diff options
Diffstat (limited to 'mlir/lib/Dialect/StandardOps/Ops.cpp')
-rw-r--r-- | mlir/lib/Dialect/StandardOps/Ops.cpp | 2102 |
1 files changed, 2102 insertions, 0 deletions
diff --git a/mlir/lib/Dialect/StandardOps/Ops.cpp b/mlir/lib/Dialect/StandardOps/Ops.cpp new file mode 100644 index 00000000000..4e484e6b50b --- /dev/null +++ b/mlir/lib/Dialect/StandardOps/Ops.cpp @@ -0,0 +1,2102 @@ +//===- Ops.cpp - Standard MLIR Operations ---------------------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= + +#include "mlir/Dialect/StandardOps/Ops.h" + +#include "mlir/IR/AffineExpr.h" +#include "mlir/IR/AffineMap.h" +#include "mlir/IR/Builders.h" +#include "mlir/IR/Function.h" +#include "mlir/IR/Matchers.h" +#include "mlir/IR/Module.h" +#include "mlir/IR/OpImplementation.h" +#include "mlir/IR/PatternMatch.h" +#include "mlir/IR/StandardTypes.h" +#include "mlir/IR/Value.h" +#include "mlir/Support/MathExtras.h" +#include "mlir/Support/STLExtras.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/Support/FormatVariadic.h" +#include "llvm/Support/raw_ostream.h" +using namespace mlir; + +//===----------------------------------------------------------------------===// +// StandardOpsDialect +//===----------------------------------------------------------------------===// + +/// A custom binary operation printer that omits the "std." prefix from the +/// operation names. +static void printStandardBinaryOp(Operation *op, OpAsmPrinter *p) { + assert(op->getNumOperands() == 2 && "binary op should have two operands"); + assert(op->getNumResults() == 1 && "binary op should have one result"); + + // If not all the operand and result types are the same, just use the + // generic assembly form to avoid omitting information in printing. + auto resultType = op->getResult(0)->getType(); + if (op->getOperand(0)->getType() != resultType || + op->getOperand(1)->getType() != resultType) { + p->printGenericOp(op); + return; + } + + *p << op->getName().getStringRef().drop_front(strlen("std.")) << ' ' + << *op->getOperand(0) << ", " << *op->getOperand(1); + p->printOptionalAttrDict(op->getAttrs()); + + // Now we can output only one type for all operands and the result. + *p << " : " << op->getResult(0)->getType(); +} + +/// A custom cast operation printer that omits the "std." prefix from the +/// operation names. +static void printStandardCastOp(Operation *op, OpAsmPrinter *p) { + *p << op->getName().getStringRef().drop_front(strlen("std.")) << ' ' + << *op->getOperand(0) << " : " << op->getOperand(0)->getType() << " to " + << op->getResult(0)->getType(); +} + +/// A custom cast operation verifier. +template <typename T> static LogicalResult verifyCastOp(T op) { + auto opType = op.getOperand()->getType(); + auto resType = op.getType(); + if (!T::areCastCompatible(opType, resType)) + return op.emitError("operand type ") << opType << " and result type " + << resType << " are cast incompatible"; + + return success(); +} + +StandardOpsDialect::StandardOpsDialect(MLIRContext *context) + : Dialect(getDialectNamespace(), context) { + addOperations<DmaStartOp, DmaWaitOp, +#define GET_OP_LIST +#include "mlir/Dialect/StandardOps/Ops.cpp.inc" + >(); +} + +void mlir::printDimAndSymbolList(Operation::operand_iterator begin, + Operation::operand_iterator end, + unsigned numDims, OpAsmPrinter *p) { + *p << '('; + p->printOperands(begin, begin + numDims); + *p << ')'; + + if (begin + numDims != end) { + *p << '['; + p->printOperands(begin + numDims, end); + *p << ']'; + } +} + +// Parses dimension and symbol list, and sets 'numDims' to the number of +// dimension operands parsed. +// Returns 'false' on success and 'true' on error. +ParseResult mlir::parseDimAndSymbolList(OpAsmParser *parser, + SmallVector<Value *, 4> &operands, + unsigned &numDims) { + SmallVector<OpAsmParser::OperandType, 8> opInfos; + if (parser->parseOperandList(opInfos, OpAsmParser::Delimiter::Paren)) + return failure(); + // Store number of dimensions for validation by caller. + numDims = opInfos.size(); + + // Parse the optional symbol operands. + auto affineIntTy = parser->getBuilder().getIndexType(); + if (parser->parseOperandList(opInfos, + OpAsmParser::Delimiter::OptionalSquare) || + parser->resolveOperands(opInfos, affineIntTy, operands)) + return failure(); + return success(); +} + +/// Matches a ConstantIndexOp. +/// TODO: This should probably just be a general matcher that uses m_Constant +/// and checks the operation for an index type. +static detail::op_matcher<ConstantIndexOp> m_ConstantIndex() { + return detail::op_matcher<ConstantIndexOp>(); +} + +//===----------------------------------------------------------------------===// +// Common canonicalization pattern support logic +//===----------------------------------------------------------------------===// + +namespace { +/// This is a common class used for patterns of the form +/// "someop(memrefcast) -> someop". It folds the source of any memref_cast +/// into the root operation directly. +struct MemRefCastFolder : public RewritePattern { + /// The rootOpName is the name of the root operation to match against. + MemRefCastFolder(StringRef rootOpName, MLIRContext *context) + : RewritePattern(rootOpName, 1, context) {} + + PatternMatchResult match(Operation *op) const override { + for (auto *operand : op->getOperands()) + if (matchPattern(operand, m_Op<MemRefCastOp>())) + return matchSuccess(); + + return matchFailure(); + } + + void rewrite(Operation *op, PatternRewriter &rewriter) const override { + for (unsigned i = 0, e = op->getNumOperands(); i != e; ++i) + if (auto *memref = op->getOperand(i)->getDefiningOp()) + if (auto cast = dyn_cast<MemRefCastOp>(memref)) + op->setOperand(i, cast.getOperand()); + rewriter.updatedRootInPlace(op); + } +}; + +/// Performs const folding `calculate` with element-wise behavior on the two +/// attributes in `operands` and returns the result if possible. +template <class AttrElementT, + class ElementValueT = typename AttrElementT::ValueType, + class CalculationT = + std::function<ElementValueT(ElementValueT, ElementValueT)>> +Attribute constFoldBinaryOp(ArrayRef<Attribute> operands, + const CalculationT &calculate) { + assert(operands.size() == 2 && "binary op takes two operands"); + + if (auto lhs = operands[0].dyn_cast_or_null<AttrElementT>()) { + auto rhs = operands[1].dyn_cast_or_null<AttrElementT>(); + if (!rhs || lhs.getType() != rhs.getType()) + return {}; + + return AttrElementT::get(lhs.getType(), + calculate(lhs.getValue(), rhs.getValue())); + } else if (auto lhs = operands[0].dyn_cast_or_null<SplatElementsAttr>()) { + auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>(); + if (!rhs || lhs.getType() != rhs.getType()) + return {}; + + auto elementResult = constFoldBinaryOp<AttrElementT>( + {lhs.getSplatValue(), rhs.getSplatValue()}, calculate); + if (!elementResult) + return {}; + + return DenseElementsAttr::get(lhs.getType(), elementResult); + } + return {}; +} +} // end anonymous namespace. + +//===----------------------------------------------------------------------===// +// AddFOp +//===----------------------------------------------------------------------===// + +OpFoldResult AddFOp::fold(ArrayRef<Attribute> operands) { + return constFoldBinaryOp<FloatAttr>( + operands, [](APFloat a, APFloat b) { return a + b; }); +} + +//===----------------------------------------------------------------------===// +// AddIOp +//===----------------------------------------------------------------------===// + +OpFoldResult AddIOp::fold(ArrayRef<Attribute> operands) { + /// addi(x, 0) -> x + if (matchPattern(rhs(), m_Zero())) + return lhs(); + + return constFoldBinaryOp<IntegerAttr>(operands, + [](APInt a, APInt b) { return a + b; }); +} + +//===----------------------------------------------------------------------===// +// AllocOp +//===----------------------------------------------------------------------===// + +static void print(OpAsmPrinter *p, AllocOp op) { + *p << "alloc"; + + // Print dynamic dimension operands. + MemRefType type = op.getType(); + printDimAndSymbolList(op.operand_begin(), op.operand_end(), + type.getNumDynamicDims(), p); + p->printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"map"}); + *p << " : " << type; +} + +static ParseResult parseAllocOp(OpAsmParser *parser, OperationState *result) { + MemRefType type; + + // Parse the dimension operands and optional symbol operands, followed by a + // memref type. + unsigned numDimOperands; + if (parseDimAndSymbolList(parser, result->operands, numDimOperands) || + parser->parseOptionalAttributeDict(result->attributes) || + parser->parseColonType(type)) + return failure(); + + // Check numDynamicDims against number of question marks in memref type. + // Note: this check remains here (instead of in verify()), because the + // partition between dim operands and symbol operands is lost after parsing. + // Verification still checks that the total number of operands matches + // the number of symbols in the affine map, plus the number of dynamic + // dimensions in the memref. + if (numDimOperands != type.getNumDynamicDims()) + return parser->emitError(parser->getNameLoc()) + << "dimension operand count does not equal memref dynamic dimension " + "count"; + result->types.push_back(type); + return success(); +} + +static LogicalResult verify(AllocOp op) { + auto memRefType = op.getResult()->getType().dyn_cast<MemRefType>(); + if (!memRefType) + return op.emitOpError("result must be a memref"); + + unsigned numSymbols = 0; + if (!memRefType.getAffineMaps().empty()) { + // Store number of symbols used in affine map (used in subsequent check). + AffineMap affineMap = memRefType.getAffineMaps()[0]; + numSymbols = affineMap.getNumSymbols(); + } + + // Check that the total number of operands matches the number of symbols in + // the affine map, plus the number of dynamic dimensions specified in the + // memref type. + unsigned numDynamicDims = memRefType.getNumDynamicDims(); + if (op.getOperation()->getNumOperands() != numDynamicDims + numSymbols) + return op.emitOpError( + "operand count does not equal dimension plus symbol operand count"); + + // Verify that all operands are of type Index. + for (auto operandType : op.getOperandTypes()) + if (!operandType.isIndex()) + return op.emitOpError("requires operands to be of type Index"); + return success(); +} + +namespace { +/// Fold constant dimensions into an alloc operation. +struct SimplifyAllocConst : public OpRewritePattern<AllocOp> { + using OpRewritePattern<AllocOp>::OpRewritePattern; + + PatternMatchResult matchAndRewrite(AllocOp alloc, + PatternRewriter &rewriter) const override { + // Check to see if any dimensions operands are constants. If so, we can + // substitute and drop them. + if (llvm::none_of(alloc.getOperands(), [](Value *operand) { + return matchPattern(operand, m_ConstantIndex()); + })) + return matchFailure(); + + auto memrefType = alloc.getType(); + + // Ok, we have one or more constant operands. Collect the non-constant ones + // and keep track of the resultant memref type to build. + SmallVector<int64_t, 4> newShapeConstants; + newShapeConstants.reserve(memrefType.getRank()); + SmallVector<Value *, 4> newOperands; + SmallVector<Value *, 4> droppedOperands; + + unsigned dynamicDimPos = 0; + for (unsigned dim = 0, e = memrefType.getRank(); dim < e; ++dim) { + int64_t dimSize = memrefType.getDimSize(dim); + // If this is already static dimension, keep it. + if (dimSize != -1) { + newShapeConstants.push_back(dimSize); + continue; + } + auto *defOp = alloc.getOperand(dynamicDimPos)->getDefiningOp(); + if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) { + // Dynamic shape dimension will be folded. + newShapeConstants.push_back(constantIndexOp.getValue()); + // Record to check for zero uses later below. + droppedOperands.push_back(constantIndexOp); + } else { + // Dynamic shape dimension not folded; copy operand from old memref. + newShapeConstants.push_back(-1); + newOperands.push_back(alloc.getOperand(dynamicDimPos)); + } + dynamicDimPos++; + } + + // Create new memref type (which will have fewer dynamic dimensions). + auto newMemRefType = MemRefType::get( + newShapeConstants, memrefType.getElementType(), + memrefType.getAffineMaps(), memrefType.getMemorySpace()); + assert(static_cast<int64_t>(newOperands.size()) == + newMemRefType.getNumDynamicDims()); + + // Create and insert the alloc op for the new memref. + auto newAlloc = + rewriter.create<AllocOp>(alloc.getLoc(), newMemRefType, newOperands); + // Insert a cast so we have the same type as the old alloc. + auto resultCast = rewriter.create<MemRefCastOp>(alloc.getLoc(), newAlloc, + alloc.getType()); + + rewriter.replaceOp(alloc, {resultCast}, droppedOperands); + return matchSuccess(); + } +}; + +/// Fold alloc operations with no uses. Alloc has side effects on the heap, +/// but can still be deleted if it has zero uses. +struct SimplifyDeadAlloc : public OpRewritePattern<AllocOp> { + using OpRewritePattern<AllocOp>::OpRewritePattern; + + PatternMatchResult matchAndRewrite(AllocOp alloc, + PatternRewriter &rewriter) const override { + // Check if the alloc'ed value has any uses. + if (!alloc.use_empty()) + return matchFailure(); + + // If it doesn't, we can eliminate it. + alloc.erase(); + return matchSuccess(); + } +}; +} // end anonymous namespace. + +void AllocOp::getCanonicalizationPatterns(OwningRewritePatternList &results, + MLIRContext *context) { + results.insert<SimplifyAllocConst, SimplifyDeadAlloc>(context); +} + +//===----------------------------------------------------------------------===// +// BranchOp +//===----------------------------------------------------------------------===// + +static ParseResult parseBranchOp(OpAsmParser *parser, OperationState *result) { + Block *dest; + SmallVector<Value *, 4> destOperands; + if (parser->parseSuccessorAndUseList(dest, destOperands)) + return failure(); + result->addSuccessor(dest, destOperands); + return success(); +} + +static void print(OpAsmPrinter *p, BranchOp op) { + *p << "br "; + p->printSuccessorAndUseList(op.getOperation(), 0); +} + +Block *BranchOp::getDest() { return getOperation()->getSuccessor(0); } + +void BranchOp::setDest(Block *block) { + return getOperation()->setSuccessor(block, 0); +} + +void BranchOp::eraseOperand(unsigned index) { + getOperation()->eraseSuccessorOperand(0, index); +} + +//===----------------------------------------------------------------------===// +// CallOp +//===----------------------------------------------------------------------===// + +static ParseResult parseCallOp(OpAsmParser *parser, OperationState *result) { + SymbolRefAttr calleeAttr; + FunctionType calleeType; + SmallVector<OpAsmParser::OperandType, 4> operands; + auto calleeLoc = parser->getNameLoc(); + if (parser->parseAttribute(calleeAttr, "callee", result->attributes) || + parser->parseOperandList(operands, OpAsmParser::Delimiter::Paren) || + parser->parseOptionalAttributeDict(result->attributes) || + parser->parseColonType(calleeType) || + parser->addTypesToList(calleeType.getResults(), result->types) || + parser->resolveOperands(operands, calleeType.getInputs(), calleeLoc, + result->operands)) + return failure(); + + return success(); +} + +static void print(OpAsmPrinter *p, CallOp op) { + *p << "call " << op.getAttr("callee") << '('; + p->printOperands(op.getOperands()); + *p << ')'; + p->printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"callee"}); + *p << " : "; + p->printType(op.getCalleeType()); +} + +static LogicalResult verify(CallOp op) { + // Check that the callee attribute was specified. + auto fnAttr = op.getAttrOfType<SymbolRefAttr>("callee"); + if (!fnAttr) + return op.emitOpError("requires a 'callee' symbol reference attribute"); + auto fn = + op.getParentOfType<ModuleOp>().lookupSymbol<FuncOp>(fnAttr.getValue()); + if (!fn) + return op.emitOpError() << "'" << fnAttr.getValue() + << "' does not reference a valid function"; + + // Verify that the operand and result types match the callee. + auto fnType = fn.getType(); + if (fnType.getNumInputs() != op.getNumOperands()) + return op.emitOpError("incorrect number of operands for callee"); + + for (unsigned i = 0, e = fnType.getNumInputs(); i != e; ++i) + if (op.getOperand(i)->getType() != fnType.getInput(i)) + return op.emitOpError("operand type mismatch"); + + if (fnType.getNumResults() != op.getNumResults()) + return op.emitOpError("incorrect number of results for callee"); + + for (unsigned i = 0, e = fnType.getNumResults(); i != e; ++i) + if (op.getResult(i)->getType() != fnType.getResult(i)) + return op.emitOpError("result type mismatch"); + + return success(); +} + +FunctionType CallOp::getCalleeType() { + SmallVector<Type, 4> resultTypes(getResultTypes()); + SmallVector<Type, 8> argTypes(getOperandTypes()); + return FunctionType::get(argTypes, resultTypes, getContext()); +} + +//===----------------------------------------------------------------------===// +// CallIndirectOp +//===----------------------------------------------------------------------===// +namespace { +/// Fold indirect calls that have a constant function as the callee operand. +struct SimplifyIndirectCallWithKnownCallee + : public OpRewritePattern<CallIndirectOp> { + using OpRewritePattern<CallIndirectOp>::OpRewritePattern; + + PatternMatchResult matchAndRewrite(CallIndirectOp indirectCall, + PatternRewriter &rewriter) const override { + // Check that the callee is a constant callee. + SymbolRefAttr calledFn; + if (!matchPattern(indirectCall.getCallee(), m_Constant(&calledFn))) + return matchFailure(); + + // Replace with a direct call. + SmallVector<Type, 8> callResults(indirectCall.getResultTypes()); + SmallVector<Value *, 8> callOperands(indirectCall.getArgOperands()); + rewriter.replaceOpWithNewOp<CallOp>(indirectCall, calledFn.getValue(), + callResults, callOperands); + return matchSuccess(); + } +}; +} // end anonymous namespace. + +static ParseResult parseCallIndirectOp(OpAsmParser *parser, + OperationState *result) { + FunctionType calleeType; + OpAsmParser::OperandType callee; + llvm::SMLoc operandsLoc; + SmallVector<OpAsmParser::OperandType, 4> operands; + return failure( + parser->parseOperand(callee) || + parser->getCurrentLocation(&operandsLoc) || + parser->parseOperandList(operands, OpAsmParser::Delimiter::Paren) || + parser->parseOptionalAttributeDict(result->attributes) || + parser->parseColonType(calleeType) || + parser->resolveOperand(callee, calleeType, result->operands) || + parser->resolveOperands(operands, calleeType.getInputs(), operandsLoc, + result->operands) || + parser->addTypesToList(calleeType.getResults(), result->types)); +} + +static void print(OpAsmPrinter *p, CallIndirectOp op) { + *p << "call_indirect "; + p->printOperand(op.getCallee()); + *p << '('; + p->printOperands(op.getArgOperands()); + *p << ')'; + p->printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"callee"}); + *p << " : " << op.getCallee()->getType(); +} + +static LogicalResult verify(CallIndirectOp op) { + // The callee must be a function. + auto fnType = op.getCallee()->getType().dyn_cast<FunctionType>(); + if (!fnType) + return op.emitOpError("callee must have function type"); + + // Verify that the operand and result types match the callee. + if (fnType.getNumInputs() != op.getNumOperands() - 1) + return op.emitOpError("incorrect number of operands for callee"); + + for (unsigned i = 0, e = fnType.getNumInputs(); i != e; ++i) + if (op.getOperand(i + 1)->getType() != fnType.getInput(i)) + return op.emitOpError("operand type mismatch"); + + if (fnType.getNumResults() != op.getNumResults()) + return op.emitOpError("incorrect number of results for callee"); + + for (unsigned i = 0, e = fnType.getNumResults(); i != e; ++i) + if (op.getResult(i)->getType() != fnType.getResult(i)) + return op.emitOpError("result type mismatch"); + + return success(); +} + +void CallIndirectOp::getCanonicalizationPatterns( + OwningRewritePatternList &results, MLIRContext *context) { + results.insert<SimplifyIndirectCallWithKnownCallee>(context); +} + +//===----------------------------------------------------------------------===// +// General helpers for comparison ops +//===----------------------------------------------------------------------===// + +// Return the type of the same shape (scalar, vector or tensor) containing i1. +static Type getCheckedI1SameShape(Builder *build, Type type) { + auto i1Type = build->getI1Type(); + if (type.isIntOrIndexOrFloat()) + return i1Type; + if (auto tensorType = type.dyn_cast<RankedTensorType>()) + return build->getTensorType(tensorType.getShape(), i1Type); + if (type.isa<UnrankedTensorType>()) + return build->getTensorType(i1Type); + if (auto vectorType = type.dyn_cast<VectorType>()) + return build->getVectorType(vectorType.getShape(), i1Type); + return Type(); +} + +static Type getI1SameShape(Builder *build, Type type) { + Type res = getCheckedI1SameShape(build, type); + assert(res && "expected type with valid i1 shape"); + return res; +} + +//===----------------------------------------------------------------------===// +// CmpIOp +//===----------------------------------------------------------------------===// + +// Returns an array of mnemonics for CmpIPredicates indexed by values thereof. +static inline const char *const *getCmpIPredicateNames() { + static const char *predicateNames[]{ + /*EQ*/ "eq", + /*NE*/ "ne", + /*SLT*/ "slt", + /*SLE*/ "sle", + /*SGT*/ "sgt", + /*SGE*/ "sge", + /*ULT*/ "ult", + /*ULE*/ "ule", + /*UGT*/ "ugt", + /*UGE*/ "uge", + }; + static_assert(std::extent<decltype(predicateNames)>::value == + (size_t)CmpIPredicate::NumPredicates, + "wrong number of predicate names"); + return predicateNames; +} + +// Returns a value of the predicate corresponding to the given mnemonic. +// Returns NumPredicates (one-past-end) if there is no such mnemonic. +CmpIPredicate CmpIOp::getPredicateByName(StringRef name) { + return llvm::StringSwitch<CmpIPredicate>(name) + .Case("eq", CmpIPredicate::EQ) + .Case("ne", CmpIPredicate::NE) + .Case("slt", CmpIPredicate::SLT) + .Case("sle", CmpIPredicate::SLE) + .Case("sgt", CmpIPredicate::SGT) + .Case("sge", CmpIPredicate::SGE) + .Case("ult", CmpIPredicate::ULT) + .Case("ule", CmpIPredicate::ULE) + .Case("ugt", CmpIPredicate::UGT) + .Case("uge", CmpIPredicate::UGE) + .Default(CmpIPredicate::NumPredicates); +} + +static void buildCmpIOp(Builder *build, OperationState *result, + CmpIPredicate predicate, Value *lhs, Value *rhs) { + result->addOperands({lhs, rhs}); + result->types.push_back(getI1SameShape(build, lhs->getType())); + result->addAttribute( + CmpIOp::getPredicateAttrName(), + build->getI64IntegerAttr(static_cast<int64_t>(predicate))); +} + +static ParseResult parseCmpIOp(OpAsmParser *parser, OperationState *result) { + SmallVector<OpAsmParser::OperandType, 2> ops; + SmallVector<NamedAttribute, 4> attrs; + Attribute predicateNameAttr; + Type type; + if (parser->parseAttribute(predicateNameAttr, CmpIOp::getPredicateAttrName(), + attrs) || + parser->parseComma() || parser->parseOperandList(ops, 2) || + parser->parseOptionalAttributeDict(attrs) || + parser->parseColonType(type) || + parser->resolveOperands(ops, type, result->operands)) + return failure(); + + if (!predicateNameAttr.isa<StringAttr>()) + return parser->emitError(parser->getNameLoc(), + "expected string comparison predicate attribute"); + + // Rewrite string attribute to an enum value. + StringRef predicateName = predicateNameAttr.cast<StringAttr>().getValue(); + auto predicate = CmpIOp::getPredicateByName(predicateName); + if (predicate == CmpIPredicate::NumPredicates) + return parser->emitError(parser->getNameLoc()) + << "unknown comparison predicate \"" << predicateName << "\""; + + auto builder = parser->getBuilder(); + Type i1Type = getCheckedI1SameShape(&builder, type); + if (!i1Type) + return parser->emitError(parser->getNameLoc(), + "expected type with valid i1 shape"); + + attrs[0].second = builder.getI64IntegerAttr(static_cast<int64_t>(predicate)); + result->attributes = attrs; + + result->addTypes({i1Type}); + return success(); +} + +static void print(OpAsmPrinter *p, CmpIOp op) { + *p << "cmpi "; + + auto predicateValue = + op.getAttrOfType<IntegerAttr>(CmpIOp::getPredicateAttrName()).getInt(); + assert(predicateValue >= static_cast<int>(CmpIPredicate::FirstValidValue) && + predicateValue < static_cast<int>(CmpIPredicate::NumPredicates) && + "unknown predicate index"); + Builder b(op.getContext()); + auto predicateStringAttr = + b.getStringAttr(getCmpIPredicateNames()[predicateValue]); + p->printAttribute(predicateStringAttr); + + *p << ", "; + p->printOperand(op.lhs()); + *p << ", "; + p->printOperand(op.rhs()); + p->printOptionalAttrDict(op.getAttrs(), + /*elidedAttrs=*/{CmpIOp::getPredicateAttrName()}); + *p << " : " << op.lhs()->getType(); +} + +static LogicalResult verify(CmpIOp op) { + auto predicateAttr = + op.getAttrOfType<IntegerAttr>(CmpIOp::getPredicateAttrName()); + if (!predicateAttr) + return op.emitOpError("requires an integer attribute named 'predicate'"); + auto predicate = predicateAttr.getInt(); + if (predicate < (int64_t)CmpIPredicate::FirstValidValue || + predicate >= (int64_t)CmpIPredicate::NumPredicates) + return op.emitOpError("'predicate' attribute value out of range"); + + return success(); +} + +// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer +// comparison predicates. +static bool applyCmpPredicate(CmpIPredicate predicate, const APInt &lhs, + const APInt &rhs) { + switch (predicate) { + case CmpIPredicate::EQ: + return lhs.eq(rhs); + case CmpIPredicate::NE: + return lhs.ne(rhs); + case CmpIPredicate::SLT: + return lhs.slt(rhs); + case CmpIPredicate::SLE: + return lhs.sle(rhs); + case CmpIPredicate::SGT: + return lhs.sgt(rhs); + case CmpIPredicate::SGE: + return lhs.sge(rhs); + case CmpIPredicate::ULT: + return lhs.ult(rhs); + case CmpIPredicate::ULE: + return lhs.ule(rhs); + case CmpIPredicate::UGT: + return lhs.ugt(rhs); + case CmpIPredicate::UGE: + return lhs.uge(rhs); + default: + llvm_unreachable("unknown comparison predicate"); + } +} + +// Constant folding hook for comparisons. +OpFoldResult CmpIOp::fold(ArrayRef<Attribute> operands) { + assert(operands.size() == 2 && "cmpi takes two arguments"); + + auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); + auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); + if (!lhs || !rhs) + return {}; + + auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); + return IntegerAttr::get(IntegerType::get(1, getContext()), APInt(1, val)); +} + +//===----------------------------------------------------------------------===// +// CmpFOp +//===----------------------------------------------------------------------===// + +// Returns an array of mnemonics for CmpFPredicates indexed by values thereof. +static inline const char *const *getCmpFPredicateNames() { + static const char *predicateNames[] = { + /*AlwaysFalse*/ "false", + /*OEQ*/ "oeq", + /*OGT*/ "ogt", + /*OGE*/ "oge", + /*OLT*/ "olt", + /*OLE*/ "ole", + /*ONE*/ "one", + /*ORD*/ "ord", + /*UEQ*/ "ueq", + /*UGT*/ "ugt", + /*UGE*/ "uge", + /*ULT*/ "ult", + /*ULE*/ "ule", + /*UNE*/ "une", + /*UNO*/ "uno", + /*AlwaysTrue*/ "true", + }; + static_assert(std::extent<decltype(predicateNames)>::value == + (size_t)CmpFPredicate::NumPredicates, + "wrong number of predicate names"); + return predicateNames; +} + +// Returns a value of the predicate corresponding to the given mnemonic. +// Returns NumPredicates (one-past-end) if there is no such mnemonic. +CmpFPredicate CmpFOp::getPredicateByName(StringRef name) { + return llvm::StringSwitch<CmpFPredicate>(name) + .Case("false", CmpFPredicate::AlwaysFalse) + .Case("oeq", CmpFPredicate::OEQ) + .Case("ogt", CmpFPredicate::OGT) + .Case("oge", CmpFPredicate::OGE) + .Case("olt", CmpFPredicate::OLT) + .Case("ole", CmpFPredicate::OLE) + .Case("one", CmpFPredicate::ONE) + .Case("ord", CmpFPredicate::ORD) + .Case("ueq", CmpFPredicate::UEQ) + .Case("ugt", CmpFPredicate::UGT) + .Case("uge", CmpFPredicate::UGE) + .Case("ult", CmpFPredicate::ULT) + .Case("ule", CmpFPredicate::ULE) + .Case("une", CmpFPredicate::UNE) + .Case("uno", CmpFPredicate::UNO) + .Case("true", CmpFPredicate::AlwaysTrue) + .Default(CmpFPredicate::NumPredicates); +} + +static void buildCmpFOp(Builder *build, OperationState *result, + CmpFPredicate predicate, Value *lhs, Value *rhs) { + result->addOperands({lhs, rhs}); + result->types.push_back(getI1SameShape(build, lhs->getType())); + result->addAttribute( + CmpFOp::getPredicateAttrName(), + build->getI64IntegerAttr(static_cast<int64_t>(predicate))); +} + +static ParseResult parseCmpFOp(OpAsmParser *parser, OperationState *result) { + SmallVector<OpAsmParser::OperandType, 2> ops; + SmallVector<NamedAttribute, 4> attrs; + Attribute predicateNameAttr; + Type type; + if (parser->parseAttribute(predicateNameAttr, CmpFOp::getPredicateAttrName(), + attrs) || + parser->parseComma() || parser->parseOperandList(ops, 2) || + parser->parseOptionalAttributeDict(attrs) || + parser->parseColonType(type) || + parser->resolveOperands(ops, type, result->operands)) + return failure(); + + if (!predicateNameAttr.isa<StringAttr>()) + return parser->emitError(parser->getNameLoc(), + "expected string comparison predicate attribute"); + + // Rewrite string attribute to an enum value. + StringRef predicateName = predicateNameAttr.cast<StringAttr>().getValue(); + auto predicate = CmpFOp::getPredicateByName(predicateName); + if (predicate == CmpFPredicate::NumPredicates) + return parser->emitError(parser->getNameLoc(), + "unknown comparison predicate \"" + predicateName + + "\""); + + auto builder = parser->getBuilder(); + Type i1Type = getCheckedI1SameShape(&builder, type); + if (!i1Type) + return parser->emitError(parser->getNameLoc(), + "expected type with valid i1 shape"); + + attrs[0].second = builder.getI64IntegerAttr(static_cast<int64_t>(predicate)); + result->attributes = attrs; + + result->addTypes({i1Type}); + return success(); +} + +static void print(OpAsmPrinter *p, CmpFOp op) { + *p << "cmpf "; + + auto predicateValue = + op.getAttrOfType<IntegerAttr>(CmpFOp::getPredicateAttrName()).getInt(); + assert(predicateValue >= static_cast<int>(CmpFPredicate::FirstValidValue) && + predicateValue < static_cast<int>(CmpFPredicate::NumPredicates) && + "unknown predicate index"); + Builder b(op.getContext()); + auto predicateStringAttr = + b.getStringAttr(getCmpFPredicateNames()[predicateValue]); + p->printAttribute(predicateStringAttr); + + *p << ", "; + p->printOperand(op.lhs()); + *p << ", "; + p->printOperand(op.rhs()); + p->printOptionalAttrDict(op.getAttrs(), + /*elidedAttrs=*/{CmpFOp::getPredicateAttrName()}); + *p << " : " << op.lhs()->getType(); +} + +static LogicalResult verify(CmpFOp op) { + auto predicateAttr = + op.getAttrOfType<IntegerAttr>(CmpFOp::getPredicateAttrName()); + if (!predicateAttr) + return op.emitOpError("requires an integer attribute named 'predicate'"); + auto predicate = predicateAttr.getInt(); + if (predicate < (int64_t)CmpFPredicate::FirstValidValue || + predicate >= (int64_t)CmpFPredicate::NumPredicates) + return op.emitOpError("'predicate' attribute value out of range"); + + return success(); +} + +// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point +// comparison predicates. +static bool applyCmpPredicate(CmpFPredicate predicate, const APFloat &lhs, + const APFloat &rhs) { + auto cmpResult = lhs.compare(rhs); + switch (predicate) { + case CmpFPredicate::AlwaysFalse: + return false; + case CmpFPredicate::OEQ: + return cmpResult == APFloat::cmpEqual; + case CmpFPredicate::OGT: + return cmpResult == APFloat::cmpGreaterThan; + case CmpFPredicate::OGE: + return cmpResult == APFloat::cmpGreaterThan || + cmpResult == APFloat::cmpEqual; + case CmpFPredicate::OLT: + return cmpResult == APFloat::cmpLessThan; + case CmpFPredicate::OLE: + return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; + case CmpFPredicate::ONE: + return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual; + case CmpFPredicate::ORD: + return cmpResult != APFloat::cmpUnordered; + case CmpFPredicate::UEQ: + return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual; + case CmpFPredicate::UGT: + return cmpResult == APFloat::cmpUnordered || + cmpResult == APFloat::cmpGreaterThan; + case CmpFPredicate::UGE: + return cmpResult == APFloat::cmpUnordered || + cmpResult == APFloat::cmpGreaterThan || + cmpResult == APFloat::cmpEqual; + case CmpFPredicate::ULT: + return cmpResult == APFloat::cmpUnordered || + cmpResult == APFloat::cmpLessThan; + case CmpFPredicate::ULE: + return cmpResult == APFloat::cmpUnordered || + cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; + case CmpFPredicate::UNE: + return cmpResult != APFloat::cmpEqual; + case CmpFPredicate::UNO: + return cmpResult == APFloat::cmpUnordered; + case CmpFPredicate::AlwaysTrue: + return true; + default: + llvm_unreachable("unknown comparison predicate"); + } +} + +// Constant folding hook for comparisons. +OpFoldResult CmpFOp::fold(ArrayRef<Attribute> operands) { + assert(operands.size() == 2 && "cmpf takes two arguments"); + + auto lhs = operands.front().dyn_cast_or_null<FloatAttr>(); + auto rhs = operands.back().dyn_cast_or_null<FloatAttr>(); + if (!lhs || !rhs || + // TODO(b/122019992) Implement and test constant folding for nan/inf when + // it is possible to have constant nan/inf + !lhs.getValue().isFinite() || !rhs.getValue().isFinite()) + return {}; + + auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); + return IntegerAttr::get(IntegerType::get(1, getContext()), APInt(1, val)); +} + +//===----------------------------------------------------------------------===// +// CondBranchOp +//===----------------------------------------------------------------------===// + +namespace { +/// cond_br true, ^bb1, ^bb2 -> br ^bb1 +/// cond_br false, ^bb1, ^bb2 -> br ^bb2 +/// +struct SimplifyConstCondBranchPred : public OpRewritePattern<CondBranchOp> { + using OpRewritePattern<CondBranchOp>::OpRewritePattern; + + PatternMatchResult matchAndRewrite(CondBranchOp condbr, + PatternRewriter &rewriter) const override { + // Check that the condition is a constant. + if (!matchPattern(condbr.getCondition(), m_Op<ConstantOp>())) + return matchFailure(); + + Block *foldedDest; + SmallVector<Value *, 4> branchArgs; + + // If the condition is known to evaluate to false we fold to a branch to the + // false destination. Otherwise, we fold to a branch to the true + // destination. + if (matchPattern(condbr.getCondition(), m_Zero())) { + foldedDest = condbr.getFalseDest(); + branchArgs.assign(condbr.false_operand_begin(), + condbr.false_operand_end()); + } else { + foldedDest = condbr.getTrueDest(); + branchArgs.assign(condbr.true_operand_begin(), condbr.true_operand_end()); + } + + rewriter.replaceOpWithNewOp<BranchOp>(condbr, foldedDest, branchArgs); + return matchSuccess(); + } +}; +} // end anonymous namespace. + +static ParseResult parseCondBranchOp(OpAsmParser *parser, + OperationState *result) { + SmallVector<Value *, 4> destOperands; + Block *dest; + OpAsmParser::OperandType condInfo; + + // Parse the condition. + Type int1Ty = parser->getBuilder().getI1Type(); + if (parser->parseOperand(condInfo) || parser->parseComma() || + parser->resolveOperand(condInfo, int1Ty, result->operands)) { + return parser->emitError(parser->getNameLoc(), + "expected condition type was boolean (i1)"); + } + + // Parse the true successor. + if (parser->parseSuccessorAndUseList(dest, destOperands)) + return failure(); + result->addSuccessor(dest, destOperands); + + // Parse the false successor. + destOperands.clear(); + if (parser->parseComma() || + parser->parseSuccessorAndUseList(dest, destOperands)) + return failure(); + result->addSuccessor(dest, destOperands); + + return success(); +} + +static void print(OpAsmPrinter *p, CondBranchOp op) { + *p << "cond_br "; + p->printOperand(op.getCondition()); + *p << ", "; + p->printSuccessorAndUseList(op.getOperation(), CondBranchOp::trueIndex); + *p << ", "; + p->printSuccessorAndUseList(op.getOperation(), CondBranchOp::falseIndex); +} + +void CondBranchOp::getCanonicalizationPatterns( + OwningRewritePatternList &results, MLIRContext *context) { + results.insert<SimplifyConstCondBranchPred>(context); +} + +//===----------------------------------------------------------------------===// +// Constant*Op +//===----------------------------------------------------------------------===// + +static void print(OpAsmPrinter *p, ConstantOp &op) { + *p << "constant "; + p->printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"value"}); + + if (op.getAttrs().size() > 1) + *p << ' '; + p->printAttribute(op.getValue()); + + // If the value is a symbol reference, print a trailing type. + if (op.getValue().isa<SymbolRefAttr>()) + *p << " : " << op.getType(); +} + +static ParseResult parseConstantOp(OpAsmParser *parser, + OperationState *result) { + Attribute valueAttr; + if (parser->parseOptionalAttributeDict(result->attributes) || + parser->parseAttribute(valueAttr, "value", result->attributes)) + return failure(); + + // If the attribute is a symbol reference, then we expect a trailing type. + Type type; + if (!valueAttr.isa<SymbolRefAttr>()) + type = valueAttr.getType(); + else if (parser->parseColonType(type)) + return failure(); + + // Add the attribute type to the list. + return parser->addTypeToList(type, result->types); +} + +/// The constant op requires an attribute, and furthermore requires that it +/// matches the return type. +static LogicalResult verify(ConstantOp &op) { + auto value = op.getValue(); + if (!value) + return op.emitOpError("requires a 'value' attribute"); + + auto type = op.getType(); + if (!value.getType().isa<NoneType>() && type != value.getType()) + return op.emitOpError() << "requires attribute's type (" << value.getType() + << ") to match op's return type (" << type << ")"; + + if (type.isa<IndexType>() || value.isa<BoolAttr>()) + return success(); + + if (auto intAttr = value.dyn_cast<IntegerAttr>()) { + // If the type has a known bitwidth we verify that the value can be + // represented with the given bitwidth. + auto bitwidth = type.cast<IntegerType>().getWidth(); + auto intVal = intAttr.getValue(); + if (!intVal.isSignedIntN(bitwidth) && !intVal.isIntN(bitwidth)) + return op.emitOpError("requires 'value' to be an integer within the " + "range of the integer result type"); + return success(); + } + + if (type.isa<FloatType>()) { + if (!value.isa<FloatAttr>()) + return op.emitOpError("requires 'value' to be a floating point constant"); + return success(); + } + + if (type.isa<ShapedType>()) { + if (!value.isa<ElementsAttr>()) + return op.emitOpError("requires 'value' to be a shaped constant"); + return success(); + } + + if (type.isa<FunctionType>()) { + auto fnAttr = value.dyn_cast<SymbolRefAttr>(); + if (!fnAttr) + return op.emitOpError("requires 'value' to be a function reference"); + + // Try to find the referenced function. + auto fn = + op.getParentOfType<ModuleOp>().lookupSymbol<FuncOp>(fnAttr.getValue()); + if (!fn) + return op.emitOpError("reference to undefined function 'bar'"); + + // Check that the referenced function has the correct type. + if (fn.getType() != type) + return op.emitOpError("reference to function with mismatched type"); + + return success(); + } + + if (type.isa<NoneType>() && value.isa<UnitAttr>()) + return success(); + + return op.emitOpError("unsupported 'value' attribute: ") << value; +} + +OpFoldResult ConstantOp::fold(ArrayRef<Attribute> operands) { + assert(operands.empty() && "constant has no operands"); + return getValue(); +} + +/// Returns true if a constant operation can be built with the given value and +/// result type. +bool ConstantOp::isBuildableWith(Attribute value, Type type) { + // SymbolRefAttr can only be used with a function type. + if (value.isa<SymbolRefAttr>()) + return type.isa<FunctionType>(); + // Otherwise, the attribute must have the same type as 'type'. + if (value.getType() != type) + return false; + // Finally, check that the attribute kind is handled. + return value.isa<BoolAttr>() || value.isa<IntegerAttr>() || + value.isa<FloatAttr>() || value.isa<ElementsAttr>() || + value.isa<UnitAttr>(); +} + +void ConstantFloatOp::build(Builder *builder, OperationState *result, + const APFloat &value, FloatType type) { + ConstantOp::build(builder, result, type, builder->getFloatAttr(type, value)); +} + +bool ConstantFloatOp::classof(Operation *op) { + return ConstantOp::classof(op) && + op->getResult(0)->getType().isa<FloatType>(); +} + +/// ConstantIntOp only matches values whose result type is an IntegerType. +bool ConstantIntOp::classof(Operation *op) { + return ConstantOp::classof(op) && + op->getResult(0)->getType().isa<IntegerType>(); +} + +void ConstantIntOp::build(Builder *builder, OperationState *result, + int64_t value, unsigned width) { + Type type = builder->getIntegerType(width); + ConstantOp::build(builder, result, type, + builder->getIntegerAttr(type, value)); +} + +/// Build a constant int op producing an integer with the specified type, +/// which must be an integer type. +void ConstantIntOp::build(Builder *builder, OperationState *result, + int64_t value, Type type) { + assert(type.isa<IntegerType>() && "ConstantIntOp can only have integer type"); + ConstantOp::build(builder, result, type, + builder->getIntegerAttr(type, value)); +} + +/// ConstantIndexOp only matches values whose result type is Index. +bool ConstantIndexOp::classof(Operation *op) { + return ConstantOp::classof(op) && op->getResult(0)->getType().isIndex(); +} + +void ConstantIndexOp::build(Builder *builder, OperationState *result, + int64_t value) { + Type type = builder->getIndexType(); + ConstantOp::build(builder, result, type, + builder->getIntegerAttr(type, value)); +} + +//===----------------------------------------------------------------------===// +// DeallocOp +//===----------------------------------------------------------------------===// +namespace { +/// Fold Dealloc operations that are deallocating an AllocOp that is only used +/// by other Dealloc operations. +struct SimplifyDeadDealloc : public OpRewritePattern<DeallocOp> { + using OpRewritePattern<DeallocOp>::OpRewritePattern; + + PatternMatchResult matchAndRewrite(DeallocOp dealloc, + PatternRewriter &rewriter) const override { + // Check that the memref operand's defining operation is an AllocOp. + Value *memref = dealloc.memref(); + if (!isa_and_nonnull<AllocOp>(memref->getDefiningOp())) + return matchFailure(); + + // Check that all of the uses of the AllocOp are other DeallocOps. + for (auto *user : memref->getUsers()) + if (!isa<DeallocOp>(user)) + return matchFailure(); + + // Erase the dealloc operation. + rewriter.replaceOp(dealloc, llvm::None); + return matchSuccess(); + } +}; +} // end anonymous namespace. + +static void print(OpAsmPrinter *p, DeallocOp op) { + *p << "dealloc " << *op.memref() << " : " << op.memref()->getType(); +} + +static ParseResult parseDeallocOp(OpAsmParser *parser, OperationState *result) { + OpAsmParser::OperandType memrefInfo; + MemRefType type; + + return failure(parser->parseOperand(memrefInfo) || + parser->parseColonType(type) || + parser->resolveOperand(memrefInfo, type, result->operands)); +} + +static LogicalResult verify(DeallocOp op) { + if (!op.memref()->getType().isa<MemRefType>()) + return op.emitOpError("operand must be a memref"); + return success(); +} + +void DeallocOp::getCanonicalizationPatterns(OwningRewritePatternList &results, + MLIRContext *context) { + /// dealloc(memrefcast) -> dealloc + results.insert<MemRefCastFolder>(getOperationName(), context); + results.insert<SimplifyDeadDealloc>(context); +} + +//===----------------------------------------------------------------------===// +// DimOp +//===----------------------------------------------------------------------===// + +static void print(OpAsmPrinter *p, DimOp op) { + *p << "dim " << *op.getOperand() << ", " << op.getIndex(); + p->printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"index"}); + *p << " : " << op.getOperand()->getType(); +} + +static ParseResult parseDimOp(OpAsmParser *parser, OperationState *result) { + OpAsmParser::OperandType operandInfo; + IntegerAttr indexAttr; + Type type; + Type indexType = parser->getBuilder().getIndexType(); + + return failure(parser->parseOperand(operandInfo) || parser->parseComma() || + parser->parseAttribute(indexAttr, indexType, "index", + result->attributes) || + parser->parseOptionalAttributeDict(result->attributes) || + parser->parseColonType(type) || + parser->resolveOperand(operandInfo, type, result->operands) || + parser->addTypeToList(indexType, result->types)); +} + +static LogicalResult verify(DimOp op) { + // Check that we have an integer index operand. + auto indexAttr = op.getAttrOfType<IntegerAttr>("index"); + if (!indexAttr) + return op.emitOpError("requires an integer attribute named 'index'"); + int64_t index = indexAttr.getValue().getSExtValue(); + + auto type = op.getOperand()->getType(); + if (auto tensorType = type.dyn_cast<RankedTensorType>()) { + if (index >= tensorType.getRank()) + return op.emitOpError("index is out of range"); + } else if (auto memrefType = type.dyn_cast<MemRefType>()) { + if (index >= memrefType.getRank()) + return op.emitOpError("index is out of range"); + + } else if (type.isa<UnrankedTensorType>()) { + // ok, assumed to be in-range. + } else { + return op.emitOpError("requires an operand with tensor or memref type"); + } + + return success(); +} + +OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) { + // Constant fold dim when the size along the index referred to is a constant. + auto opType = getOperand()->getType(); + int64_t indexSize = -1; + if (auto tensorType = opType.dyn_cast<RankedTensorType>()) + indexSize = tensorType.getShape()[getIndex()]; + else if (auto memrefType = opType.dyn_cast<MemRefType>()) + indexSize = memrefType.getShape()[getIndex()]; + + if (indexSize >= 0) + return IntegerAttr::get(IndexType::get(getContext()), indexSize); + + return {}; +} + +//===----------------------------------------------------------------------===// +// DivISOp +//===----------------------------------------------------------------------===// + +OpFoldResult DivISOp::fold(ArrayRef<Attribute> operands) { + assert(operands.size() == 2 && "binary operation takes two operands"); + + auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); + auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); + if (!lhs || !rhs) + return {}; + + // Don't fold if it requires division by zero. + if (rhs.getValue().isNullValue()) + return {}; + + // Don't fold if it would overflow. + bool overflow; + auto result = lhs.getValue().sdiv_ov(rhs.getValue(), overflow); + return overflow ? IntegerAttr() : IntegerAttr::get(lhs.getType(), result); +} + +//===----------------------------------------------------------------------===// +// DivIUOp +//===----------------------------------------------------------------------===// + +OpFoldResult DivIUOp::fold(ArrayRef<Attribute> operands) { + assert(operands.size() == 2 && "binary operation takes two operands"); + + auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); + auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); + if (!lhs || !rhs) + return {}; + + // Don't fold if it requires division by zero. + auto rhsValue = rhs.getValue(); + if (rhsValue.isNullValue()) + return {}; + + return IntegerAttr::get(lhs.getType(), lhs.getValue().udiv(rhsValue)); +} + +// --------------------------------------------------------------------------- +// DmaStartOp +// --------------------------------------------------------------------------- + +void DmaStartOp::build(Builder *builder, OperationState *result, + Value *srcMemRef, ArrayRef<Value *> srcIndices, + Value *destMemRef, ArrayRef<Value *> destIndices, + Value *numElements, Value *tagMemRef, + ArrayRef<Value *> tagIndices, Value *stride, + Value *elementsPerStride) { + result->addOperands(srcMemRef); + result->addOperands(srcIndices); + result->addOperands(destMemRef); + result->addOperands(destIndices); + result->addOperands({numElements, tagMemRef}); + result->addOperands(tagIndices); + if (stride) + result->addOperands({stride, elementsPerStride}); +} + +void DmaStartOp::print(OpAsmPrinter *p) { + *p << "dma_start " << *getSrcMemRef() << '['; + p->printOperands(getSrcIndices()); + *p << "], " << *getDstMemRef() << '['; + p->printOperands(getDstIndices()); + *p << "], " << *getNumElements(); + *p << ", " << *getTagMemRef() << '['; + p->printOperands(getTagIndices()); + *p << ']'; + if (isStrided()) { + *p << ", " << *getStride(); + *p << ", " << *getNumElementsPerStride(); + } + p->printOptionalAttrDict(getAttrs()); + *p << " : " << getSrcMemRef()->getType(); + *p << ", " << getDstMemRef()->getType(); + *p << ", " << getTagMemRef()->getType(); +} + +// Parse DmaStartOp. +// Ex: +// %dma_id = dma_start %src[%i, %j], %dst[%k, %l], %size, +// %tag[%index], %stride, %num_elt_per_stride : +// : memref<3076 x f32, 0>, +// memref<1024 x f32, 2>, +// memref<1 x i32> +// +ParseResult DmaStartOp::parse(OpAsmParser *parser, OperationState *result) { + OpAsmParser::OperandType srcMemRefInfo; + SmallVector<OpAsmParser::OperandType, 4> srcIndexInfos; + OpAsmParser::OperandType dstMemRefInfo; + SmallVector<OpAsmParser::OperandType, 4> dstIndexInfos; + OpAsmParser::OperandType numElementsInfo; + OpAsmParser::OperandType tagMemrefInfo; + SmallVector<OpAsmParser::OperandType, 4> tagIndexInfos; + SmallVector<OpAsmParser::OperandType, 2> strideInfo; + + SmallVector<Type, 3> types; + auto indexType = parser->getBuilder().getIndexType(); + + // Parse and resolve the following list of operands: + // *) source memref followed by its indices (in square brackets). + // *) destination memref followed by its indices (in square brackets). + // *) dma size in KiB. + if (parser->parseOperand(srcMemRefInfo) || + parser->parseOperandList(srcIndexInfos, OpAsmParser::Delimiter::Square) || + parser->parseComma() || parser->parseOperand(dstMemRefInfo) || + parser->parseOperandList(dstIndexInfos, OpAsmParser::Delimiter::Square) || + parser->parseComma() || parser->parseOperand(numElementsInfo) || + parser->parseComma() || parser->parseOperand(tagMemrefInfo) || + parser->parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square)) + return failure(); + + // Parse optional stride and elements per stride. + if (parser->parseTrailingOperandList(strideInfo)) + return failure(); + + bool isStrided = strideInfo.size() == 2; + if (!strideInfo.empty() && !isStrided) { + return parser->emitError(parser->getNameLoc(), + "expected two stride related operands"); + } + + if (parser->parseColonTypeList(types)) + return failure(); + if (types.size() != 3) + return parser->emitError(parser->getNameLoc(), "fewer/more types expected"); + + if (parser->resolveOperand(srcMemRefInfo, types[0], result->operands) || + parser->resolveOperands(srcIndexInfos, indexType, result->operands) || + parser->resolveOperand(dstMemRefInfo, types[1], result->operands) || + parser->resolveOperands(dstIndexInfos, indexType, result->operands) || + // size should be an index. + parser->resolveOperand(numElementsInfo, indexType, result->operands) || + parser->resolveOperand(tagMemrefInfo, types[2], result->operands) || + // tag indices should be index. + parser->resolveOperands(tagIndexInfos, indexType, result->operands)) + return failure(); + + auto memrefType0 = types[0].dyn_cast<MemRefType>(); + if (!memrefType0) + return parser->emitError(parser->getNameLoc(), + "expected source to be of memref type"); + + auto memrefType1 = types[1].dyn_cast<MemRefType>(); + if (!memrefType1) + return parser->emitError(parser->getNameLoc(), + "expected destination to be of memref type"); + + auto memrefType2 = types[2].dyn_cast<MemRefType>(); + if (!memrefType2) + return parser->emitError(parser->getNameLoc(), + "expected tag to be of memref type"); + + if (isStrided) { + if (parser->resolveOperands(strideInfo, indexType, result->operands)) + return failure(); + } + + // Check that source/destination index list size matches associated rank. + if (static_cast<int64_t>(srcIndexInfos.size()) != memrefType0.getRank() || + static_cast<int64_t>(dstIndexInfos.size()) != memrefType1.getRank()) + return parser->emitError(parser->getNameLoc(), + "memref rank not equal to indices count"); + if (static_cast<int64_t>(tagIndexInfos.size()) != memrefType2.getRank()) + return parser->emitError(parser->getNameLoc(), + "tag memref rank not equal to indices count"); + + return success(); +} + +LogicalResult DmaStartOp::verify() { + // DMAs from different memory spaces supported. + if (getSrcMemorySpace() == getDstMemorySpace()) + return emitOpError("DMA should be between different memory spaces"); + + if (getNumOperands() != getTagMemRefRank() + getSrcMemRefRank() + + getDstMemRefRank() + 3 + 1 && + getNumOperands() != getTagMemRefRank() + getSrcMemRefRank() + + getDstMemRefRank() + 3 + 1 + 2) { + return emitOpError("incorrect number of operands"); + } + return success(); +} + +void DmaStartOp::getCanonicalizationPatterns(OwningRewritePatternList &results, + MLIRContext *context) { + /// dma_start(memrefcast) -> dma_start + results.insert<MemRefCastFolder>(getOperationName(), context); +} + +// --------------------------------------------------------------------------- +// DmaWaitOp +// --------------------------------------------------------------------------- + +void DmaWaitOp::build(Builder *builder, OperationState *result, + Value *tagMemRef, ArrayRef<Value *> tagIndices, + Value *numElements) { + result->addOperands(tagMemRef); + result->addOperands(tagIndices); + result->addOperands(numElements); +} + +void DmaWaitOp::print(OpAsmPrinter *p) { + *p << "dma_wait "; + p->printOperand(getTagMemRef()); + *p << '['; + p->printOperands(getTagIndices()); + *p << "], "; + p->printOperand(getNumElements()); + p->printOptionalAttrDict(getAttrs()); + *p << " : " << getTagMemRef()->getType(); +} + +// Parse DmaWaitOp. +// Eg: +// dma_wait %tag[%index], %num_elements : memref<1 x i32, (d0) -> (d0), 4> +// +ParseResult DmaWaitOp::parse(OpAsmParser *parser, OperationState *result) { + OpAsmParser::OperandType tagMemrefInfo; + SmallVector<OpAsmParser::OperandType, 2> tagIndexInfos; + Type type; + auto indexType = parser->getBuilder().getIndexType(); + OpAsmParser::OperandType numElementsInfo; + + // Parse tag memref, its indices, and dma size. + if (parser->parseOperand(tagMemrefInfo) || + parser->parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square) || + parser->parseComma() || parser->parseOperand(numElementsInfo) || + parser->parseColonType(type) || + parser->resolveOperand(tagMemrefInfo, type, result->operands) || + parser->resolveOperands(tagIndexInfos, indexType, result->operands) || + parser->resolveOperand(numElementsInfo, indexType, result->operands)) + return failure(); + + auto memrefType = type.dyn_cast<MemRefType>(); + if (!memrefType) + return parser->emitError(parser->getNameLoc(), + "expected tag to be of memref type"); + + if (static_cast<int64_t>(tagIndexInfos.size()) != memrefType.getRank()) + return parser->emitError(parser->getNameLoc(), + "tag memref rank not equal to indices count"); + + return success(); +} + +void DmaWaitOp::getCanonicalizationPatterns(OwningRewritePatternList &results, + MLIRContext *context) { + /// dma_wait(memrefcast) -> dma_wait + results.insert<MemRefCastFolder>(getOperationName(), context); +} + +//===----------------------------------------------------------------------===// +// ExtractElementOp +//===----------------------------------------------------------------------===// + +static void print(OpAsmPrinter *p, ExtractElementOp op) { + *p << "extract_element " << *op.getAggregate() << '['; + p->printOperands(op.getIndices()); + *p << ']'; + p->printOptionalAttrDict(op.getAttrs()); + *p << " : " << op.getAggregate()->getType(); +} + +static ParseResult parseExtractElementOp(OpAsmParser *parser, + OperationState *result) { + OpAsmParser::OperandType aggregateInfo; + SmallVector<OpAsmParser::OperandType, 4> indexInfo; + ShapedType type; + + auto affineIntTy = parser->getBuilder().getIndexType(); + return failure( + parser->parseOperand(aggregateInfo) || + parser->parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || + parser->parseOptionalAttributeDict(result->attributes) || + parser->parseColonType(type) || + parser->resolveOperand(aggregateInfo, type, result->operands) || + parser->resolveOperands(indexInfo, affineIntTy, result->operands) || + parser->addTypeToList(type.getElementType(), result->types)); +} + +static LogicalResult verify(ExtractElementOp op) { + auto aggregateType = op.getAggregate()->getType().cast<ShapedType>(); + + // This should be possible with tablegen type constraints + if (op.getType() != aggregateType.getElementType()) + return op.emitOpError("result type must match element type of aggregate"); + + // Verify the # indices match if we have a ranked type. + if (aggregateType.hasRank() && + aggregateType.getRank() != op.getNumOperands() - 1) + return op.emitOpError("incorrect number of indices for extract_element"); + + return success(); +} + +OpFoldResult ExtractElementOp::fold(ArrayRef<Attribute> operands) { + assert(!operands.empty() && "extract_element takes atleast one operand"); + + // The aggregate operand must be a known constant. + Attribute aggregate = operands.front(); + if (!aggregate) + return {}; + + // If this is a splat elements attribute, simply return the value. All of the + // elements of a splat attribute are the same. + if (auto splatAggregate = aggregate.dyn_cast<SplatElementsAttr>()) + return splatAggregate.getSplatValue(); + + // Otherwise, collect the constant indices into the aggregate. + SmallVector<uint64_t, 8> indices; + for (Attribute indice : llvm::drop_begin(operands, 1)) { + if (!indice || !indice.isa<IntegerAttr>()) + return {}; + indices.push_back(indice.cast<IntegerAttr>().getInt()); + } + + // If this is an elements attribute, query the value at the given indices. + auto elementsAttr = aggregate.dyn_cast<ElementsAttr>(); + if (elementsAttr && elementsAttr.isValidIndex(indices)) + return elementsAttr.getValue(indices); + return {}; +} + +//===----------------------------------------------------------------------===// +// IndexCastOp +//===----------------------------------------------------------------------===// + +// Index cast is applicable from index to integer and backwards. +bool IndexCastOp::areCastCompatible(Type a, Type b) { + return (a.isIndex() && b.isa<IntegerType>()) || + (a.isa<IntegerType>() && b.isIndex()); +} + +//===----------------------------------------------------------------------===// +// LoadOp +//===----------------------------------------------------------------------===// + +static void print(OpAsmPrinter *p, LoadOp op) { + *p << "load " << *op.getMemRef() << '['; + p->printOperands(op.getIndices()); + *p << ']'; + p->printOptionalAttrDict(op.getAttrs()); + *p << " : " << op.getMemRefType(); +} + +static ParseResult parseLoadOp(OpAsmParser *parser, OperationState *result) { + OpAsmParser::OperandType memrefInfo; + SmallVector<OpAsmParser::OperandType, 4> indexInfo; + MemRefType type; + + auto affineIntTy = parser->getBuilder().getIndexType(); + return failure( + parser->parseOperand(memrefInfo) || + parser->parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || + parser->parseOptionalAttributeDict(result->attributes) || + parser->parseColonType(type) || + parser->resolveOperand(memrefInfo, type, result->operands) || + parser->resolveOperands(indexInfo, affineIntTy, result->operands) || + parser->addTypeToList(type.getElementType(), result->types)); +} + +static LogicalResult verify(LoadOp op) { + if (op.getType() != op.getMemRefType().getElementType()) + return op.emitOpError("result type must match element type of memref"); + + if (op.getMemRefType().getRank() != op.getNumOperands() - 1) + return op.emitOpError("incorrect number of indices for load"); + + for (auto *idx : op.getIndices()) + if (!idx->getType().isIndex()) + return op.emitOpError("index to load must have 'index' type"); + + // TODO: Verify we have the right number of indices. + + // TODO: in Function verify that the indices are parameters, IV's, or the + // result of an affine.apply. + return success(); +} + +void LoadOp::getCanonicalizationPatterns(OwningRewritePatternList &results, + MLIRContext *context) { + /// load(memrefcast) -> load + results.insert<MemRefCastFolder>(getOperationName(), context); +} + +//===----------------------------------------------------------------------===// +// MemRefCastOp +//===----------------------------------------------------------------------===// + +bool MemRefCastOp::areCastCompatible(Type a, Type b) { + auto aT = a.dyn_cast<MemRefType>(); + auto bT = b.dyn_cast<MemRefType>(); + + if (!aT || !bT) + return false; + if (aT.getElementType() != bT.getElementType()) + return false; + if (aT.getAffineMaps() != bT.getAffineMaps()) + return false; + if (aT.getMemorySpace() != bT.getMemorySpace()) + return false; + + // They must have the same rank, and any specified dimensions must match. + if (aT.getRank() != bT.getRank()) + return false; + + for (unsigned i = 0, e = aT.getRank(); i != e; ++i) { + int64_t aDim = aT.getDimSize(i), bDim = bT.getDimSize(i); + if (aDim != -1 && bDim != -1 && aDim != bDim) + return false; + } + + return true; +} + +OpFoldResult MemRefCastOp::fold(ArrayRef<Attribute> operands) { + return impl::foldCastOp(*this); +} + +//===----------------------------------------------------------------------===// +// MulFOp +//===----------------------------------------------------------------------===// + +OpFoldResult MulFOp::fold(ArrayRef<Attribute> operands) { + return constFoldBinaryOp<FloatAttr>( + operands, [](APFloat a, APFloat b) { return a * b; }); +} + +//===----------------------------------------------------------------------===// +// MulIOp +//===----------------------------------------------------------------------===// + +OpFoldResult MulIOp::fold(ArrayRef<Attribute> operands) { + /// muli(x, 0) -> 0 + if (matchPattern(rhs(), m_Zero())) + return rhs(); + /// muli(x, 1) -> x + if (matchPattern(rhs(), m_One())) + return getOperand(0); + + // TODO: Handle the overflow case. + return constFoldBinaryOp<IntegerAttr>(operands, + [](APInt a, APInt b) { return a * b; }); +} + +//===----------------------------------------------------------------------===// +// RankOp +//===----------------------------------------------------------------------===// + +static void print(OpAsmPrinter *p, RankOp op) { + *p << "rank " << *op.getOperand() << " : " << op.getOperand()->getType(); +} + +static ParseResult parseRankOp(OpAsmParser *parser, OperationState *result) { + OpAsmParser::OperandType operandInfo; + Type type; + Type indexType = parser->getBuilder().getIndexType(); + return failure(parser->parseOperand(operandInfo) || + parser->parseColonType(type) || + parser->resolveOperand(operandInfo, type, result->operands) || + parser->addTypeToList(indexType, result->types)); +} + +OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) { + // Constant fold rank when the rank of the tensor is known. + auto type = getOperand()->getType(); + if (auto tensorType = type.dyn_cast<RankedTensorType>()) + return IntegerAttr::get(IndexType::get(getContext()), tensorType.getRank()); + return IntegerAttr(); +} + +//===----------------------------------------------------------------------===// +// RemISOp +//===----------------------------------------------------------------------===// + +OpFoldResult RemISOp::fold(ArrayRef<Attribute> operands) { + assert(operands.size() == 2 && "remis takes two operands"); + + auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); + if (!rhs) + return {}; + auto rhsValue = rhs.getValue(); + + // x % 1 = 0 + if (rhsValue.isOneValue()) + return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0)); + + // Don't fold if it requires division by zero. + if (rhsValue.isNullValue()) + return {}; + + auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); + if (!lhs) + return {}; + return IntegerAttr::get(lhs.getType(), lhs.getValue().srem(rhsValue)); +} + +//===----------------------------------------------------------------------===// +// RemIUOp +//===----------------------------------------------------------------------===// + +OpFoldResult RemIUOp::fold(ArrayRef<Attribute> operands) { + assert(operands.size() == 2 && "remiu takes two operands"); + + auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); + if (!rhs) + return {}; + auto rhsValue = rhs.getValue(); + + // x % 1 = 0 + if (rhsValue.isOneValue()) + return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0)); + + // Don't fold if it requires division by zero. + if (rhsValue.isNullValue()) + return {}; + + auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); + if (!lhs) + return {}; + return IntegerAttr::get(lhs.getType(), lhs.getValue().urem(rhsValue)); +} + +//===----------------------------------------------------------------------===// +// ReturnOp +//===----------------------------------------------------------------------===// + +static ParseResult parseReturnOp(OpAsmParser *parser, OperationState *result) { + SmallVector<OpAsmParser::OperandType, 2> opInfo; + SmallVector<Type, 2> types; + llvm::SMLoc loc = parser->getCurrentLocation(); + return failure(parser->parseOperandList(opInfo) || + (!opInfo.empty() && parser->parseColonTypeList(types)) || + parser->resolveOperands(opInfo, types, loc, result->operands)); +} + +static void print(OpAsmPrinter *p, ReturnOp op) { + *p << "return"; + if (op.getNumOperands() != 0) { + *p << ' '; + p->printOperands(op.getOperands()); + *p << " : "; + interleaveComma(op.getOperandTypes(), *p); + } +} + +static LogicalResult verify(ReturnOp op) { + auto function = cast<FuncOp>(op.getParentOp()); + + // The operand number and types must match the function signature. + const auto &results = function.getType().getResults(); + if (op.getNumOperands() != results.size()) + return op.emitOpError("has ") + << op.getNumOperands() + << " operands, but enclosing function returns " << results.size(); + + for (unsigned i = 0, e = results.size(); i != e; ++i) + if (op.getOperand(i)->getType() != results[i]) + return op.emitError() + << "type of return operand " << i << " (" + << op.getOperand(i)->getType() + << ") doesn't match function result type (" << results[i] << ")"; + + return success(); +} + +//===----------------------------------------------------------------------===// +// SIToFPOp +//===----------------------------------------------------------------------===// + +// sitofp is applicable from integer types to float types. +bool SIToFPOp::areCastCompatible(Type a, Type b) { + return a.isa<IntegerType>() && b.isa<FloatType>(); +} + +//===----------------------------------------------------------------------===// +// SelectOp +//===----------------------------------------------------------------------===// + +static ParseResult parseSelectOp(OpAsmParser *parser, OperationState *result) { + SmallVector<OpAsmParser::OperandType, 3> ops; + SmallVector<NamedAttribute, 4> attrs; + Type type; + if (parser->parseOperandList(ops, 3) || + parser->parseOptionalAttributeDict(result->attributes) || + parser->parseColonType(type)) + return failure(); + + auto i1Type = getCheckedI1SameShape(&parser->getBuilder(), type); + if (!i1Type) + return parser->emitError(parser->getNameLoc(), + "expected type with valid i1 shape"); + + SmallVector<Type, 3> types = {i1Type, type, type}; + return failure(parser->resolveOperands(ops, types, parser->getNameLoc(), + result->operands) || + parser->addTypeToList(type, result->types)); +} + +static void print(OpAsmPrinter *p, SelectOp op) { + *p << "select "; + p->printOperands(op.getOperands()); + *p << " : " << op.getTrueValue()->getType(); + p->printOptionalAttrDict(op.getAttrs()); +} + +static LogicalResult verify(SelectOp op) { + auto trueType = op.getTrueValue()->getType(); + auto falseType = op.getFalseValue()->getType(); + + if (trueType != falseType) + return op.emitOpError( + "requires 'true' and 'false' arguments to be of the same type"); + + return success(); +} + +OpFoldResult SelectOp::fold(ArrayRef<Attribute> operands) { + auto *condition = getCondition(); + + // select true, %0, %1 => %0 + if (matchPattern(condition, m_One())) + return getTrueValue(); + + // select false, %0, %1 => %1 + if (matchPattern(condition, m_Zero())) + return getFalseValue(); + return nullptr; +} + +//===----------------------------------------------------------------------===// +// StoreOp +//===----------------------------------------------------------------------===// + +static void print(OpAsmPrinter *p, StoreOp op) { + *p << "store " << *op.getValueToStore(); + *p << ", " << *op.getMemRef() << '['; + p->printOperands(op.getIndices()); + *p << ']'; + p->printOptionalAttrDict(op.getAttrs()); + *p << " : " << op.getMemRefType(); +} + +static ParseResult parseStoreOp(OpAsmParser *parser, OperationState *result) { + OpAsmParser::OperandType storeValueInfo; + OpAsmParser::OperandType memrefInfo; + SmallVector<OpAsmParser::OperandType, 4> indexInfo; + MemRefType memrefType; + + auto affineIntTy = parser->getBuilder().getIndexType(); + return failure( + parser->parseOperand(storeValueInfo) || parser->parseComma() || + parser->parseOperand(memrefInfo) || + parser->parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || + parser->parseOptionalAttributeDict(result->attributes) || + parser->parseColonType(memrefType) || + parser->resolveOperand(storeValueInfo, memrefType.getElementType(), + result->operands) || + parser->resolveOperand(memrefInfo, memrefType, result->operands) || + parser->resolveOperands(indexInfo, affineIntTy, result->operands)); +} + +static LogicalResult verify(StoreOp op) { + // First operand must have same type as memref element type. + if (op.getValueToStore()->getType() != op.getMemRefType().getElementType()) + return op.emitOpError( + "first operand must have same type memref element type"); + + if (op.getNumOperands() != 2 + op.getMemRefType().getRank()) + return op.emitOpError("store index operand count not equal to memref rank"); + + for (auto *idx : op.getIndices()) + if (!idx->getType().isIndex()) + return op.emitOpError("index to load must have 'index' type"); + + // TODO: Verify we have the right number of indices. + + // TODO: in Function verify that the indices are parameters, IV's, or the + // result of an affine.apply. + return success(); +} + +void StoreOp::getCanonicalizationPatterns(OwningRewritePatternList &results, + MLIRContext *context) { + /// store(memrefcast) -> store + results.insert<MemRefCastFolder>(getOperationName(), context); +} + +//===----------------------------------------------------------------------===// +// SubFOp +//===----------------------------------------------------------------------===// + +OpFoldResult SubFOp::fold(ArrayRef<Attribute> operands) { + return constFoldBinaryOp<FloatAttr>( + operands, [](APFloat a, APFloat b) { return a - b; }); +} + +//===----------------------------------------------------------------------===// +// SubIOp +//===----------------------------------------------------------------------===// + +OpFoldResult SubIOp::fold(ArrayRef<Attribute> operands) { + // subi(x,x) -> 0 + if (getOperand(0) == getOperand(1)) + return Builder(getContext()).getZeroAttr(getType()); + + return constFoldBinaryOp<IntegerAttr>(operands, + [](APInt a, APInt b) { return a - b; }); +} + +//===----------------------------------------------------------------------===// +// AndOp +//===----------------------------------------------------------------------===// + +OpFoldResult AndOp::fold(ArrayRef<Attribute> operands) { + /// and(x, 0) -> 0 + if (matchPattern(rhs(), m_Zero())) + return rhs(); + /// and(x,x) -> x + if (lhs() == rhs()) + return rhs(); + + return constFoldBinaryOp<IntegerAttr>(operands, + [](APInt a, APInt b) { return a & b; }); +} + +//===----------------------------------------------------------------------===// +// OrOp +//===----------------------------------------------------------------------===// + +OpFoldResult OrOp::fold(ArrayRef<Attribute> operands) { + /// or(x, 0) -> x + if (matchPattern(rhs(), m_Zero())) + return lhs(); + /// or(x,x) -> x + if (lhs() == rhs()) + return rhs(); + + return constFoldBinaryOp<IntegerAttr>(operands, + [](APInt a, APInt b) { return a | b; }); +} + +//===----------------------------------------------------------------------===// +// XOrOp +//===----------------------------------------------------------------------===// + +OpFoldResult XOrOp::fold(ArrayRef<Attribute> operands) { + /// xor(x, 0) -> x + if (matchPattern(rhs(), m_Zero())) + return lhs(); + /// xor(x,x) -> 0 + if (lhs() == rhs()) + return Builder(getContext()).getZeroAttr(getType()); + + return constFoldBinaryOp<IntegerAttr>(operands, + [](APInt a, APInt b) { return a ^ b; }); +} + +//===----------------------------------------------------------------------===// +// TensorCastOp +//===----------------------------------------------------------------------===// + +bool TensorCastOp::areCastCompatible(Type a, Type b) { + auto aT = a.dyn_cast<TensorType>(); + auto bT = b.dyn_cast<TensorType>(); + if (!aT || !bT) + return false; + + if (aT.getElementType() != bT.getElementType()) + return false; + + // If the either are unranked, then the cast is valid. + auto aRType = aT.dyn_cast<RankedTensorType>(); + auto bRType = bT.dyn_cast<RankedTensorType>(); + if (!aRType || !bRType) + return true; + + // If they are both ranked, they have to have the same rank, and any specified + // dimensions must match. + if (aRType.getRank() != bRType.getRank()) + return false; + + for (unsigned i = 0, e = aRType.getRank(); i != e; ++i) { + int64_t aDim = aRType.getDimSize(i), bDim = bRType.getDimSize(i); + if (aDim != -1 && bDim != -1 && aDim != bDim) + return false; + } + + return true; +} + +OpFoldResult TensorCastOp::fold(ArrayRef<Attribute> operands) { + return impl::foldCastOp(*this); +} + +//===----------------------------------------------------------------------===// +// TableGen'd op method definitions +//===----------------------------------------------------------------------===// + +#define GET_OP_CLASSES +#include "mlir/Dialect/StandardOps/Ops.cpp.inc" |