diff options
Diffstat (limited to 'mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp')
-rw-r--r-- | mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp | 253 |
1 files changed, 227 insertions, 26 deletions
diff --git a/mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp b/mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp index 2229455ef33..e33b8401c74 100644 --- a/mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp +++ b/mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp @@ -22,15 +22,17 @@ //===----------------------------------------------------------------------===// #include "mlir/Conversion/LoopsToGPU/LoopsToGPU.h" + #include "mlir/Dialect/AffineOps/AffineOps.h" #include "mlir/Dialect/GPU/GPUDialect.h" #include "mlir/Dialect/LoopOps/LoopOps.h" #include "mlir/Dialect/StandardOps/Ops.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Builders.h" +#include "mlir/Transforms/LoopUtils.h" #include "mlir/Transforms/LowerAffine.h" #include "mlir/Transforms/RegionUtils.h" - +#include "llvm/ADT/Sequence.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "loops-to-gpu" @@ -38,6 +40,8 @@ using namespace mlir; using namespace mlir::loop; +using llvm::seq; + // Extract an indexed value from KernelDim3. static Value *getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) { switch (pos) { @@ -97,12 +101,38 @@ static Value *getOrEmitUpperBound(ForOp forOp, OpBuilder &) { } // Check the structure of the loop nest: -// - there are enough loops to map to numBlockDims + numThreadDims; +// - there are enough loops to map to numDims; // - the loops are perfectly nested; // - the loop bounds can be computed above the outermost loop. // This roughly corresponds to the "matcher" part of the pattern-based // rewriting infrastructure. template <typename OpTy> +LogicalResult checkLoopNestMappableImpl(OpTy forOp, unsigned numDims) { + Region &limit = forOp.region(); + for (unsigned i = 0, e = numDims; i < e; ++i) { + Operation *nested = &forOp.getBody()->front(); + if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) || + !areValuesDefinedAbove(getUpperBoundOperands(forOp), limit)) + return forOp.emitError( + "loops with bounds depending on other mapped loops " + "are not supported"); + + // The innermost loop can have an arbitrary body, skip the perfect nesting + // check for it. + if (i == e - 1) + break; + + auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end(); + if (forOp.getBody()->empty() || std::next(begin, 2) != end) + return forOp.emitError("expected perfectly nested loops in the body"); + + if (!(forOp = dyn_cast<OpTy>(nested))) + return nested->emitError("expected a nested loop"); + } + return success(); +} + +template <typename OpTy> LogicalResult checkLoopNestMappable(OpTy forOp, unsigned numBlockDims, unsigned numThreadDims) { if (numBlockDims < 1 || numThreadDims < 1) { @@ -112,39 +142,61 @@ LogicalResult checkLoopNestMappable(OpTy forOp, unsigned numBlockDims, OpBuilder builder(forOp.getOperation()); if (numBlockDims > 3) { - return emitError(builder.getUnknownLoc(), - "cannot map to more than 3 block dimensions"); + return forOp.emitError("cannot map to more than 3 block dimensions"); } if (numThreadDims > 3) { - return emitError(builder.getUnknownLoc(), - "cannot map to more than 3 thread dimensions"); + return forOp.emitError("cannot map to more than 3 thread dimensions"); } + return checkLoopNestMappableImpl(forOp, numBlockDims + numThreadDims); +} - OpTy currentLoop = forOp; - Region &limit = forOp.region(); - for (unsigned i = 0, e = numBlockDims + numThreadDims; i < e; ++i) { - Operation *nested = ¤tLoop.getBody()->front(); - if (!areValuesDefinedAbove(getLowerBoundOperands(currentLoop), limit) || - !areValuesDefinedAbove(getUpperBoundOperands(currentLoop), limit)) - return currentLoop.emitError( - "loops with bounds depending on other mapped loops " - "are not supported"); +template <typename OpTy> +LogicalResult checkLoopOpMappable(OpTy forOp, unsigned numBlockDims, + unsigned numThreadDims) { + if (numBlockDims < 1 || numThreadDims < 1) { + LLVM_DEBUG(llvm::dbgs() << "nothing to map"); + return success(); + } - // The innermost loop can have an arbitrary body, skip the perfect nesting - // check for it. - if (i == e - 1) - break; + if (numBlockDims > 3) { + return forOp.emitError("cannot map to more than 3 block dimensions"); + } + if (numThreadDims > 3) { + return forOp.emitError("cannot map to more than 3 thread dimensions"); + } + if (numBlockDims != numThreadDims) { + // TODO(ravishankarm) : This can probably be relaxed by having a one-trip + // loop for the missing dimension, but there is not reason to handle this + // case for now. + return forOp.emitError( + "mismatch in block dimensions and thread dimensions"); + } - auto begin = currentLoop.getBody()->begin(), - end = currentLoop.getBody()->end(); - if (currentLoop.getBody()->empty() || std::next(begin, 2) != end) - return currentLoop.emitError( - "expected perfectly nested loops in the body"); + // Check that the forOp contains perfectly nested loops for numBlockDims + if (failed(checkLoopNestMappableImpl(forOp, numBlockDims))) { + return failure(); + } - if (!(currentLoop = dyn_cast<OpTy>(nested))) - return nested->emitError("expected a nested loop"); + // Get to the innermost loop. + for (auto i : seq<unsigned>(0, numBlockDims - 1)) { + forOp = cast<OpTy>(&forOp.getBody()->front()); + (void)i; } + // The forOp now points to the body of the innermost loop mapped to blocks. + for (Operation &op : *forOp.getBody()) { + // If the operation is a loop, check that it is mappable to workItems. + if (auto innerLoop = dyn_cast<OpTy>(&op)) { + if (failed(checkLoopNestMappableImpl(innerLoop, numThreadDims))) { + return failure(); + } + continue; + } + // TODO(ravishankarm) : If it is not a loop op, it is assumed that the + // statement is executed by all threads. It might be a collective operation, + // or some non-side effect instruction. Have to decide on "allowable" + // statements and check for those here. + } return success(); } @@ -215,10 +267,140 @@ Optional<OpTy> LoopToGpuConverter::collectBounds(OpTy forOp, return currentLoop; } +/// Given `nDims` perfectly nested loops rooted as `rootForOp`, convert them o +/// be partitioned across workgroups or workitems. The values for the +/// workgroup/workitem id along each dimension is passed in with `ids`. The +/// number of workgroups/workitems along each dimension are passed in with +/// `nids`. The innermost loop is mapped to the x-dimension, followed by the +/// next innermost loop to y-dimension, followed by z-dimension. +template <typename OpTy> +OpTy createGPULaunchLoops(OpTy rootForOp, ArrayRef<Value *> ids, + ArrayRef<Value *> nids) { + auto nDims = ids.size(); + assert(nDims == nids.size()); + for (auto dim : llvm::seq<unsigned>(0, nDims)) { + // TODO(ravishankarm): Don't always need to generate a loop here. If nids >= + // number of iterations of the original loop, this becomes a if + // condition. Though that does rely on how the workgroup/workitem sizes are + // specified to begin with. + mapLoopToProcessorIds(rootForOp, ids[dim], nids[dim]); + if (dim != nDims - 1) { + rootForOp = cast<OpTy>(rootForOp.getBody()->front()); + } + } + return rootForOp; +} + +/// Utility method to convert the gpu::KernelDim3 object for representing id of +/// each workgroup/workitem and number of workgroup/workitems along a dimension +/// of the launch into a container. +void packIdAndNumId(gpu::KernelDim3 kernelIds, gpu::KernelDim3 kernelNids, + unsigned nDims, SmallVectorImpl<Value *> &ids, + SmallVectorImpl<Value *> &nids) { + assert(nDims <= 3 && "invalid number of launch dimensions"); + SmallVector<Value *, 3> allIds = {kernelIds.z, kernelIds.y, kernelIds.x}; + SmallVector<Value *, 3> allNids = {kernelNids.z, kernelNids.y, kernelNids.x}; + ids.clear(); + ids.append(std::next(allIds.begin(), allIds.size() - nDims), allIds.end()); + nids.clear(); + nids.append(std::next(allNids.begin(), allNids.size() - nDims), + allNids.end()); +} + +/// Generate the body of the launch operation. +template <typename OpTy> +LogicalResult createLaunchBody(OpBuilder &builder, OpTy rootForOp, + gpu::LaunchOp launchOp, unsigned numBlockDims, + unsigned numThreadDims) { + OpBuilder::InsertionGuard bodyInsertionGuard(builder); + builder.setInsertionPointToEnd(&launchOp.getBody().front()); + auto returnOp = builder.create<gpu::ReturnOp>(launchOp.getLoc()); + + rootForOp.getOperation()->moveBefore(returnOp); + SmallVector<Value *, 3> workgroupID, numWorkGroups; + packIdAndNumId(launchOp.getBlockIds(), launchOp.getGridSize(), numBlockDims, + workgroupID, numWorkGroups); + + // Partition the loop for mapping to workgroups. + auto loopOp = createGPULaunchLoops(rootForOp, workgroupID, numWorkGroups); + + // Iterate over the body of the loopOp and get the loops to partition for + // thread blocks. + SmallVector<OpTy, 1> threadRootForOps; + for (Operation &op : *loopOp.getBody()) { + if (auto threadRootForOp = dyn_cast<OpTy>(&op)) { + threadRootForOps.push_back(threadRootForOp); + } + } + + SmallVector<Value *, 3> workItemID, workGroupSize; + packIdAndNumId(launchOp.getThreadIds(), launchOp.getBlockSize(), + numThreadDims, workItemID, workGroupSize); + for (auto &loopOp : threadRootForOps) { + builder.setInsertionPoint(loopOp); + createGPULaunchLoops(loopOp, workItemID, workGroupSize); + } + return success(); +} + +// Convert the computation rooted at the `rootForOp`, into a GPU kernel with the +// given workgroup size and number of workgroups. +template <typename OpTy> +LogicalResult createLaunchFromOp(OpTy rootForOp, + ArrayRef<Value *> numWorkGroups, + ArrayRef<Value *> workGroupSizes) { + OpBuilder builder(rootForOp.getOperation()); + if (numWorkGroups.size() > 3) { + return rootForOp.emitError("invalid ") + << numWorkGroups.size() << "-D workgroup specification"; + } + auto loc = rootForOp.getLoc(); + Value *one = builder.create<ConstantOp>( + loc, builder.getIntegerAttr(builder.getIndexType(), 1)); + SmallVector<Value *, 3> numWorkGroups3D(3, one), workGroupSize3D(3, one); + for (auto numWorkGroup : enumerate(numWorkGroups)) { + numWorkGroups3D[numWorkGroup.index()] = numWorkGroup.value(); + } + for (auto workGroupSize : enumerate(workGroupSizes)) { + workGroupSize3D[workGroupSize.index()] = workGroupSize.value(); + } + + // Get the values used within the region of the rootForOp but defined above + // it. + llvm::SetVector<Value *> valuesToForwardSet; + getUsedValuesDefinedAbove(rootForOp.region(), rootForOp.region(), + valuesToForwardSet); + // Also add the values used for the lb, ub, and step of the rootForOp. + valuesToForwardSet.insert(rootForOp.getOperands().begin(), + rootForOp.getOperands().end()); + auto valuesToForward = valuesToForwardSet.takeVector(); + auto launchOp = builder.create<gpu::LaunchOp>( + rootForOp.getLoc(), numWorkGroups3D[0], numWorkGroups3D[1], + numWorkGroups3D[2], workGroupSize3D[0], workGroupSize3D[1], + workGroupSize3D[2], valuesToForward); + if (failed(createLaunchBody(builder, rootForOp, launchOp, + numWorkGroups.size(), workGroupSizes.size()))) { + return failure(); + } + + // Replace values that are used within the region of the launchOp but are + // defined outside. They all are replaced with kernel arguments. + for (const auto &pair : + llvm::zip_first(valuesToForward, launchOp.getKernelArguments())) { + Value *from = std::get<0>(pair); + Value *to = std::get<1>(pair); + replaceAllUsesInRegionWith(from, to, launchOp.getBody()); + } + return success(); +} + // Replace the rooted at "rootForOp" with a GPU launch operation. This expects // "innermostForOp" to point to the last loop to be transformed to the kernel, // and to have (numBlockDims + numThreadDims) perfectly nested loops between // "rootForOp" and "innermostForOp". +// TODO(ravishankarm) : This method can be modified to use the +// createLaunchFromOp method, since that is a strict generalization of this +// method. template <typename OpTy> void LoopToGpuConverter::createLaunch(OpTy rootForOp, OpTy innermostForOp, unsigned numBlockDims, @@ -324,6 +506,19 @@ static LogicalResult convertLoopNestToGPULaunch(OpTy forOp, return success(); } +// Generic loop to GPU kernel conversion function when loop is imperfectly +// nested. The workgroup size and num workgroups is provided as input +template <typename OpTy> +static LogicalResult convertLoopToGPULaunch(OpTy forOp, + ArrayRef<Value *> numWorkGroups, + ArrayRef<Value *> workGroupSize) { + if (failed(checkLoopOpMappable(forOp, numWorkGroups.size(), + workGroupSize.size()))) { + return failure(); + } + return createLaunchFromOp(forOp, numWorkGroups, workGroupSize); +} + LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp, unsigned numBlockDims, unsigned numThreadDims) { @@ -335,3 +530,9 @@ LogicalResult mlir::convertLoopNestToGPULaunch(ForOp forOp, unsigned numThreadDims) { return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims); } + +LogicalResult mlir::convertLoopToGPULaunch(loop::ForOp forOp, + ArrayRef<Value *> numWorkGroups, + ArrayRef<Value *> workGroupSizes) { + return ::convertLoopToGPULaunch(forOp, numWorkGroups, workGroupSizes); +} |