "return";
+ if (op.getNumOperands() != 0) {
+ *p << ' ';
+ p->printOperands(op.getOperands());
+ *p << " : ";
+ interleaveComma(op.getOperandTypes(), *p);
+ }
+}
+
+static LogicalResult verify(ReturnOp op) {
+ auto function = cast<FuncOp>(op.getParentOp());
+
+ // The operand number and types must match the function signature.
+ const auto &results = function.getType().getResults();
+ if (op.getNumOperands() != results.size())
+ return op.emitOpError("has ")
+ << op.getNumOperands()
+ << " operands, but enclosing function returns " << results.size();
+
+ for (unsigned i = 0, e = results.size(); i != e; ++i)
+ if (op.getOperand(i)->getType() != results[i])
+ return op.emitError()
+ << "type of return operand " << i << " ("
+ << op.getOperand(i)->getType()
+ << ") doesn't match function result type (" << results[i] << ")";
+
+ return success();
+}
+
+//===----------------------------------------------------------------------===//
+// SIToFPOp
+//===----------------------------------------------------------------------===//
+
+// sitofp is applicable from integer types to float types.
+bool SIToFPOp::areCastCompatible(Type a, Type b) {
+ return a.isa<IntegerType>() && b.isa<FloatType>();
+}
+
+//===----------------------------------------------------------------------===//
+// SelectOp
+//===----------------------------------------------------------------------===//
+
+static ParseResult parseSelectOp(OpAsmParser *parser, OperationState *result) {
+ SmallVector<OpAsmParser::OperandType, 3> ops;
+ SmallVector<NamedAttribute, 4> attrs;
+ Type type;
+ if (parser->parseOperandList(ops, 3) ||
+ parser->parseOptionalAttributeDict(result->attributes) ||
+ parser->parseColonType(type))
+ return failure();
+
+ auto i1Type = getCheckedI1SameShape(&parser->getBuilder(), type);
+ if (!i1Type)
+ return parser->emitError(parser->getNameLoc(),
+ "expected type with valid i1 shape");
+
+ SmallVector<Type, 3> types = {i1Type, type, type};
+ return failure(parser->resolveOperands(ops, types, parser->getNameLoc(),
+ result->operands) ||
+ parser->addTypeToList(type, result->types));
+}
+
+static void print(OpAsmPrinter *p, SelectOp op) {
+ *p << "select ";
+ p->printOperands(op.getOperands());
+ *p << " : " << op.getTrueValue()->getType();
+ p->printOptionalAttrDict(op.getAttrs());
+}
+
+static LogicalResult verify(SelectOp op) {
+ auto trueType = op.getTrueValue()->getType();
+ auto falseType = op.getFalseValue()->getType();
+
+ if (trueType != falseType)
+ return op.emitOpError(
+ "requires 'true' and 'false' arguments to be of the same type");
+
+ return success();
+}
+
+OpFoldResult SelectOp::fold(ArrayRef<Attribute> operands) {
+ auto *condition = getCondition();
+
+ // select true, %0, %1 => %0
+ if (matchPattern(condition, m_One()))
+ return getTrueValue();
+
+ // select false, %0, %1 => %1
+ if (matchPattern(condition, m_Zero()))
+ return getFalseValue();
+ return nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// StoreOp
+//===----------------------------------------------------------------------===//
+
+static void print(OpAsmPrinter *p, StoreOp op) {
+ *p << "store " << *op.getValueToStore();
+ *p << ", " << *op.getMemRef() << '[';
+ p->printOperands(op.getIndices());
+ *p << ']';
+ p->printOptionalAttrDict(op.getAttrs());
+ *p << " : " << op.getMemRefType();
+}
+
+static ParseResult parseStoreOp(OpAsmParser *parser, OperationState *result) {
+ OpAsmParser::OperandType storeValueInfo;
+ OpAsmParser::OperandType memrefInfo;
+ SmallVector<OpAsmParser::OperandType, 4> indexInfo;
+ MemRefType memrefType;
+
+ auto affineIntTy = parser->getBuilder().getIndexType();
+ return failure(
+ parser->parseOperand(storeValueInfo) || parser->parseComma() ||
+ parser->parseOperand(memrefInfo) ||
+ parser->parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
+ parser->parseOptionalAttributeDict(result->attributes) ||
+ parser->parseColonType(memrefType) ||
+ parser->resolveOperand(storeValueInfo, memrefType.getElementType(),
+ result->operands) ||
+ parser->resolveOperand(memrefInfo, memrefType, result->operands) ||
+ parser->resolveOperands(indexInfo, affineIntTy, result->operands));
+}
+
+static LogicalResult verify(StoreOp op) {
+ // First operand must have same type as memref element type.
+ if (op.getValueToStore()->getType() != op.getMemRefType().getElementType())
+ return op.emitOpError(
+ "first operand must have same type memref element type");
+
+ if (op.getNumOperands() != 2 + op.getMemRefType().getRank())
+ return op.emitOpError("store index operand count not equal to memref rank");
+
+ for (auto *idx : op.getIndices())
+ if (!idx->getType().isIndex())
+ return op.emitOpError("index to load must have 'index' type");
+
+ // TODO: Verify we have the right number of indices.
+
+ // TODO: in Function verify that the indices are parameters, IV's, or the
+ // result of an affine.apply.
+ return success();
+}
+
+void StoreOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
+ MLIRContext *context) {
+ /// store(memrefcast) -> store
+ results.insert<MemRefCastFolder>(getOperationName(), context);
+}
+
+//===----------------------------------------------------------------------===//
+// SubFOp
+//===----------------------------------------------------------------------===//
+
+OpFoldResult SubFOp::fold(ArrayRef<Attribute> operands) {
+ return constFoldBinaryOp<FloatAttr>(
+ operands, [](APFloat a, APFloat b) { return a - b; });
+}
+
+//===----------------------------------------------------------------------===//
+// SubIOp
+//===----------------------------------------------------------------------===//
+
+OpFoldResult SubIOp::fold(ArrayRef<Attribute> operands) {
+ // subi(x,x) -> 0
+ if (getOperand(0) == getOperand(1))
+ return Builder(getContext()).getZeroAttr(getType());
+
+ return constFoldBinaryOp<IntegerAttr>(operands,
+ [](APInt a, APInt b) { return a - b; });
+}
+
+//===----------------------------------------------------------------------===//
+// AndOp
+//===----------------------------------------------------------------------===//
+
+OpFoldResult AndOp::fold(ArrayRef<Attribute> operands) {
+ /// and(x, 0) -> 0
+ if (matchPattern(rhs(), m_Zero()))
+ return rhs();
+ /// and(x,x) -> x
+ if (lhs() == rhs())
+ return rhs();
+
+ return constFoldBinaryOp<IntegerAttr>(operands,
+ [](APInt a, APInt b) { return a & b; });
+}
+
+//===----------------------------------------------------------------------===//
+// OrOp
+//===----------------------------------------------------------------------===//
+
+OpFoldResult OrOp::fold(ArrayRef<Attribute> operands) {
+ /// or(x, 0) -> x
+ if (matchPattern(rhs(), m_Zero()))
+ return lhs();
+ /// or(x,x) -> x
+ if (lhs() == rhs())
+ return rhs();
+
+ return constFoldBinaryOp<IntegerAttr>(operands,
+ [](APInt a, APInt b) { return a | b; });
+}
+
+//===----------------------------------------------------------------------===//
+// XOrOp
+//===----------------------------------------------------------------------===//
+
+OpFoldResult XOrOp::fold(ArrayRef<Attribute> operands) {
+ /// xor(x, 0) -> x
+ if (matchPattern(rhs(), m_Zero()))
+ return lhs();
+ /// xor(x,x) -> 0
+ if (lhs() == rhs())
+ return Builder(getContext()).getZeroAttr(getType());
+
+ return constFoldBinaryOp<IntegerAttr>(operands,
+ [](APInt a, APInt b) { return a ^ b; });
+}
+
+//===----------------------------------------------------------------------===//
+// TensorCastOp
+//===----------------------------------------------------------------------===//
+
+bool TensorCastOp::areCastCompatible(Type a, Type b) {
+ auto aT = a.dyn_cast<TensorType>();
+ auto bT = b.dyn_cast<TensorType>();
+ if (!aT || !bT)
+ return false;
+
+ if (aT.getElementType() != bT.getElementType())
+ return false;
+
+ // If the either are unranked, then the cast is valid.
+ auto aRType = aT.dyn_cast<RankedTensorType>();
+ auto bRType = bT.dyn_cast<RankedTensorType>();
+ if (!aRType || !bRType)
+ return true;
+
+ // If they are both ranked, they have to have the same rank, and any specified
+ // dimensions must match.
+ if (aRType.getRank() != bRType.getRank())
+ return false;
+
+ for (unsigned i = 0, e = aRType.getRank(); i != e; ++i) {
+ int64_t aDim = aRType.getDimSize(i), bDim = bRType.getDimSize(i);
+ if (aDim != -1 && bDim != -1 && aDim != bDim)
+ return false;
+ }
+
+ return true;
+}
+
+OpFoldResult TensorCastOp::fold(ArrayRef<Attribute> operands) {
+ return impl::foldCastOp(*this);
+}
+
+//===----------------------------------------------------------------------===//
+// TableGen'd op method definitions
+//===----------------------------------------------------------------------===//
+
+#define GET_OP_CLASSES
+#include "mlir/Dialect/StandardOps/Ops.cpp.inc"
OpenPOWER on IntegriCloud