diff options
Diffstat (limited to 'llvm')
| -rw-r--r-- | llvm/include/llvm/IR/IntrinsicsX86.td | 23 | ||||
| -rw-r--r-- | llvm/lib/Support/Host.cpp | 2991 | ||||
| -rw-r--r-- | llvm/lib/Target/X86/X86.td | 6 | ||||
| -rw-r--r-- | llvm/lib/Target/X86/X86ISelLowering.cpp | 14 | ||||
| -rw-r--r-- | llvm/lib/Target/X86/X86ISelLowering.h | 3 | ||||
| -rw-r--r-- | llvm/lib/Target/X86/X86InstrInfo.td | 59 | ||||
| -rw-r--r-- | llvm/lib/Target/X86/X86Schedule.td | 1325 | ||||
| -rw-r--r-- | llvm/lib/Target/X86/X86Subtarget.cpp | 1 | ||||
| -rw-r--r-- | llvm/lib/Target/X86/X86Subtarget.h | 4 | ||||
| -rw-r--r-- | llvm/test/CodeGen/X86/lwp-intrinsics-x86_64.ll | 49 | ||||
| -rw-r--r-- | llvm/test/CodeGen/X86/lwp-intrinsics.ll | 121 | ||||
| -rw-r--r-- | llvm/test/MC/Disassembler/X86/x86-32.txt | 18 | ||||
| -rw-r--r-- | llvm/test/MC/Disassembler/X86/x86-64.txt | 24 | ||||
| -rw-r--r-- | llvm/test/MC/X86/lwp-x86_64.s | 25 | ||||
| -rw-r--r-- | llvm/test/MC/X86/lwp.s | 32 |
15 files changed, 2538 insertions, 2157 deletions
diff --git a/llvm/include/llvm/IR/IntrinsicsX86.td b/llvm/include/llvm/IR/IntrinsicsX86.td index 97c756cf4b6..1c466e73eb1 100644 --- a/llvm/include/llvm/IR/IntrinsicsX86.td +++ b/llvm/include/llvm/IR/IntrinsicsX86.td @@ -3221,6 +3221,29 @@ let TargetPrefix = "x86" in { // All intrinsics start with "llvm.x86.". } //===----------------------------------------------------------------------===// +// LWP +let TargetPrefix = "x86" in { // All intrinsics start with "llvm.x86.". + def int_x86_llwpcb : + GCCBuiltin<"__builtin_ia32_llwpcb">, + Intrinsic<[], [llvm_ptr_ty], []>; + def int_x86_slwpcb : + GCCBuiltin<"__builtin_ia32_slwpcb">, + Intrinsic<[llvm_ptr_ty], [], []>; + def int_x86_lwpins32 : + GCCBuiltin<"__builtin_ia32_lwpins32">, + Intrinsic<[llvm_i8_ty], [llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], []>; + def int_x86_lwpins64 : + GCCBuiltin<"__builtin_ia32_lwpins64">, + Intrinsic<[llvm_i8_ty], [llvm_i64_ty, llvm_i32_ty, llvm_i32_ty], []>; + def int_x86_lwpval32 : + GCCBuiltin<"__builtin_ia32_lwpval32">, + Intrinsic<[], [llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], []>; + def int_x86_lwpval64 : + GCCBuiltin<"__builtin_ia32_lwpval64">, + Intrinsic<[], [llvm_i64_ty, llvm_i32_ty, llvm_i32_ty], []>; +} + +//===----------------------------------------------------------------------===// // MMX // Empty MMX state op. diff --git a/llvm/lib/Support/Host.cpp b/llvm/lib/Support/Host.cpp index 970ecfd7df9..2477a0224a3 100644 --- a/llvm/lib/Support/Host.cpp +++ b/llvm/lib/Support/Host.cpp @@ -1,1495 +1,1496 @@ -//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the operating system Host concept. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Support/Host.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/StringSwitch.h" -#include "llvm/ADT/Triple.h" -#include "llvm/Config/config.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/FileSystem.h" -#include "llvm/Support/MemoryBuffer.h" -#include "llvm/Support/raw_ostream.h" -#include <assert.h> -#include <string.h> - -// Include the platform-specific parts of this class. -#ifdef LLVM_ON_UNIX -#include "Unix/Host.inc" -#endif -#ifdef LLVM_ON_WIN32 -#include "Windows/Host.inc" -#endif -#ifdef _MSC_VER -#include <intrin.h> -#endif -#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) -#include <mach/host_info.h> -#include <mach/mach.h> -#include <mach/mach_host.h> -#include <mach/machine.h> -#endif - -#define DEBUG_TYPE "host-detection" - -//===----------------------------------------------------------------------===// -// -// Implementations of the CPU detection routines -// -//===----------------------------------------------------------------------===// - -using namespace llvm; - -static std::unique_ptr<llvm::MemoryBuffer> - LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() { - llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text = - llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); - if (std::error_code EC = Text.getError()) { - llvm::errs() << "Can't read " - << "/proc/cpuinfo: " << EC.message() << "\n"; - return nullptr; - } - return std::move(*Text); -} - -StringRef sys::detail::getHostCPUNameForPowerPC( - const StringRef &ProcCpuinfoContent) { - // Access to the Processor Version Register (PVR) on PowerPC is privileged, - // and so we must use an operating-system interface to determine the current - // processor type. On Linux, this is exposed through the /proc/cpuinfo file. - const char *generic = "generic"; - - // The cpu line is second (after the 'processor: 0' line), so if this - // buffer is too small then something has changed (or is wrong). - StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin(); - StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end(); - - StringRef::const_iterator CIP = CPUInfoStart; - - StringRef::const_iterator CPUStart = 0; - size_t CPULen = 0; - - // We need to find the first line which starts with cpu, spaces, and a colon. - // After the colon, there may be some additional spaces and then the cpu type. - while (CIP < CPUInfoEnd && CPUStart == 0) { - if (CIP < CPUInfoEnd && *CIP == '\n') - ++CIP; - - if (CIP < CPUInfoEnd && *CIP == 'c') { - ++CIP; - if (CIP < CPUInfoEnd && *CIP == 'p') { - ++CIP; - if (CIP < CPUInfoEnd && *CIP == 'u') { - ++CIP; - while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) - ++CIP; - - if (CIP < CPUInfoEnd && *CIP == ':') { - ++CIP; - while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) - ++CIP; - - if (CIP < CPUInfoEnd) { - CPUStart = CIP; - while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' && - *CIP != ',' && *CIP != '\n')) - ++CIP; - CPULen = CIP - CPUStart; - } - } - } - } - } - - if (CPUStart == 0) - while (CIP < CPUInfoEnd && *CIP != '\n') - ++CIP; - } - - if (CPUStart == 0) - return generic; - - return StringSwitch<const char *>(StringRef(CPUStart, CPULen)) - .Case("604e", "604e") - .Case("604", "604") - .Case("7400", "7400") - .Case("7410", "7400") - .Case("7447", "7400") - .Case("7455", "7450") - .Case("G4", "g4") - .Case("POWER4", "970") - .Case("PPC970FX", "970") - .Case("PPC970MP", "970") - .Case("G5", "g5") - .Case("POWER5", "g5") - .Case("A2", "a2") - .Case("POWER6", "pwr6") - .Case("POWER7", "pwr7") - .Case("POWER8", "pwr8") - .Case("POWER8E", "pwr8") - .Case("POWER8NVL", "pwr8") - .Case("POWER9", "pwr9") - .Default(generic); -} - -StringRef sys::detail::getHostCPUNameForARM( - const StringRef &ProcCpuinfoContent) { - // The cpuid register on arm is not accessible from user space. On Linux, - // it is exposed through the /proc/cpuinfo file. - - // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line - // in all cases. - SmallVector<StringRef, 32> Lines; - ProcCpuinfoContent.split(Lines, "\n"); - - // Look for the CPU implementer line. - StringRef Implementer; - StringRef Hardware; - for (unsigned I = 0, E = Lines.size(); I != E; ++I) { - if (Lines[I].startswith("CPU implementer")) - Implementer = Lines[I].substr(15).ltrim("\t :"); - if (Lines[I].startswith("Hardware")) - Hardware = Lines[I].substr(8).ltrim("\t :"); - } - - if (Implementer == "0x41") { // ARM Ltd. - // MSM8992/8994 may give cpu part for the core that the kernel is running on, - // which is undeterministic and wrong. Always return cortex-a53 for these SoC. - if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996")) - return "cortex-a53"; - - - // Look for the CPU part line. - for (unsigned I = 0, E = Lines.size(); I != E; ++I) - if (Lines[I].startswith("CPU part")) - // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The - // values correspond to the "Part number" in the CP15/c0 register. The - // contents are specified in the various processor manuals. - return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) - .Case("0x926", "arm926ej-s") - .Case("0xb02", "mpcore") - .Case("0xb36", "arm1136j-s") - .Case("0xb56", "arm1156t2-s") - .Case("0xb76", "arm1176jz-s") - .Case("0xc08", "cortex-a8") - .Case("0xc09", "cortex-a9") - .Case("0xc0f", "cortex-a15") - .Case("0xc20", "cortex-m0") - .Case("0xc23", "cortex-m3") - .Case("0xc24", "cortex-m4") - .Case("0xd04", "cortex-a35") - .Case("0xd03", "cortex-a53") - .Case("0xd07", "cortex-a57") - .Case("0xd08", "cortex-a72") - .Case("0xd09", "cortex-a73") - .Default("generic"); - } - - if (Implementer == "0x51") // Qualcomm Technologies, Inc. - // Look for the CPU part line. - for (unsigned I = 0, E = Lines.size(); I != E; ++I) - if (Lines[I].startswith("CPU part")) - // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The - // values correspond to the "Part number" in the CP15/c0 register. The - // contents are specified in the various processor manuals. - return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) - .Case("0x06f", "krait") // APQ8064 - .Case("0x201", "kryo") - .Case("0x205", "kryo") - .Default("generic"); - - return "generic"; -} - -StringRef sys::detail::getHostCPUNameForS390x( - const StringRef &ProcCpuinfoContent) { - // STIDP is a privileged operation, so use /proc/cpuinfo instead. - - // The "processor 0:" line comes after a fair amount of other information, - // including a cache breakdown, but this should be plenty. - SmallVector<StringRef, 32> Lines; - ProcCpuinfoContent.split(Lines, "\n"); - - // Look for the CPU features. - SmallVector<StringRef, 32> CPUFeatures; - for (unsigned I = 0, E = Lines.size(); I != E; ++I) - if (Lines[I].startswith("features")) { - size_t Pos = Lines[I].find(":"); - if (Pos != StringRef::npos) { - Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' '); - break; - } - } - - // We need to check for the presence of vector support independently of - // the machine type, since we may only use the vector register set when - // supported by the kernel (and hypervisor). - bool HaveVectorSupport = false; - for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { - if (CPUFeatures[I] == "vx") - HaveVectorSupport = true; - } - - // Now check the processor machine type. - for (unsigned I = 0, E = Lines.size(); I != E; ++I) { - if (Lines[I].startswith("processor ")) { - size_t Pos = Lines[I].find("machine = "); - if (Pos != StringRef::npos) { - Pos += sizeof("machine = ") - 1; - unsigned int Id; - if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) { - if (Id >= 2964 && HaveVectorSupport) - return "z13"; - if (Id >= 2827) - return "zEC12"; - if (Id >= 2817) - return "z196"; - } - } - break; - } - } - - return "generic"; -} - -#if defined(__i386__) || defined(_M_IX86) || \ - defined(__x86_64__) || defined(_M_X64) - -enum VendorSignatures { - SIG_INTEL = 0x756e6547 /* Genu */, - SIG_AMD = 0x68747541 /* Auth */ -}; - -enum ProcessorVendors { - VENDOR_INTEL = 1, - VENDOR_AMD, - VENDOR_OTHER, - VENDOR_MAX -}; - -enum ProcessorTypes { - INTEL_ATOM = 1, - INTEL_CORE2, - INTEL_COREI7, - AMDFAM10H, - AMDFAM15H, - INTEL_i386, - INTEL_i486, - INTEL_PENTIUM, - INTEL_PENTIUM_PRO, - INTEL_PENTIUM_II, - INTEL_PENTIUM_III, - INTEL_PENTIUM_IV, - INTEL_PENTIUM_M, - INTEL_CORE_DUO, - INTEL_XEONPHI, - INTEL_X86_64, - INTEL_NOCONA, - INTEL_PRESCOTT, - AMD_i486, - AMDPENTIUM, - AMDATHLON, - AMDFAM14H, - AMDFAM16H, - AMDFAM17H, - CPU_TYPE_MAX -}; - -enum ProcessorSubtypes { - INTEL_COREI7_NEHALEM = 1, - INTEL_COREI7_WESTMERE, - INTEL_COREI7_SANDYBRIDGE, - AMDFAM10H_BARCELONA, - AMDFAM10H_SHANGHAI, - AMDFAM10H_ISTANBUL, - AMDFAM15H_BDVER1, - AMDFAM15H_BDVER2, - INTEL_PENTIUM_MMX, - INTEL_CORE2_65, - INTEL_CORE2_45, - INTEL_COREI7_IVYBRIDGE, - INTEL_COREI7_HASWELL, - INTEL_COREI7_BROADWELL, - INTEL_COREI7_SKYLAKE, - INTEL_COREI7_SKYLAKE_AVX512, - INTEL_ATOM_BONNELL, - INTEL_ATOM_SILVERMONT, - INTEL_KNIGHTS_LANDING, - AMDPENTIUM_K6, - AMDPENTIUM_K62, - AMDPENTIUM_K63, - AMDPENTIUM_GEODE, - AMDATHLON_TBIRD, - AMDATHLON_MP, - AMDATHLON_XP, - AMDATHLON_K8SSE3, - AMDATHLON_OPTERON, - AMDATHLON_FX, - AMDATHLON_64, - AMD_BTVER1, - AMD_BTVER2, - AMDFAM15H_BDVER3, - AMDFAM15H_BDVER4, - AMDFAM17H_ZNVER1, - CPU_SUBTYPE_MAX -}; - -enum ProcessorFeatures { - FEATURE_CMOV = 0, - FEATURE_MMX, - FEATURE_POPCNT, - FEATURE_SSE, - FEATURE_SSE2, - FEATURE_SSE3, - FEATURE_SSSE3, - FEATURE_SSE4_1, - FEATURE_SSE4_2, - FEATURE_AVX, - FEATURE_AVX2, - FEATURE_AVX512, - FEATURE_AVX512SAVE, - FEATURE_MOVBE, - FEATURE_ADX, - FEATURE_EM64T -}; - -// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max). -// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID -// support. Consequently, for i386, the presence of CPUID is checked first -// via the corresponding eflags bit. -// Removal of cpuid.h header motivated by PR30384 -// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp -// or test-suite, but are used in external projects e.g. libstdcxx -static bool isCpuIdSupported() { -#if defined(__GNUC__) || defined(__clang__) -#if defined(__i386__) - int __cpuid_supported; - __asm__(" pushfl\n" - " popl %%eax\n" - " movl %%eax,%%ecx\n" - " xorl $0x00200000,%%eax\n" - " pushl %%eax\n" - " popfl\n" - " pushfl\n" - " popl %%eax\n" - " movl $0,%0\n" - " cmpl %%eax,%%ecx\n" - " je 1f\n" - " movl $1,%0\n" - "1:" - : "=r"(__cpuid_supported) - : - : "eax", "ecx"); - if (!__cpuid_supported) - return false; -#endif - return true; -#endif - return true; -} - -/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in -/// the specified arguments. If we can't run cpuid on the host, return true. -static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, - unsigned *rECX, unsigned *rEDX) { -#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER) -#if defined(__GNUC__) || defined(__clang__) -#if defined(__x86_64__) - // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually. - // FIXME: should we save this for Clang? - __asm__("movq\t%%rbx, %%rsi\n\t" - "cpuid\n\t" - "xchgq\t%%rbx, %%rsi\n\t" - : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) - : "a"(value)); -#elif defined(__i386__) - __asm__("movl\t%%ebx, %%esi\n\t" - "cpuid\n\t" - "xchgl\t%%ebx, %%esi\n\t" - : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) - : "a"(value)); -#else - assert(0 && "This method is defined only for x86."); -#endif -#elif defined(_MSC_VER) - // The MSVC intrinsic is portable across x86 and x64. - int registers[4]; - __cpuid(registers, value); - *rEAX = registers[0]; - *rEBX = registers[1]; - *rECX = registers[2]; - *rEDX = registers[3]; -#endif - return false; -#else - return true; -#endif -} - -/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return -/// the 4 values in the specified arguments. If we can't run cpuid on the host, -/// return true. -static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf, - unsigned *rEAX, unsigned *rEBX, unsigned *rECX, - unsigned *rEDX) { -#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER) -#if defined(__x86_64__) || defined(_M_X64) -#if defined(__GNUC__) || defined(__clang__) - // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. - // FIXME: should we save this for Clang? - __asm__("movq\t%%rbx, %%rsi\n\t" - "cpuid\n\t" - "xchgq\t%%rbx, %%rsi\n\t" - : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) - : "a"(value), "c"(subleaf)); -#elif defined(_MSC_VER) - int registers[4]; - __cpuidex(registers, value, subleaf); - *rEAX = registers[0]; - *rEBX = registers[1]; - *rECX = registers[2]; - *rEDX = registers[3]; -#endif -#elif defined(__i386__) || defined(_M_IX86) -#if defined(__GNUC__) || defined(__clang__) - __asm__("movl\t%%ebx, %%esi\n\t" - "cpuid\n\t" - "xchgl\t%%ebx, %%esi\n\t" - : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) - : "a"(value), "c"(subleaf)); -#elif defined(_MSC_VER) - __asm { - mov eax,value - mov ecx,subleaf - cpuid - mov esi,rEAX - mov dword ptr [esi],eax - mov esi,rEBX - mov dword ptr [esi],ebx - mov esi,rECX - mov dword ptr [esi],ecx - mov esi,rEDX - mov dword ptr [esi],edx - } -#endif -#else - assert(0 && "This method is defined only for x86."); -#endif - return false; -#else - return true; -#endif -} - -static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) { -#if defined(__GNUC__) || defined(__clang__) - // Check xgetbv; this uses a .byte sequence instead of the instruction - // directly because older assemblers do not include support for xgetbv and - // there is no easy way to conditionally compile based on the assembler used. - __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0)); - return false; -#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK) - unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK); - *rEAX = Result; - *rEDX = Result >> 32; - return false; -#else - return true; -#endif -} - -static void detectX86FamilyModel(unsigned EAX, unsigned *Family, - unsigned *Model) { - *Family = (EAX >> 8) & 0xf; // Bits 8 - 11 - *Model = (EAX >> 4) & 0xf; // Bits 4 - 7 - if (*Family == 6 || *Family == 0xf) { - if (*Family == 0xf) - // Examine extended family ID if family ID is F. - *Family += (EAX >> 20) & 0xff; // Bits 20 - 27 - // Examine extended model ID if family ID is 6 or F. - *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 - } -} - -static void -getIntelProcessorTypeAndSubtype(unsigned int Family, unsigned int Model, - unsigned int Brand_id, unsigned int Features, - unsigned *Type, unsigned *Subtype) { - if (Brand_id != 0) - return; - switch (Family) { - case 3: - *Type = INTEL_i386; - break; - case 4: - switch (Model) { - case 0: // Intel486 DX processors - case 1: // Intel486 DX processors - case 2: // Intel486 SX processors - case 3: // Intel487 processors, IntelDX2 OverDrive processors, - // IntelDX2 processors - case 4: // Intel486 SL processor - case 5: // IntelSX2 processors - case 7: // Write-Back Enhanced IntelDX2 processors - case 8: // IntelDX4 OverDrive processors, IntelDX4 processors - default: - *Type = INTEL_i486; - break; - } - break; - case 5: - switch (Model) { - case 1: // Pentium OverDrive processor for Pentium processor (60, 66), - // Pentium processors (60, 66) - case 2: // Pentium OverDrive processor for Pentium processor (75, 90, - // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133, - // 150, 166, 200) - case 3: // Pentium OverDrive processors for Intel486 processor-based - // systems - *Type = INTEL_PENTIUM; - break; - case 4: // Pentium OverDrive processor with MMX technology for Pentium - // processor (75, 90, 100, 120, 133), Pentium processor with - // MMX technology (166, 200) - *Type = INTEL_PENTIUM; - *Subtype = INTEL_PENTIUM_MMX; - break; - default: - *Type = INTEL_PENTIUM; - break; - } - break; - case 6: - switch (Model) { - case 0x01: // Pentium Pro processor - *Type = INTEL_PENTIUM_PRO; - break; - case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor, - // model 03 - case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor, - // model 05, and Intel Celeron processor, model 05 - case 0x06: // Celeron processor, model 06 - *Type = INTEL_PENTIUM_II; - break; - case 0x07: // Pentium III processor, model 07, and Pentium III Xeon - // processor, model 07 - case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor, - // model 08, and Celeron processor, model 08 - case 0x0a: // Pentium III Xeon processor, model 0Ah - case 0x0b: // Pentium III processor, model 0Bh - *Type = INTEL_PENTIUM_III; - break; - case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09. - case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model - // 0Dh. All processors are manufactured using the 90 nm process. - case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579 - // Integrated Processor with Intel QuickAssist Technology - *Type = INTEL_PENTIUM_M; - break; - case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model - // 0Eh. All processors are manufactured using the 65 nm process. - *Type = INTEL_CORE_DUO; - break; // yonah - case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile - // processor, Intel Core 2 Quad processor, Intel Core 2 Quad - // mobile processor, Intel Core 2 Extreme processor, Intel - // Pentium Dual-Core processor, Intel Xeon processor, model - // 0Fh. All processors are manufactured using the 65 nm process. - case 0x16: // Intel Celeron processor model 16h. All processors are - // manufactured using the 65 nm process - *Type = INTEL_CORE2; // "core2" - *Subtype = INTEL_CORE2_65; - break; - case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model - // 17h. All processors are manufactured using the 45 nm process. - // - // 45nm: Penryn , Wolfdale, Yorkfield (XE) - case 0x1d: // Intel Xeon processor MP. All processors are manufactured using - // the 45 nm process. - *Type = INTEL_CORE2; // "penryn" - *Subtype = INTEL_CORE2_45; - break; - case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All - // processors are manufactured using the 45 nm process. - case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz. - // As found in a Summer 2010 model iMac. - case 0x1f: - case 0x2e: // Nehalem EX - *Type = INTEL_COREI7; // "nehalem" - *Subtype = INTEL_COREI7_NEHALEM; - break; - case 0x25: // Intel Core i7, laptop version. - case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All - // processors are manufactured using the 32 nm process. - case 0x2f: // Westmere EX - *Type = INTEL_COREI7; // "westmere" - *Subtype = INTEL_COREI7_WESTMERE; - break; - case 0x2a: // Intel Core i7 processor. All processors are manufactured - // using the 32 nm process. - case 0x2d: - *Type = INTEL_COREI7; //"sandybridge" - *Subtype = INTEL_COREI7_SANDYBRIDGE; - break; - case 0x3a: - case 0x3e: // Ivy Bridge EP - *Type = INTEL_COREI7; // "ivybridge" - *Subtype = INTEL_COREI7_IVYBRIDGE; - break; - - // Haswell: - case 0x3c: - case 0x3f: - case 0x45: - case 0x46: - *Type = INTEL_COREI7; // "haswell" - *Subtype = INTEL_COREI7_HASWELL; - break; - - // Broadwell: - case 0x3d: - case 0x47: - case 0x4f: - case 0x56: - *Type = INTEL_COREI7; // "broadwell" - *Subtype = INTEL_COREI7_BROADWELL; - break; - - // Skylake: - case 0x4e: // Skylake mobile - case 0x5e: // Skylake desktop - case 0x8e: // Kaby Lake mobile - case 0x9e: // Kaby Lake desktop - *Type = INTEL_COREI7; // "skylake" - *Subtype = INTEL_COREI7_SKYLAKE; - break; - - // Skylake Xeon: - case 0x55: - *Type = INTEL_COREI7; - // Check that we really have AVX512 - if (Features & (1 << FEATURE_AVX512)) { - *Subtype = INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512" - } else { - *Subtype = INTEL_COREI7_SKYLAKE; // "skylake" - } - break; - - case 0x1c: // Most 45 nm Intel Atom processors - case 0x26: // 45 nm Atom Lincroft - case 0x27: // 32 nm Atom Medfield - case 0x35: // 32 nm Atom Midview - case 0x36: // 32 nm Atom Midview - *Type = INTEL_ATOM; - *Subtype = INTEL_ATOM_BONNELL; - break; // "bonnell" - - // Atom Silvermont codes from the Intel software optimization guide. - case 0x37: - case 0x4a: - case 0x4d: - case 0x5a: - case 0x5d: - case 0x4c: // really airmont - *Type = INTEL_ATOM; - *Subtype = INTEL_ATOM_SILVERMONT; - break; // "silvermont" - - case 0x57: - *Type = INTEL_XEONPHI; // knl - *Subtype = INTEL_KNIGHTS_LANDING; - break; - - default: // Unknown family 6 CPU, try to guess. - if (Features & (1 << FEATURE_AVX512)) { - *Type = INTEL_XEONPHI; // knl - *Subtype = INTEL_KNIGHTS_LANDING; - break; - } - if (Features & (1 << FEATURE_ADX)) { - *Type = INTEL_COREI7; - *Subtype = INTEL_COREI7_BROADWELL; - break; - } - if (Features & (1 << FEATURE_AVX2)) { - *Type = INTEL_COREI7; - *Subtype = INTEL_COREI7_HASWELL; - break; - } - if (Features & (1 << FEATURE_AVX)) { - *Type = INTEL_COREI7; - *Subtype = INTEL_COREI7_SANDYBRIDGE; - break; - } - if (Features & (1 << FEATURE_SSE4_2)) { - if (Features & (1 << FEATURE_MOVBE)) { - *Type = INTEL_ATOM; - *Subtype = INTEL_ATOM_SILVERMONT; - } else { - *Type = INTEL_COREI7; - *Subtype = INTEL_COREI7_NEHALEM; - } - break; - } - if (Features & (1 << FEATURE_SSE4_1)) { - *Type = INTEL_CORE2; // "penryn" - *Subtype = INTEL_CORE2_45; - break; - } - if (Features & (1 << FEATURE_SSSE3)) { - if (Features & (1 << FEATURE_MOVBE)) { - *Type = INTEL_ATOM; - *Subtype = INTEL_ATOM_BONNELL; // "bonnell" - } else { - *Type = INTEL_CORE2; // "core2" - *Subtype = INTEL_CORE2_65; - } - break; - } - if (Features & (1 << FEATURE_EM64T)) { - *Type = INTEL_X86_64; - break; // x86-64 - } - if (Features & (1 << FEATURE_SSE2)) { - *Type = INTEL_PENTIUM_M; - break; - } - if (Features & (1 << FEATURE_SSE)) { - *Type = INTEL_PENTIUM_III; - break; - } - if (Features & (1 << FEATURE_MMX)) { - *Type = INTEL_PENTIUM_II; - break; - } - *Type = INTEL_PENTIUM_PRO; - break; - } - break; - case 15: { - switch (Model) { - case 0: // Pentium 4 processor, Intel Xeon processor. All processors are - // model 00h and manufactured using the 0.18 micron process. - case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon - // processor MP, and Intel Celeron processor. All processors are - // model 01h and manufactured using the 0.18 micron process. - case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M, - // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron - // processor, and Mobile Intel Celeron processor. All processors - // are model 02h and manufactured using the 0.13 micron process. - *Type = - ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV); - break; - - case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D - // processor. All processors are model 03h and manufactured using - // the 90 nm process. - case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition, - // Pentium D processor, Intel Xeon processor, Intel Xeon - // processor MP, Intel Celeron D processor. All processors are - // model 04h and manufactured using the 90 nm process. - case 6: // Pentium 4 processor, Pentium D processor, Pentium processor - // Extreme Edition, Intel Xeon processor, Intel Xeon processor - // MP, Intel Celeron D processor. All processors are model 06h - // and manufactured using the 65 nm process. - *Type = - ((Features & (1 << FEATURE_EM64T)) ? INTEL_NOCONA : INTEL_PRESCOTT); - break; - - default: - *Type = - ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV); - break; - } - break; - } - default: - break; /*"generic"*/ - } -} - -static void getAMDProcessorTypeAndSubtype(unsigned int Family, - unsigned int Model, - unsigned int Features, - unsigned *Type, - unsigned *Subtype) { - // FIXME: this poorly matches the generated SubtargetFeatureKV table. There - // appears to be no way to generate the wide variety of AMD-specific targets - // from the information returned from CPUID. - switch (Family) { - case 4: - *Type = AMD_i486; - break; - case 5: - *Type = AMDPENTIUM; - switch (Model) { - case 6: - case 7: - *Subtype = AMDPENTIUM_K6; - break; // "k6" - case 8: - *Subtype = AMDPENTIUM_K62; - break; // "k6-2" - case 9: - case 13: - *Subtype = AMDPENTIUM_K63; - break; // "k6-3" - case 10: - *Subtype = AMDPENTIUM_GEODE; - break; // "geode" - } - break; - case 6: - *Type = AMDATHLON; - switch (Model) { - case 4: - *Subtype = AMDATHLON_TBIRD; - break; // "athlon-tbird" - case 6: - case 7: - case 8: - *Subtype = AMDATHLON_MP; - break; // "athlon-mp" - case 10: - *Subtype = AMDATHLON_XP; - break; // "athlon-xp" - } - break; - case 15: - *Type = AMDATHLON; - if (Features & (1 << FEATURE_SSE3)) { - *Subtype = AMDATHLON_K8SSE3; - break; // "k8-sse3" - } - switch (Model) { - case 1: - *Subtype = AMDATHLON_OPTERON; - break; // "opteron" - case 5: - *Subtype = AMDATHLON_FX; - break; // "athlon-fx"; also opteron - default: - *Subtype = AMDATHLON_64; - break; // "athlon64" - } - break; - case 16: - *Type = AMDFAM10H; // "amdfam10" - switch (Model) { - case 2: - *Subtype = AMDFAM10H_BARCELONA; - break; - case 4: - *Subtype = AMDFAM10H_SHANGHAI; - break; - case 8: - *Subtype = AMDFAM10H_ISTANBUL; - break; - } - break; - case 20: - *Type = AMDFAM14H; - *Subtype = AMD_BTVER1; - break; // "btver1"; - case 21: - *Type = AMDFAM15H; - if (!(Features & - (1 << FEATURE_AVX))) { // If no AVX support, provide a sane fallback. - *Subtype = AMD_BTVER1; - break; // "btver1" - } - if (Model >= 0x50 && Model <= 0x6f) { - *Subtype = AMDFAM15H_BDVER4; - break; // "bdver4"; 50h-6Fh: Excavator - } - if (Model >= 0x30 && Model <= 0x3f) { - *Subtype = AMDFAM15H_BDVER3; - break; // "bdver3"; 30h-3Fh: Steamroller - } - if (Model >= 0x10 && Model <= 0x1f) { - *Subtype = AMDFAM15H_BDVER2; - break; // "bdver2"; 10h-1Fh: Piledriver - } - if (Model <= 0x0f) { - *Subtype = AMDFAM15H_BDVER1; - break; // "bdver1"; 00h-0Fh: Bulldozer - } - break; - case 22: - *Type = AMDFAM16H; - if (!(Features & - (1 << FEATURE_AVX))) { // If no AVX support provide a sane fallback. - *Subtype = AMD_BTVER1; - break; // "btver1"; - } - *Subtype = AMD_BTVER2; - break; // "btver2" - case 23: - *Type = AMDFAM17H; - if (Features & (1 << FEATURE_ADX)) { - *Subtype = AMDFAM17H_ZNVER1; - break; // "znver1" - } - *Subtype = AMD_BTVER1; - break; - default: - break; // "generic" - } -} - -static unsigned getAvailableFeatures(unsigned int ECX, unsigned int EDX, - unsigned MaxLeaf) { - unsigned Features = 0; - unsigned int EAX, EBX; - Features |= (((EDX >> 23) & 1) << FEATURE_MMX); - Features |= (((EDX >> 25) & 1) << FEATURE_SSE); - Features |= (((EDX >> 26) & 1) << FEATURE_SSE2); - Features |= (((ECX >> 0) & 1) << FEATURE_SSE3); - Features |= (((ECX >> 9) & 1) << FEATURE_SSSE3); - Features |= (((ECX >> 19) & 1) << FEATURE_SSE4_1); - Features |= (((ECX >> 20) & 1) << FEATURE_SSE4_2); - Features |= (((ECX >> 22) & 1) << FEATURE_MOVBE); - - // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV - // indicates that the AVX registers will be saved and restored on context - // switch, then we have full AVX support. - const unsigned AVXBits = (1 << 27) | (1 << 28); - bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) && - ((EAX & 0x6) == 0x6); - bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0); - bool HasLeaf7 = - MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); - bool HasADX = HasLeaf7 && ((EBX >> 19) & 1); - bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20); - bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1); - Features |= (HasAVX << FEATURE_AVX); - Features |= (HasAVX2 << FEATURE_AVX2); - Features |= (HasAVX512 << FEATURE_AVX512); - Features |= (HasAVX512Save << FEATURE_AVX512SAVE); - Features |= (HasADX << FEATURE_ADX); - - getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); - Features |= (((EDX >> 29) & 0x1) << FEATURE_EM64T); - return Features; -} - -StringRef sys::getHostCPUName() { - unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; - unsigned MaxLeaf, Vendor; - -#if defined(__GNUC__) || defined(__clang__) - //FIXME: include cpuid.h from clang or copy __get_cpuid_max here - // and simplify it to not invoke __cpuid (like cpu_model.c in - // compiler-rt/lib/builtins/cpu_model.c? - // Opting for the second option. - if(!isCpuIdSupported()) - return "generic"; -#endif - if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX)) - return "generic"; - if (getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX)) - return "generic"; - - unsigned Brand_id = EBX & 0xff; - unsigned Family = 0, Model = 0; - unsigned Features = 0; - detectX86FamilyModel(EAX, &Family, &Model); - Features = getAvailableFeatures(ECX, EDX, MaxLeaf); - - unsigned Type; - unsigned Subtype; - - if (Vendor == SIG_INTEL) { - getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, &Type, - &Subtype); - switch (Type) { - case INTEL_i386: - return "i386"; - case INTEL_i486: - return "i486"; - case INTEL_PENTIUM: - if (Subtype == INTEL_PENTIUM_MMX) - return "pentium-mmx"; - return "pentium"; - case INTEL_PENTIUM_PRO: - return "pentiumpro"; - case INTEL_PENTIUM_II: - return "pentium2"; - case INTEL_PENTIUM_III: - return "pentium3"; - case INTEL_PENTIUM_IV: - return "pentium4"; - case INTEL_PENTIUM_M: - return "pentium-m"; - case INTEL_CORE_DUO: - return "yonah"; - case INTEL_CORE2: - switch (Subtype) { - case INTEL_CORE2_65: - return "core2"; - case INTEL_CORE2_45: - return "penryn"; - default: - return "core2"; - } - case INTEL_COREI7: - switch (Subtype) { - case INTEL_COREI7_NEHALEM: - return "nehalem"; - case INTEL_COREI7_WESTMERE: - return "westmere"; - case INTEL_COREI7_SANDYBRIDGE: - return "sandybridge"; - case INTEL_COREI7_IVYBRIDGE: - return "ivybridge"; - case INTEL_COREI7_HASWELL: - return "haswell"; - case INTEL_COREI7_BROADWELL: - return "broadwell"; - case INTEL_COREI7_SKYLAKE: - return "skylake"; - case INTEL_COREI7_SKYLAKE_AVX512: - return "skylake-avx512"; - default: - return "corei7"; - } - case INTEL_ATOM: - switch (Subtype) { - case INTEL_ATOM_BONNELL: - return "bonnell"; - case INTEL_ATOM_SILVERMONT: - return "silvermont"; - default: - return "atom"; - } - case INTEL_XEONPHI: - return "knl"; /*update for more variants added*/ - case INTEL_X86_64: - return "x86-64"; - case INTEL_NOCONA: - return "nocona"; - case INTEL_PRESCOTT: - return "prescott"; - default: - return "generic"; - } - } else if (Vendor == SIG_AMD) { - getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype); - switch (Type) { - case AMD_i486: - return "i486"; - case AMDPENTIUM: - switch (Subtype) { - case AMDPENTIUM_K6: - return "k6"; - case AMDPENTIUM_K62: - return "k6-2"; - case AMDPENTIUM_K63: - return "k6-3"; - case AMDPENTIUM_GEODE: - return "geode"; - default: - return "pentium"; - } - case AMDATHLON: - switch (Subtype) { - case AMDATHLON_TBIRD: - return "athlon-tbird"; - case AMDATHLON_MP: - return "athlon-mp"; - case AMDATHLON_XP: - return "athlon-xp"; - case AMDATHLON_K8SSE3: - return "k8-sse3"; - case AMDATHLON_OPTERON: - return "opteron"; - case AMDATHLON_FX: - return "athlon-fx"; - case AMDATHLON_64: - return "athlon64"; - default: - return "athlon"; - } - case AMDFAM10H: - if(Subtype == AMDFAM10H_BARCELONA) - return "barcelona"; - return "amdfam10"; - case AMDFAM14H: - return "btver1"; - case AMDFAM15H: - switch (Subtype) { - case AMDFAM15H_BDVER1: - return "bdver1"; - case AMDFAM15H_BDVER2: - return "bdver2"; - case AMDFAM15H_BDVER3: - return "bdver3"; - case AMDFAM15H_BDVER4: - return "bdver4"; - case AMD_BTVER1: - return "btver1"; - default: - return "amdfam15"; - } - case AMDFAM16H: - switch (Subtype) { - case AMD_BTVER1: - return "btver1"; - case AMD_BTVER2: - return "btver2"; - default: - return "amdfam16"; - } - case AMDFAM17H: - switch (Subtype) { - case AMD_BTVER1: - return "btver1"; - case AMDFAM17H_ZNVER1: - return "znver1"; - default: - return "amdfam17"; - } - default: - return "generic"; - } - } - return "generic"; -} - -#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) -StringRef sys::getHostCPUName() { - host_basic_info_data_t hostInfo; - mach_msg_type_number_t infoCount; - - infoCount = HOST_BASIC_INFO_COUNT; - host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo, - &infoCount); - - if (hostInfo.cpu_type != CPU_TYPE_POWERPC) - return "generic"; - - switch (hostInfo.cpu_subtype) { - case CPU_SUBTYPE_POWERPC_601: - return "601"; - case CPU_SUBTYPE_POWERPC_602: - return "602"; - case CPU_SUBTYPE_POWERPC_603: - return "603"; - case CPU_SUBTYPE_POWERPC_603e: - return "603e"; - case CPU_SUBTYPE_POWERPC_603ev: - return "603ev"; - case CPU_SUBTYPE_POWERPC_604: - return "604"; - case CPU_SUBTYPE_POWERPC_604e: - return "604e"; - case CPU_SUBTYPE_POWERPC_620: - return "620"; - case CPU_SUBTYPE_POWERPC_750: - return "750"; - case CPU_SUBTYPE_POWERPC_7400: - return "7400"; - case CPU_SUBTYPE_POWERPC_7450: - return "7450"; - case CPU_SUBTYPE_POWERPC_970: - return "970"; - default:; - } - - return "generic"; -} -#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__)) -StringRef sys::getHostCPUName() { - std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); - const StringRef& Content = P ? P->getBuffer() : ""; - return detail::getHostCPUNameForPowerPC(Content); -} -#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) -StringRef sys::getHostCPUName() { - std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); - const StringRef& Content = P ? P->getBuffer() : ""; - return detail::getHostCPUNameForARM(Content); -} -#elif defined(__linux__) && defined(__s390x__) -StringRef sys::getHostCPUName() { - std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); - const StringRef& Content = P ? P->getBuffer() : ""; - return detail::getHostCPUNameForS390x(Content); -} -#else -StringRef sys::getHostCPUName() { return "generic"; } -#endif - -#if defined(__linux__) && defined(__x86_64__) -// On Linux, the number of physical cores can be computed from /proc/cpuinfo, -// using the number of unique physical/core id pairs. The following -// implementation reads the /proc/cpuinfo format on an x86_64 system. -static int computeHostNumPhysicalCores() { - // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be - // mmapped because it appears to have 0 size. - llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text = - llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); - if (std::error_code EC = Text.getError()) { - llvm::errs() << "Can't read " - << "/proc/cpuinfo: " << EC.message() << "\n"; - return -1; - } - SmallVector<StringRef, 8> strs; - (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1, - /*KeepEmpty=*/false); - int CurPhysicalId = -1; - int CurCoreId = -1; - SmallSet<std::pair<int, int>, 32> UniqueItems; - for (auto &Line : strs) { - Line = Line.trim(); - if (!Line.startswith("physical id") && !Line.startswith("core id")) - continue; - std::pair<StringRef, StringRef> Data = Line.split(':'); - auto Name = Data.first.trim(); - auto Val = Data.second.trim(); - if (Name == "physical id") { - assert(CurPhysicalId == -1 && - "Expected a core id before seeing another physical id"); - Val.getAsInteger(10, CurPhysicalId); - } - if (Name == "core id") { - assert(CurCoreId == -1 && - "Expected a physical id before seeing another core id"); - Val.getAsInteger(10, CurCoreId); - } - if (CurPhysicalId != -1 && CurCoreId != -1) { - UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId)); - CurPhysicalId = -1; - CurCoreId = -1; - } - } - return UniqueItems.size(); -} -#elif defined(__APPLE__) && defined(__x86_64__) -#include <sys/param.h> -#include <sys/sysctl.h> - -// Gets the number of *physical cores* on the machine. -static int computeHostNumPhysicalCores() { - uint32_t count; - size_t len = sizeof(count); - sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0); - if (count < 1) { - int nm[2]; - nm[0] = CTL_HW; - nm[1] = HW_AVAILCPU; - sysctl(nm, 2, &count, &len, NULL, 0); - if (count < 1) - return -1; - } - return count; -} -#else -// On other systems, return -1 to indicate unknown. -static int computeHostNumPhysicalCores() { return -1; } -#endif - -int sys::getHostNumPhysicalCores() { - static int NumCores = computeHostNumPhysicalCores(); - return NumCores; -} - -#if defined(__i386__) || defined(_M_IX86) || \ - defined(__x86_64__) || defined(_M_X64) -bool sys::getHostCPUFeatures(StringMap<bool> &Features) { - unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; - unsigned MaxLevel; - union { - unsigned u[3]; - char c[12]; - } text; - - if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) || - MaxLevel < 1) - return false; - - getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX); - - Features["cmov"] = (EDX >> 15) & 1; - Features["mmx"] = (EDX >> 23) & 1; - Features["sse"] = (EDX >> 25) & 1; - Features["sse2"] = (EDX >> 26) & 1; - Features["sse3"] = (ECX >> 0) & 1; - Features["ssse3"] = (ECX >> 9) & 1; - Features["sse4.1"] = (ECX >> 19) & 1; - Features["sse4.2"] = (ECX >> 20) & 1; - - Features["pclmul"] = (ECX >> 1) & 1; - Features["cx16"] = (ECX >> 13) & 1; - Features["movbe"] = (ECX >> 22) & 1; - Features["popcnt"] = (ECX >> 23) & 1; - Features["aes"] = (ECX >> 25) & 1; - Features["rdrnd"] = (ECX >> 30) & 1; - - // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV - // indicates that the AVX registers will be saved and restored on context - // switch, then we have full AVX support. - bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) && - !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6); - Features["avx"] = HasAVXSave; - Features["fma"] = HasAVXSave && (ECX >> 12) & 1; - Features["f16c"] = HasAVXSave && (ECX >> 29) & 1; - - // Only enable XSAVE if OS has enabled support for saving YMM state. - Features["xsave"] = HasAVXSave && (ECX >> 26) & 1; - - // AVX512 requires additional context to be saved by the OS. - bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0); - - unsigned MaxExtLevel; - getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); - - bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && - !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); - Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1); - Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1); - Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1); - Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave; - Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave; - Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1); - Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1); - - bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 && - !getX86CpuIDAndInfoEx(0x80000008,0x0, &EAX, &EBX, &ECX, &EDX); - Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1); - - bool HasLeaf7 = - MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); - - // AVX2 is only supported if we have the OS save support from AVX. - Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1); - - Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1); - Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1); - Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1); - Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1); - Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1); - Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1); - Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1); - Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1); - Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1); - Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1); - - // AVX512 is only supported if the OS supports the context save for it. - Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save; - Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save; - Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save; - Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save; - Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save; - Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save; - Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save; - Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save; - - Features["prefetchwt1"] = HasLeaf7 && (ECX & 1); - Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save; - // Enable protection keys - Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1); - - bool HasLeafD = MaxLevel >= 0xd && - !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX); - - // Only enable XSAVE if OS has enabled support for saving YMM state. - Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1); - Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1); - Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1); - - return true; -} -#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) -bool sys::getHostCPUFeatures(StringMap<bool> &Features) { - std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); - if (!P) - return false; - - SmallVector<StringRef, 32> Lines; - P->getBuffer().split(Lines, "\n"); - - SmallVector<StringRef, 32> CPUFeatures; - - // Look for the CPU features. - for (unsigned I = 0, E = Lines.size(); I != E; ++I) - if (Lines[I].startswith("Features")) { - Lines[I].split(CPUFeatures, ' '); - break; - } - -#if defined(__aarch64__) - // Keep track of which crypto features we have seen - enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 }; - uint32_t crypto = 0; -#endif - - for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { - StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I]) -#if defined(__aarch64__) - .Case("asimd", "neon") - .Case("fp", "fp-armv8") - .Case("crc32", "crc") -#else - .Case("half", "fp16") - .Case("neon", "neon") - .Case("vfpv3", "vfp3") - .Case("vfpv3d16", "d16") - .Case("vfpv4", "vfp4") - .Case("idiva", "hwdiv-arm") - .Case("idivt", "hwdiv") -#endif - .Default(""); - -#if defined(__aarch64__) - // We need to check crypto separately since we need all of the crypto - // extensions to enable the subtarget feature - if (CPUFeatures[I] == "aes") - crypto |= CAP_AES; - else if (CPUFeatures[I] == "pmull") - crypto |= CAP_PMULL; - else if (CPUFeatures[I] == "sha1") - crypto |= CAP_SHA1; - else if (CPUFeatures[I] == "sha2") - crypto |= CAP_SHA2; -#endif - - if (LLVMFeatureStr != "") - Features[LLVMFeatureStr] = true; - } - -#if defined(__aarch64__) - // If we have all crypto bits we can add the feature - if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2)) - Features["crypto"] = true; -#endif - - return true; -} -#else -bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; } -#endif - -std::string sys::getProcessTriple() { - Triple PT(Triple::normalize(LLVM_HOST_TRIPLE)); - - if (sizeof(void *) == 8 && PT.isArch32Bit()) - PT = PT.get64BitArchVariant(); - if (sizeof(void *) == 4 && PT.isArch64Bit()) - PT = PT.get32BitArchVariant(); - - return PT.str(); -} +//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the operating system Host concept.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/Host.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Config/config.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <assert.h>
+#include <string.h>
+
+// Include the platform-specific parts of this class.
+#ifdef LLVM_ON_UNIX
+#include "Unix/Host.inc"
+#endif
+#ifdef LLVM_ON_WIN32
+#include "Windows/Host.inc"
+#endif
+#ifdef _MSC_VER
+#include <intrin.h>
+#endif
+#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
+#include <mach/host_info.h>
+#include <mach/mach.h>
+#include <mach/mach_host.h>
+#include <mach/machine.h>
+#endif
+
+#define DEBUG_TYPE "host-detection"
+
+//===----------------------------------------------------------------------===//
+//
+// Implementations of the CPU detection routines
+//
+//===----------------------------------------------------------------------===//
+
+using namespace llvm;
+
+static std::unique_ptr<llvm::MemoryBuffer>
+ LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
+ llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
+ if (std::error_code EC = Text.getError()) {
+ llvm::errs() << "Can't read "
+ << "/proc/cpuinfo: " << EC.message() << "\n";
+ return nullptr;
+ }
+ return std::move(*Text);
+}
+
+StringRef sys::detail::getHostCPUNameForPowerPC(
+ const StringRef &ProcCpuinfoContent) {
+ // Access to the Processor Version Register (PVR) on PowerPC is privileged,
+ // and so we must use an operating-system interface to determine the current
+ // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
+ const char *generic = "generic";
+
+ // The cpu line is second (after the 'processor: 0' line), so if this
+ // buffer is too small then something has changed (or is wrong).
+ StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
+ StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
+
+ StringRef::const_iterator CIP = CPUInfoStart;
+
+ StringRef::const_iterator CPUStart = 0;
+ size_t CPULen = 0;
+
+ // We need to find the first line which starts with cpu, spaces, and a colon.
+ // After the colon, there may be some additional spaces and then the cpu type.
+ while (CIP < CPUInfoEnd && CPUStart == 0) {
+ if (CIP < CPUInfoEnd && *CIP == '\n')
+ ++CIP;
+
+ if (CIP < CPUInfoEnd && *CIP == 'c') {
+ ++CIP;
+ if (CIP < CPUInfoEnd && *CIP == 'p') {
+ ++CIP;
+ if (CIP < CPUInfoEnd && *CIP == 'u') {
+ ++CIP;
+ while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
+ ++CIP;
+
+ if (CIP < CPUInfoEnd && *CIP == ':') {
+ ++CIP;
+ while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
+ ++CIP;
+
+ if (CIP < CPUInfoEnd) {
+ CPUStart = CIP;
+ while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
+ *CIP != ',' && *CIP != '\n'))
+ ++CIP;
+ CPULen = CIP - CPUStart;
+ }
+ }
+ }
+ }
+ }
+
+ if (CPUStart == 0)
+ while (CIP < CPUInfoEnd && *CIP != '\n')
+ ++CIP;
+ }
+
+ if (CPUStart == 0)
+ return generic;
+
+ return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
+ .Case("604e", "604e")
+ .Case("604", "604")
+ .Case("7400", "7400")
+ .Case("7410", "7400")
+ .Case("7447", "7400")
+ .Case("7455", "7450")
+ .Case("G4", "g4")
+ .Case("POWER4", "970")
+ .Case("PPC970FX", "970")
+ .Case("PPC970MP", "970")
+ .Case("G5", "g5")
+ .Case("POWER5", "g5")
+ .Case("A2", "a2")
+ .Case("POWER6", "pwr6")
+ .Case("POWER7", "pwr7")
+ .Case("POWER8", "pwr8")
+ .Case("POWER8E", "pwr8")
+ .Case("POWER8NVL", "pwr8")
+ .Case("POWER9", "pwr9")
+ .Default(generic);
+}
+
+StringRef sys::detail::getHostCPUNameForARM(
+ const StringRef &ProcCpuinfoContent) {
+ // The cpuid register on arm is not accessible from user space. On Linux,
+ // it is exposed through the /proc/cpuinfo file.
+
+ // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
+ // in all cases.
+ SmallVector<StringRef, 32> Lines;
+ ProcCpuinfoContent.split(Lines, "\n");
+
+ // Look for the CPU implementer line.
+ StringRef Implementer;
+ StringRef Hardware;
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
+ if (Lines[I].startswith("CPU implementer"))
+ Implementer = Lines[I].substr(15).ltrim("\t :");
+ if (Lines[I].startswith("Hardware"))
+ Hardware = Lines[I].substr(8).ltrim("\t :");
+ }
+
+ if (Implementer == "0x41") { // ARM Ltd.
+ // MSM8992/8994 may give cpu part for the core that the kernel is running on,
+ // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
+ if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
+ return "cortex-a53";
+
+
+ // Look for the CPU part line.
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+ if (Lines[I].startswith("CPU part"))
+ // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
+ // values correspond to the "Part number" in the CP15/c0 register. The
+ // contents are specified in the various processor manuals.
+ return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
+ .Case("0x926", "arm926ej-s")
+ .Case("0xb02", "mpcore")
+ .Case("0xb36", "arm1136j-s")
+ .Case("0xb56", "arm1156t2-s")
+ .Case("0xb76", "arm1176jz-s")
+ .Case("0xc08", "cortex-a8")
+ .Case("0xc09", "cortex-a9")
+ .Case("0xc0f", "cortex-a15")
+ .Case("0xc20", "cortex-m0")
+ .Case("0xc23", "cortex-m3")
+ .Case("0xc24", "cortex-m4")
+ .Case("0xd04", "cortex-a35")
+ .Case("0xd03", "cortex-a53")
+ .Case("0xd07", "cortex-a57")
+ .Case("0xd08", "cortex-a72")
+ .Case("0xd09", "cortex-a73")
+ .Default("generic");
+ }
+
+ if (Implementer == "0x51") // Qualcomm Technologies, Inc.
+ // Look for the CPU part line.
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+ if (Lines[I].startswith("CPU part"))
+ // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
+ // values correspond to the "Part number" in the CP15/c0 register. The
+ // contents are specified in the various processor manuals.
+ return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
+ .Case("0x06f", "krait") // APQ8064
+ .Case("0x201", "kryo")
+ .Case("0x205", "kryo")
+ .Default("generic");
+
+ return "generic";
+}
+
+StringRef sys::detail::getHostCPUNameForS390x(
+ const StringRef &ProcCpuinfoContent) {
+ // STIDP is a privileged operation, so use /proc/cpuinfo instead.
+
+ // The "processor 0:" line comes after a fair amount of other information,
+ // including a cache breakdown, but this should be plenty.
+ SmallVector<StringRef, 32> Lines;
+ ProcCpuinfoContent.split(Lines, "\n");
+
+ // Look for the CPU features.
+ SmallVector<StringRef, 32> CPUFeatures;
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+ if (Lines[I].startswith("features")) {
+ size_t Pos = Lines[I].find(":");
+ if (Pos != StringRef::npos) {
+ Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
+ break;
+ }
+ }
+
+ // We need to check for the presence of vector support independently of
+ // the machine type, since we may only use the vector register set when
+ // supported by the kernel (and hypervisor).
+ bool HaveVectorSupport = false;
+ for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
+ if (CPUFeatures[I] == "vx")
+ HaveVectorSupport = true;
+ }
+
+ // Now check the processor machine type.
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
+ if (Lines[I].startswith("processor ")) {
+ size_t Pos = Lines[I].find("machine = ");
+ if (Pos != StringRef::npos) {
+ Pos += sizeof("machine = ") - 1;
+ unsigned int Id;
+ if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
+ if (Id >= 2964 && HaveVectorSupport)
+ return "z13";
+ if (Id >= 2827)
+ return "zEC12";
+ if (Id >= 2817)
+ return "z196";
+ }
+ }
+ break;
+ }
+ }
+
+ return "generic";
+}
+
+#if defined(__i386__) || defined(_M_IX86) || \
+ defined(__x86_64__) || defined(_M_X64)
+
+enum VendorSignatures {
+ SIG_INTEL = 0x756e6547 /* Genu */,
+ SIG_AMD = 0x68747541 /* Auth */
+};
+
+enum ProcessorVendors {
+ VENDOR_INTEL = 1,
+ VENDOR_AMD,
+ VENDOR_OTHER,
+ VENDOR_MAX
+};
+
+enum ProcessorTypes {
+ INTEL_ATOM = 1,
+ INTEL_CORE2,
+ INTEL_COREI7,
+ AMDFAM10H,
+ AMDFAM15H,
+ INTEL_i386,
+ INTEL_i486,
+ INTEL_PENTIUM,
+ INTEL_PENTIUM_PRO,
+ INTEL_PENTIUM_II,
+ INTEL_PENTIUM_III,
+ INTEL_PENTIUM_IV,
+ INTEL_PENTIUM_M,
+ INTEL_CORE_DUO,
+ INTEL_XEONPHI,
+ INTEL_X86_64,
+ INTEL_NOCONA,
+ INTEL_PRESCOTT,
+ AMD_i486,
+ AMDPENTIUM,
+ AMDATHLON,
+ AMDFAM14H,
+ AMDFAM16H,
+ AMDFAM17H,
+ CPU_TYPE_MAX
+};
+
+enum ProcessorSubtypes {
+ INTEL_COREI7_NEHALEM = 1,
+ INTEL_COREI7_WESTMERE,
+ INTEL_COREI7_SANDYBRIDGE,
+ AMDFAM10H_BARCELONA,
+ AMDFAM10H_SHANGHAI,
+ AMDFAM10H_ISTANBUL,
+ AMDFAM15H_BDVER1,
+ AMDFAM15H_BDVER2,
+ INTEL_PENTIUM_MMX,
+ INTEL_CORE2_65,
+ INTEL_CORE2_45,
+ INTEL_COREI7_IVYBRIDGE,
+ INTEL_COREI7_HASWELL,
+ INTEL_COREI7_BROADWELL,
+ INTEL_COREI7_SKYLAKE,
+ INTEL_COREI7_SKYLAKE_AVX512,
+ INTEL_ATOM_BONNELL,
+ INTEL_ATOM_SILVERMONT,
+ INTEL_KNIGHTS_LANDING,
+ AMDPENTIUM_K6,
+ AMDPENTIUM_K62,
+ AMDPENTIUM_K63,
+ AMDPENTIUM_GEODE,
+ AMDATHLON_TBIRD,
+ AMDATHLON_MP,
+ AMDATHLON_XP,
+ AMDATHLON_K8SSE3,
+ AMDATHLON_OPTERON,
+ AMDATHLON_FX,
+ AMDATHLON_64,
+ AMD_BTVER1,
+ AMD_BTVER2,
+ AMDFAM15H_BDVER3,
+ AMDFAM15H_BDVER4,
+ AMDFAM17H_ZNVER1,
+ CPU_SUBTYPE_MAX
+};
+
+enum ProcessorFeatures {
+ FEATURE_CMOV = 0,
+ FEATURE_MMX,
+ FEATURE_POPCNT,
+ FEATURE_SSE,
+ FEATURE_SSE2,
+ FEATURE_SSE3,
+ FEATURE_SSSE3,
+ FEATURE_SSE4_1,
+ FEATURE_SSE4_2,
+ FEATURE_AVX,
+ FEATURE_AVX2,
+ FEATURE_AVX512,
+ FEATURE_AVX512SAVE,
+ FEATURE_MOVBE,
+ FEATURE_ADX,
+ FEATURE_EM64T
+};
+
+// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
+// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
+// support. Consequently, for i386, the presence of CPUID is checked first
+// via the corresponding eflags bit.
+// Removal of cpuid.h header motivated by PR30384
+// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
+// or test-suite, but are used in external projects e.g. libstdcxx
+static bool isCpuIdSupported() {
+#if defined(__GNUC__) || defined(__clang__)
+#if defined(__i386__)
+ int __cpuid_supported;
+ __asm__(" pushfl\n"
+ " popl %%eax\n"
+ " movl %%eax,%%ecx\n"
+ " xorl $0x00200000,%%eax\n"
+ " pushl %%eax\n"
+ " popfl\n"
+ " pushfl\n"
+ " popl %%eax\n"
+ " movl $0,%0\n"
+ " cmpl %%eax,%%ecx\n"
+ " je 1f\n"
+ " movl $1,%0\n"
+ "1:"
+ : "=r"(__cpuid_supported)
+ :
+ : "eax", "ecx");
+ if (!__cpuid_supported)
+ return false;
+#endif
+ return true;
+#endif
+ return true;
+}
+
+/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
+/// the specified arguments. If we can't run cpuid on the host, return true.
+static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
+ unsigned *rECX, unsigned *rEDX) {
+#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
+#if defined(__GNUC__) || defined(__clang__)
+#if defined(__x86_64__)
+ // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
+ // FIXME: should we save this for Clang?
+ __asm__("movq\t%%rbx, %%rsi\n\t"
+ "cpuid\n\t"
+ "xchgq\t%%rbx, %%rsi\n\t"
+ : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
+ : "a"(value));
+#elif defined(__i386__)
+ __asm__("movl\t%%ebx, %%esi\n\t"
+ "cpuid\n\t"
+ "xchgl\t%%ebx, %%esi\n\t"
+ : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
+ : "a"(value));
+#else
+ assert(0 && "This method is defined only for x86.");
+#endif
+#elif defined(_MSC_VER)
+ // The MSVC intrinsic is portable across x86 and x64.
+ int registers[4];
+ __cpuid(registers, value);
+ *rEAX = registers[0];
+ *rEBX = registers[1];
+ *rECX = registers[2];
+ *rEDX = registers[3];
+#endif
+ return false;
+#else
+ return true;
+#endif
+}
+
+/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
+/// the 4 values in the specified arguments. If we can't run cpuid on the host,
+/// return true.
+static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
+ unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
+ unsigned *rEDX) {
+#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
+#if defined(__x86_64__) || defined(_M_X64)
+#if defined(__GNUC__) || defined(__clang__)
+ // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
+ // FIXME: should we save this for Clang?
+ __asm__("movq\t%%rbx, %%rsi\n\t"
+ "cpuid\n\t"
+ "xchgq\t%%rbx, %%rsi\n\t"
+ : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
+ : "a"(value), "c"(subleaf));
+#elif defined(_MSC_VER)
+ int registers[4];
+ __cpuidex(registers, value, subleaf);
+ *rEAX = registers[0];
+ *rEBX = registers[1];
+ *rECX = registers[2];
+ *rEDX = registers[3];
+#endif
+#elif defined(__i386__) || defined(_M_IX86)
+#if defined(__GNUC__) || defined(__clang__)
+ __asm__("movl\t%%ebx, %%esi\n\t"
+ "cpuid\n\t"
+ "xchgl\t%%ebx, %%esi\n\t"
+ : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
+ : "a"(value), "c"(subleaf));
+#elif defined(_MSC_VER)
+ __asm {
+ mov eax,value
+ mov ecx,subleaf
+ cpuid
+ mov esi,rEAX
+ mov dword ptr [esi],eax
+ mov esi,rEBX
+ mov dword ptr [esi],ebx
+ mov esi,rECX
+ mov dword ptr [esi],ecx
+ mov esi,rEDX
+ mov dword ptr [esi],edx
+ }
+#endif
+#else
+ assert(0 && "This method is defined only for x86.");
+#endif
+ return false;
+#else
+ return true;
+#endif
+}
+
+static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
+#if defined(__GNUC__) || defined(__clang__)
+ // Check xgetbv; this uses a .byte sequence instead of the instruction
+ // directly because older assemblers do not include support for xgetbv and
+ // there is no easy way to conditionally compile based on the assembler used.
+ __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
+ return false;
+#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
+ unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
+ *rEAX = Result;
+ *rEDX = Result >> 32;
+ return false;
+#else
+ return true;
+#endif
+}
+
+static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
+ unsigned *Model) {
+ *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
+ *Model = (EAX >> 4) & 0xf; // Bits 4 - 7
+ if (*Family == 6 || *Family == 0xf) {
+ if (*Family == 0xf)
+ // Examine extended family ID if family ID is F.
+ *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
+ // Examine extended model ID if family ID is 6 or F.
+ *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
+ }
+}
+
+static void
+getIntelProcessorTypeAndSubtype(unsigned int Family, unsigned int Model,
+ unsigned int Brand_id, unsigned int Features,
+ unsigned *Type, unsigned *Subtype) {
+ if (Brand_id != 0)
+ return;
+ switch (Family) {
+ case 3:
+ *Type = INTEL_i386;
+ break;
+ case 4:
+ switch (Model) {
+ case 0: // Intel486 DX processors
+ case 1: // Intel486 DX processors
+ case 2: // Intel486 SX processors
+ case 3: // Intel487 processors, IntelDX2 OverDrive processors,
+ // IntelDX2 processors
+ case 4: // Intel486 SL processor
+ case 5: // IntelSX2 processors
+ case 7: // Write-Back Enhanced IntelDX2 processors
+ case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
+ default:
+ *Type = INTEL_i486;
+ break;
+ }
+ break;
+ case 5:
+ switch (Model) {
+ case 1: // Pentium OverDrive processor for Pentium processor (60, 66),
+ // Pentium processors (60, 66)
+ case 2: // Pentium OverDrive processor for Pentium processor (75, 90,
+ // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
+ // 150, 166, 200)
+ case 3: // Pentium OverDrive processors for Intel486 processor-based
+ // systems
+ *Type = INTEL_PENTIUM;
+ break;
+ case 4: // Pentium OverDrive processor with MMX technology for Pentium
+ // processor (75, 90, 100, 120, 133), Pentium processor with
+ // MMX technology (166, 200)
+ *Type = INTEL_PENTIUM;
+ *Subtype = INTEL_PENTIUM_MMX;
+ break;
+ default:
+ *Type = INTEL_PENTIUM;
+ break;
+ }
+ break;
+ case 6:
+ switch (Model) {
+ case 0x01: // Pentium Pro processor
+ *Type = INTEL_PENTIUM_PRO;
+ break;
+ case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
+ // model 03
+ case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
+ // model 05, and Intel Celeron processor, model 05
+ case 0x06: // Celeron processor, model 06
+ *Type = INTEL_PENTIUM_II;
+ break;
+ case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
+ // processor, model 07
+ case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
+ // model 08, and Celeron processor, model 08
+ case 0x0a: // Pentium III Xeon processor, model 0Ah
+ case 0x0b: // Pentium III processor, model 0Bh
+ *Type = INTEL_PENTIUM_III;
+ break;
+ case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
+ case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
+ // 0Dh. All processors are manufactured using the 90 nm process.
+ case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
+ // Integrated Processor with Intel QuickAssist Technology
+ *Type = INTEL_PENTIUM_M;
+ break;
+ case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
+ // 0Eh. All processors are manufactured using the 65 nm process.
+ *Type = INTEL_CORE_DUO;
+ break; // yonah
+ case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
+ // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
+ // mobile processor, Intel Core 2 Extreme processor, Intel
+ // Pentium Dual-Core processor, Intel Xeon processor, model
+ // 0Fh. All processors are manufactured using the 65 nm process.
+ case 0x16: // Intel Celeron processor model 16h. All processors are
+ // manufactured using the 65 nm process
+ *Type = INTEL_CORE2; // "core2"
+ *Subtype = INTEL_CORE2_65;
+ break;
+ case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
+ // 17h. All processors are manufactured using the 45 nm process.
+ //
+ // 45nm: Penryn , Wolfdale, Yorkfield (XE)
+ case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
+ // the 45 nm process.
+ *Type = INTEL_CORE2; // "penryn"
+ *Subtype = INTEL_CORE2_45;
+ break;
+ case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
+ // processors are manufactured using the 45 nm process.
+ case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
+ // As found in a Summer 2010 model iMac.
+ case 0x1f:
+ case 0x2e: // Nehalem EX
+ *Type = INTEL_COREI7; // "nehalem"
+ *Subtype = INTEL_COREI7_NEHALEM;
+ break;
+ case 0x25: // Intel Core i7, laptop version.
+ case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
+ // processors are manufactured using the 32 nm process.
+ case 0x2f: // Westmere EX
+ *Type = INTEL_COREI7; // "westmere"
+ *Subtype = INTEL_COREI7_WESTMERE;
+ break;
+ case 0x2a: // Intel Core i7 processor. All processors are manufactured
+ // using the 32 nm process.
+ case 0x2d:
+ *Type = INTEL_COREI7; //"sandybridge"
+ *Subtype = INTEL_COREI7_SANDYBRIDGE;
+ break;
+ case 0x3a:
+ case 0x3e: // Ivy Bridge EP
+ *Type = INTEL_COREI7; // "ivybridge"
+ *Subtype = INTEL_COREI7_IVYBRIDGE;
+ break;
+
+ // Haswell:
+ case 0x3c:
+ case 0x3f:
+ case 0x45:
+ case 0x46:
+ *Type = INTEL_COREI7; // "haswell"
+ *Subtype = INTEL_COREI7_HASWELL;
+ break;
+
+ // Broadwell:
+ case 0x3d:
+ case 0x47:
+ case 0x4f:
+ case 0x56:
+ *Type = INTEL_COREI7; // "broadwell"
+ *Subtype = INTEL_COREI7_BROADWELL;
+ break;
+
+ // Skylake:
+ case 0x4e: // Skylake mobile
+ case 0x5e: // Skylake desktop
+ case 0x8e: // Kaby Lake mobile
+ case 0x9e: // Kaby Lake desktop
+ *Type = INTEL_COREI7; // "skylake"
+ *Subtype = INTEL_COREI7_SKYLAKE;
+ break;
+
+ // Skylake Xeon:
+ case 0x55:
+ *Type = INTEL_COREI7;
+ // Check that we really have AVX512
+ if (Features & (1 << FEATURE_AVX512)) {
+ *Subtype = INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
+ } else {
+ *Subtype = INTEL_COREI7_SKYLAKE; // "skylake"
+ }
+ break;
+
+ case 0x1c: // Most 45 nm Intel Atom processors
+ case 0x26: // 45 nm Atom Lincroft
+ case 0x27: // 32 nm Atom Medfield
+ case 0x35: // 32 nm Atom Midview
+ case 0x36: // 32 nm Atom Midview
+ *Type = INTEL_ATOM;
+ *Subtype = INTEL_ATOM_BONNELL;
+ break; // "bonnell"
+
+ // Atom Silvermont codes from the Intel software optimization guide.
+ case 0x37:
+ case 0x4a:
+ case 0x4d:
+ case 0x5a:
+ case 0x5d:
+ case 0x4c: // really airmont
+ *Type = INTEL_ATOM;
+ *Subtype = INTEL_ATOM_SILVERMONT;
+ break; // "silvermont"
+
+ case 0x57:
+ *Type = INTEL_XEONPHI; // knl
+ *Subtype = INTEL_KNIGHTS_LANDING;
+ break;
+
+ default: // Unknown family 6 CPU, try to guess.
+ if (Features & (1 << FEATURE_AVX512)) {
+ *Type = INTEL_XEONPHI; // knl
+ *Subtype = INTEL_KNIGHTS_LANDING;
+ break;
+ }
+ if (Features & (1 << FEATURE_ADX)) {
+ *Type = INTEL_COREI7;
+ *Subtype = INTEL_COREI7_BROADWELL;
+ break;
+ }
+ if (Features & (1 << FEATURE_AVX2)) {
+ *Type = INTEL_COREI7;
+ *Subtype = INTEL_COREI7_HASWELL;
+ break;
+ }
+ if (Features & (1 << FEATURE_AVX)) {
+ *Type = INTEL_COREI7;
+ *Subtype = INTEL_COREI7_SANDYBRIDGE;
+ break;
+ }
+ if (Features & (1 << FEATURE_SSE4_2)) {
+ if (Features & (1 << FEATURE_MOVBE)) {
+ *Type = INTEL_ATOM;
+ *Subtype = INTEL_ATOM_SILVERMONT;
+ } else {
+ *Type = INTEL_COREI7;
+ *Subtype = INTEL_COREI7_NEHALEM;
+ }
+ break;
+ }
+ if (Features & (1 << FEATURE_SSE4_1)) {
+ *Type = INTEL_CORE2; // "penryn"
+ *Subtype = INTEL_CORE2_45;
+ break;
+ }
+ if (Features & (1 << FEATURE_SSSE3)) {
+ if (Features & (1 << FEATURE_MOVBE)) {
+ *Type = INTEL_ATOM;
+ *Subtype = INTEL_ATOM_BONNELL; // "bonnell"
+ } else {
+ *Type = INTEL_CORE2; // "core2"
+ *Subtype = INTEL_CORE2_65;
+ }
+ break;
+ }
+ if (Features & (1 << FEATURE_EM64T)) {
+ *Type = INTEL_X86_64;
+ break; // x86-64
+ }
+ if (Features & (1 << FEATURE_SSE2)) {
+ *Type = INTEL_PENTIUM_M;
+ break;
+ }
+ if (Features & (1 << FEATURE_SSE)) {
+ *Type = INTEL_PENTIUM_III;
+ break;
+ }
+ if (Features & (1 << FEATURE_MMX)) {
+ *Type = INTEL_PENTIUM_II;
+ break;
+ }
+ *Type = INTEL_PENTIUM_PRO;
+ break;
+ }
+ break;
+ case 15: {
+ switch (Model) {
+ case 0: // Pentium 4 processor, Intel Xeon processor. All processors are
+ // model 00h and manufactured using the 0.18 micron process.
+ case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
+ // processor MP, and Intel Celeron processor. All processors are
+ // model 01h and manufactured using the 0.18 micron process.
+ case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
+ // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
+ // processor, and Mobile Intel Celeron processor. All processors
+ // are model 02h and manufactured using the 0.13 micron process.
+ *Type =
+ ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
+ break;
+
+ case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
+ // processor. All processors are model 03h and manufactured using
+ // the 90 nm process.
+ case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
+ // Pentium D processor, Intel Xeon processor, Intel Xeon
+ // processor MP, Intel Celeron D processor. All processors are
+ // model 04h and manufactured using the 90 nm process.
+ case 6: // Pentium 4 processor, Pentium D processor, Pentium processor
+ // Extreme Edition, Intel Xeon processor, Intel Xeon processor
+ // MP, Intel Celeron D processor. All processors are model 06h
+ // and manufactured using the 65 nm process.
+ *Type =
+ ((Features & (1 << FEATURE_EM64T)) ? INTEL_NOCONA : INTEL_PRESCOTT);
+ break;
+
+ default:
+ *Type =
+ ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
+ break;
+ }
+ break;
+ }
+ default:
+ break; /*"generic"*/
+ }
+}
+
+static void getAMDProcessorTypeAndSubtype(unsigned int Family,
+ unsigned int Model,
+ unsigned int Features,
+ unsigned *Type,
+ unsigned *Subtype) {
+ // FIXME: this poorly matches the generated SubtargetFeatureKV table. There
+ // appears to be no way to generate the wide variety of AMD-specific targets
+ // from the information returned from CPUID.
+ switch (Family) {
+ case 4:
+ *Type = AMD_i486;
+ break;
+ case 5:
+ *Type = AMDPENTIUM;
+ switch (Model) {
+ case 6:
+ case 7:
+ *Subtype = AMDPENTIUM_K6;
+ break; // "k6"
+ case 8:
+ *Subtype = AMDPENTIUM_K62;
+ break; // "k6-2"
+ case 9:
+ case 13:
+ *Subtype = AMDPENTIUM_K63;
+ break; // "k6-3"
+ case 10:
+ *Subtype = AMDPENTIUM_GEODE;
+ break; // "geode"
+ }
+ break;
+ case 6:
+ *Type = AMDATHLON;
+ switch (Model) {
+ case 4:
+ *Subtype = AMDATHLON_TBIRD;
+ break; // "athlon-tbird"
+ case 6:
+ case 7:
+ case 8:
+ *Subtype = AMDATHLON_MP;
+ break; // "athlon-mp"
+ case 10:
+ *Subtype = AMDATHLON_XP;
+ break; // "athlon-xp"
+ }
+ break;
+ case 15:
+ *Type = AMDATHLON;
+ if (Features & (1 << FEATURE_SSE3)) {
+ *Subtype = AMDATHLON_K8SSE3;
+ break; // "k8-sse3"
+ }
+ switch (Model) {
+ case 1:
+ *Subtype = AMDATHLON_OPTERON;
+ break; // "opteron"
+ case 5:
+ *Subtype = AMDATHLON_FX;
+ break; // "athlon-fx"; also opteron
+ default:
+ *Subtype = AMDATHLON_64;
+ break; // "athlon64"
+ }
+ break;
+ case 16:
+ *Type = AMDFAM10H; // "amdfam10"
+ switch (Model) {
+ case 2:
+ *Subtype = AMDFAM10H_BARCELONA;
+ break;
+ case 4:
+ *Subtype = AMDFAM10H_SHANGHAI;
+ break;
+ case 8:
+ *Subtype = AMDFAM10H_ISTANBUL;
+ break;
+ }
+ break;
+ case 20:
+ *Type = AMDFAM14H;
+ *Subtype = AMD_BTVER1;
+ break; // "btver1";
+ case 21:
+ *Type = AMDFAM15H;
+ if (!(Features &
+ (1 << FEATURE_AVX))) { // If no AVX support, provide a sane fallback.
+ *Subtype = AMD_BTVER1;
+ break; // "btver1"
+ }
+ if (Model >= 0x50 && Model <= 0x6f) {
+ *Subtype = AMDFAM15H_BDVER4;
+ break; // "bdver4"; 50h-6Fh: Excavator
+ }
+ if (Model >= 0x30 && Model <= 0x3f) {
+ *Subtype = AMDFAM15H_BDVER3;
+ break; // "bdver3"; 30h-3Fh: Steamroller
+ }
+ if (Model >= 0x10 && Model <= 0x1f) {
+ *Subtype = AMDFAM15H_BDVER2;
+ break; // "bdver2"; 10h-1Fh: Piledriver
+ }
+ if (Model <= 0x0f) {
+ *Subtype = AMDFAM15H_BDVER1;
+ break; // "bdver1"; 00h-0Fh: Bulldozer
+ }
+ break;
+ case 22:
+ *Type = AMDFAM16H;
+ if (!(Features &
+ (1 << FEATURE_AVX))) { // If no AVX support provide a sane fallback.
+ *Subtype = AMD_BTVER1;
+ break; // "btver1";
+ }
+ *Subtype = AMD_BTVER2;
+ break; // "btver2"
+ case 23:
+ *Type = AMDFAM17H;
+ if (Features & (1 << FEATURE_ADX)) {
+ *Subtype = AMDFAM17H_ZNVER1;
+ break; // "znver1"
+ }
+ *Subtype = AMD_BTVER1;
+ break;
+ default:
+ break; // "generic"
+ }
+}
+
+static unsigned getAvailableFeatures(unsigned int ECX, unsigned int EDX,
+ unsigned MaxLeaf) {
+ unsigned Features = 0;
+ unsigned int EAX, EBX;
+ Features |= (((EDX >> 23) & 1) << FEATURE_MMX);
+ Features |= (((EDX >> 25) & 1) << FEATURE_SSE);
+ Features |= (((EDX >> 26) & 1) << FEATURE_SSE2);
+ Features |= (((ECX >> 0) & 1) << FEATURE_SSE3);
+ Features |= (((ECX >> 9) & 1) << FEATURE_SSSE3);
+ Features |= (((ECX >> 19) & 1) << FEATURE_SSE4_1);
+ Features |= (((ECX >> 20) & 1) << FEATURE_SSE4_2);
+ Features |= (((ECX >> 22) & 1) << FEATURE_MOVBE);
+
+ // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
+ // indicates that the AVX registers will be saved and restored on context
+ // switch, then we have full AVX support.
+ const unsigned AVXBits = (1 << 27) | (1 << 28);
+ bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
+ ((EAX & 0x6) == 0x6);
+ bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
+ bool HasLeaf7 =
+ MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
+ bool HasADX = HasLeaf7 && ((EBX >> 19) & 1);
+ bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20);
+ bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1);
+ Features |= (HasAVX << FEATURE_AVX);
+ Features |= (HasAVX2 << FEATURE_AVX2);
+ Features |= (HasAVX512 << FEATURE_AVX512);
+ Features |= (HasAVX512Save << FEATURE_AVX512SAVE);
+ Features |= (HasADX << FEATURE_ADX);
+
+ getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
+ Features |= (((EDX >> 29) & 0x1) << FEATURE_EM64T);
+ return Features;
+}
+
+StringRef sys::getHostCPUName() {
+ unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
+ unsigned MaxLeaf, Vendor;
+
+#if defined(__GNUC__) || defined(__clang__)
+ //FIXME: include cpuid.h from clang or copy __get_cpuid_max here
+ // and simplify it to not invoke __cpuid (like cpu_model.c in
+ // compiler-rt/lib/builtins/cpu_model.c?
+ // Opting for the second option.
+ if(!isCpuIdSupported())
+ return "generic";
+#endif
+ if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX))
+ return "generic";
+ if (getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
+ return "generic";
+
+ unsigned Brand_id = EBX & 0xff;
+ unsigned Family = 0, Model = 0;
+ unsigned Features = 0;
+ detectX86FamilyModel(EAX, &Family, &Model);
+ Features = getAvailableFeatures(ECX, EDX, MaxLeaf);
+
+ unsigned Type;
+ unsigned Subtype;
+
+ if (Vendor == SIG_INTEL) {
+ getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, &Type,
+ &Subtype);
+ switch (Type) {
+ case INTEL_i386:
+ return "i386";
+ case INTEL_i486:
+ return "i486";
+ case INTEL_PENTIUM:
+ if (Subtype == INTEL_PENTIUM_MMX)
+ return "pentium-mmx";
+ return "pentium";
+ case INTEL_PENTIUM_PRO:
+ return "pentiumpro";
+ case INTEL_PENTIUM_II:
+ return "pentium2";
+ case INTEL_PENTIUM_III:
+ return "pentium3";
+ case INTEL_PENTIUM_IV:
+ return "pentium4";
+ case INTEL_PENTIUM_M:
+ return "pentium-m";
+ case INTEL_CORE_DUO:
+ return "yonah";
+ case INTEL_CORE2:
+ switch (Subtype) {
+ case INTEL_CORE2_65:
+ return "core2";
+ case INTEL_CORE2_45:
+ return "penryn";
+ default:
+ return "core2";
+ }
+ case INTEL_COREI7:
+ switch (Subtype) {
+ case INTEL_COREI7_NEHALEM:
+ return "nehalem";
+ case INTEL_COREI7_WESTMERE:
+ return "westmere";
+ case INTEL_COREI7_SANDYBRIDGE:
+ return "sandybridge";
+ case INTEL_COREI7_IVYBRIDGE:
+ return "ivybridge";
+ case INTEL_COREI7_HASWELL:
+ return "haswell";
+ case INTEL_COREI7_BROADWELL:
+ return "broadwell";
+ case INTEL_COREI7_SKYLAKE:
+ return "skylake";
+ case INTEL_COREI7_SKYLAKE_AVX512:
+ return "skylake-avx512";
+ default:
+ return "corei7";
+ }
+ case INTEL_ATOM:
+ switch (Subtype) {
+ case INTEL_ATOM_BONNELL:
+ return "bonnell";
+ case INTEL_ATOM_SILVERMONT:
+ return "silvermont";
+ default:
+ return "atom";
+ }
+ case INTEL_XEONPHI:
+ return "knl"; /*update for more variants added*/
+ case INTEL_X86_64:
+ return "x86-64";
+ case INTEL_NOCONA:
+ return "nocona";
+ case INTEL_PRESCOTT:
+ return "prescott";
+ default:
+ return "generic";
+ }
+ } else if (Vendor == SIG_AMD) {
+ getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
+ switch (Type) {
+ case AMD_i486:
+ return "i486";
+ case AMDPENTIUM:
+ switch (Subtype) {
+ case AMDPENTIUM_K6:
+ return "k6";
+ case AMDPENTIUM_K62:
+ return "k6-2";
+ case AMDPENTIUM_K63:
+ return "k6-3";
+ case AMDPENTIUM_GEODE:
+ return "geode";
+ default:
+ return "pentium";
+ }
+ case AMDATHLON:
+ switch (Subtype) {
+ case AMDATHLON_TBIRD:
+ return "athlon-tbird";
+ case AMDATHLON_MP:
+ return "athlon-mp";
+ case AMDATHLON_XP:
+ return "athlon-xp";
+ case AMDATHLON_K8SSE3:
+ return "k8-sse3";
+ case AMDATHLON_OPTERON:
+ return "opteron";
+ case AMDATHLON_FX:
+ return "athlon-fx";
+ case AMDATHLON_64:
+ return "athlon64";
+ default:
+ return "athlon";
+ }
+ case AMDFAM10H:
+ if(Subtype == AMDFAM10H_BARCELONA)
+ return "barcelona";
+ return "amdfam10";
+ case AMDFAM14H:
+ return "btver1";
+ case AMDFAM15H:
+ switch (Subtype) {
+ case AMDFAM15H_BDVER1:
+ return "bdver1";
+ case AMDFAM15H_BDVER2:
+ return "bdver2";
+ case AMDFAM15H_BDVER3:
+ return "bdver3";
+ case AMDFAM15H_BDVER4:
+ return "bdver4";
+ case AMD_BTVER1:
+ return "btver1";
+ default:
+ return "amdfam15";
+ }
+ case AMDFAM16H:
+ switch (Subtype) {
+ case AMD_BTVER1:
+ return "btver1";
+ case AMD_BTVER2:
+ return "btver2";
+ default:
+ return "amdfam16";
+ }
+ case AMDFAM17H:
+ switch (Subtype) {
+ case AMD_BTVER1:
+ return "btver1";
+ case AMDFAM17H_ZNVER1:
+ return "znver1";
+ default:
+ return "amdfam17";
+ }
+ default:
+ return "generic";
+ }
+ }
+ return "generic";
+}
+
+#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
+StringRef sys::getHostCPUName() {
+ host_basic_info_data_t hostInfo;
+ mach_msg_type_number_t infoCount;
+
+ infoCount = HOST_BASIC_INFO_COUNT;
+ host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,
+ &infoCount);
+
+ if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
+ return "generic";
+
+ switch (hostInfo.cpu_subtype) {
+ case CPU_SUBTYPE_POWERPC_601:
+ return "601";
+ case CPU_SUBTYPE_POWERPC_602:
+ return "602";
+ case CPU_SUBTYPE_POWERPC_603:
+ return "603";
+ case CPU_SUBTYPE_POWERPC_603e:
+ return "603e";
+ case CPU_SUBTYPE_POWERPC_603ev:
+ return "603ev";
+ case CPU_SUBTYPE_POWERPC_604:
+ return "604";
+ case CPU_SUBTYPE_POWERPC_604e:
+ return "604e";
+ case CPU_SUBTYPE_POWERPC_620:
+ return "620";
+ case CPU_SUBTYPE_POWERPC_750:
+ return "750";
+ case CPU_SUBTYPE_POWERPC_7400:
+ return "7400";
+ case CPU_SUBTYPE_POWERPC_7450:
+ return "7450";
+ case CPU_SUBTYPE_POWERPC_970:
+ return "970";
+ default:;
+ }
+
+ return "generic";
+}
+#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
+StringRef sys::getHostCPUName() {
+ std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
+ const StringRef& Content = P ? P->getBuffer() : "";
+ return detail::getHostCPUNameForPowerPC(Content);
+}
+#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
+StringRef sys::getHostCPUName() {
+ std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
+ const StringRef& Content = P ? P->getBuffer() : "";
+ return detail::getHostCPUNameForARM(Content);
+}
+#elif defined(__linux__) && defined(__s390x__)
+StringRef sys::getHostCPUName() {
+ std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
+ const StringRef& Content = P ? P->getBuffer() : "";
+ return detail::getHostCPUNameForS390x(Content);
+}
+#else
+StringRef sys::getHostCPUName() { return "generic"; }
+#endif
+
+#if defined(__linux__) && defined(__x86_64__)
+// On Linux, the number of physical cores can be computed from /proc/cpuinfo,
+// using the number of unique physical/core id pairs. The following
+// implementation reads the /proc/cpuinfo format on an x86_64 system.
+static int computeHostNumPhysicalCores() {
+ // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
+ // mmapped because it appears to have 0 size.
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
+ llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
+ if (std::error_code EC = Text.getError()) {
+ llvm::errs() << "Can't read "
+ << "/proc/cpuinfo: " << EC.message() << "\n";
+ return -1;
+ }
+ SmallVector<StringRef, 8> strs;
+ (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
+ /*KeepEmpty=*/false);
+ int CurPhysicalId = -1;
+ int CurCoreId = -1;
+ SmallSet<std::pair<int, int>, 32> UniqueItems;
+ for (auto &Line : strs) {
+ Line = Line.trim();
+ if (!Line.startswith("physical id") && !Line.startswith("core id"))
+ continue;
+ std::pair<StringRef, StringRef> Data = Line.split(':');
+ auto Name = Data.first.trim();
+ auto Val = Data.second.trim();
+ if (Name == "physical id") {
+ assert(CurPhysicalId == -1 &&
+ "Expected a core id before seeing another physical id");
+ Val.getAsInteger(10, CurPhysicalId);
+ }
+ if (Name == "core id") {
+ assert(CurCoreId == -1 &&
+ "Expected a physical id before seeing another core id");
+ Val.getAsInteger(10, CurCoreId);
+ }
+ if (CurPhysicalId != -1 && CurCoreId != -1) {
+ UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));
+ CurPhysicalId = -1;
+ CurCoreId = -1;
+ }
+ }
+ return UniqueItems.size();
+}
+#elif defined(__APPLE__) && defined(__x86_64__)
+#include <sys/param.h>
+#include <sys/sysctl.h>
+
+// Gets the number of *physical cores* on the machine.
+static int computeHostNumPhysicalCores() {
+ uint32_t count;
+ size_t len = sizeof(count);
+ sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
+ if (count < 1) {
+ int nm[2];
+ nm[0] = CTL_HW;
+ nm[1] = HW_AVAILCPU;
+ sysctl(nm, 2, &count, &len, NULL, 0);
+ if (count < 1)
+ return -1;
+ }
+ return count;
+}
+#else
+// On other systems, return -1 to indicate unknown.
+static int computeHostNumPhysicalCores() { return -1; }
+#endif
+
+int sys::getHostNumPhysicalCores() {
+ static int NumCores = computeHostNumPhysicalCores();
+ return NumCores;
+}
+
+#if defined(__i386__) || defined(_M_IX86) || \
+ defined(__x86_64__) || defined(_M_X64)
+bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
+ unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
+ unsigned MaxLevel;
+ union {
+ unsigned u[3];
+ char c[12];
+ } text;
+
+ if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
+ MaxLevel < 1)
+ return false;
+
+ getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
+
+ Features["cmov"] = (EDX >> 15) & 1;
+ Features["mmx"] = (EDX >> 23) & 1;
+ Features["sse"] = (EDX >> 25) & 1;
+ Features["sse2"] = (EDX >> 26) & 1;
+ Features["sse3"] = (ECX >> 0) & 1;
+ Features["ssse3"] = (ECX >> 9) & 1;
+ Features["sse4.1"] = (ECX >> 19) & 1;
+ Features["sse4.2"] = (ECX >> 20) & 1;
+
+ Features["pclmul"] = (ECX >> 1) & 1;
+ Features["cx16"] = (ECX >> 13) & 1;
+ Features["movbe"] = (ECX >> 22) & 1;
+ Features["popcnt"] = (ECX >> 23) & 1;
+ Features["aes"] = (ECX >> 25) & 1;
+ Features["rdrnd"] = (ECX >> 30) & 1;
+
+ // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
+ // indicates that the AVX registers will be saved and restored on context
+ // switch, then we have full AVX support.
+ bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
+ !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
+ Features["avx"] = HasAVXSave;
+ Features["fma"] = HasAVXSave && (ECX >> 12) & 1;
+ Features["f16c"] = HasAVXSave && (ECX >> 29) & 1;
+
+ // Only enable XSAVE if OS has enabled support for saving YMM state.
+ Features["xsave"] = HasAVXSave && (ECX >> 26) & 1;
+
+ // AVX512 requires additional context to be saved by the OS.
+ bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
+
+ unsigned MaxExtLevel;
+ getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
+
+ bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
+ !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
+ Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);
+ Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);
+ Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);
+ Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
+ Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1);
+ Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
+ Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);
+ Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
+
+ bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
+ !getX86CpuIDAndInfoEx(0x80000008,0x0, &EAX, &EBX, &ECX, &EDX);
+ Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1);
+
+ bool HasLeaf7 =
+ MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
+
+ // AVX2 is only supported if we have the OS save support from AVX.
+ Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1);
+
+ Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);
+ Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);
+ Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);
+ Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);
+ Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);
+ Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);
+ Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);
+ Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
+ Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);
+ Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);
+
+ // AVX512 is only supported if the OS supports the context save for it.
+ Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
+ Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
+ Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
+ Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
+ Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
+ Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
+ Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
+ Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
+
+ Features["prefetchwt1"] = HasLeaf7 && (ECX & 1);
+ Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;
+ // Enable protection keys
+ Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);
+
+ bool HasLeafD = MaxLevel >= 0xd &&
+ !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
+
+ // Only enable XSAVE if OS has enabled support for saving YMM state.
+ Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1);
+ Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1);
+ Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1);
+
+ return true;
+}
+#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
+bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
+ std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
+ if (!P)
+ return false;
+
+ SmallVector<StringRef, 32> Lines;
+ P->getBuffer().split(Lines, "\n");
+
+ SmallVector<StringRef, 32> CPUFeatures;
+
+ // Look for the CPU features.
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+ if (Lines[I].startswith("Features")) {
+ Lines[I].split(CPUFeatures, ' ');
+ break;
+ }
+
+#if defined(__aarch64__)
+ // Keep track of which crypto features we have seen
+ enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
+ uint32_t crypto = 0;
+#endif
+
+ for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
+ StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
+#if defined(__aarch64__)
+ .Case("asimd", "neon")
+ .Case("fp", "fp-armv8")
+ .Case("crc32", "crc")
+#else
+ .Case("half", "fp16")
+ .Case("neon", "neon")
+ .Case("vfpv3", "vfp3")
+ .Case("vfpv3d16", "d16")
+ .Case("vfpv4", "vfp4")
+ .Case("idiva", "hwdiv-arm")
+ .Case("idivt", "hwdiv")
+#endif
+ .Default("");
+
+#if defined(__aarch64__)
+ // We need to check crypto separately since we need all of the crypto
+ // extensions to enable the subtarget feature
+ if (CPUFeatures[I] == "aes")
+ crypto |= CAP_AES;
+ else if (CPUFeatures[I] == "pmull")
+ crypto |= CAP_PMULL;
+ else if (CPUFeatures[I] == "sha1")
+ crypto |= CAP_SHA1;
+ else if (CPUFeatures[I] == "sha2")
+ crypto |= CAP_SHA2;
+#endif
+
+ if (LLVMFeatureStr != "")
+ Features[LLVMFeatureStr] = true;
+ }
+
+#if defined(__aarch64__)
+ // If we have all crypto bits we can add the feature
+ if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
+ Features["crypto"] = true;
+#endif
+
+ return true;
+}
+#else
+bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
+#endif
+
+std::string sys::getProcessTriple() {
+ Triple PT(Triple::normalize(LLVM_HOST_TRIPLE));
+
+ if (sizeof(void *) == 8 && PT.isArch32Bit())
+ PT = PT.get64BitArchVariant();
+ if (sizeof(void *) == 4 && PT.isArch64Bit())
+ PT = PT.get32BitArchVariant();
+
+ return PT.str();
+}
diff --git a/llvm/lib/Target/X86/X86.td b/llvm/lib/Target/X86/X86.td index d2f650cf8f4..784c3a6557f 100644 --- a/llvm/lib/Target/X86/X86.td +++ b/llvm/lib/Target/X86/X86.td @@ -170,6 +170,8 @@ def FeatureAES : SubtargetFeature<"aes", "HasAES", "true", [FeatureSSE2]>; def FeatureTBM : SubtargetFeature<"tbm", "HasTBM", "true", "Enable TBM instructions">; +def FeatureLWP : SubtargetFeature<"lwp", "HasLWP", "true", + "Enable LWP instructions">; def FeatureMOVBE : SubtargetFeature<"movbe", "HasMOVBE", "true", "Support MOVBE instruction">; def FeatureRDRAND : SubtargetFeature<"rdrnd", "HasRDRAND", "true", @@ -691,6 +693,7 @@ def : Proc<"bdver1", [ FeatureLZCNT, FeaturePOPCNT, FeatureXSAVE, + FeatureLWP, FeatureSlowSHLD, FeatureLAHFSAHF ]>; @@ -713,6 +716,7 @@ def : Proc<"bdver2", [ FeatureXSAVE, FeatureBMI, FeatureTBM, + FeatureLWP, FeatureFMA, FeatureSlowSHLD, FeatureLAHFSAHF @@ -737,6 +741,7 @@ def : Proc<"bdver3", [ FeatureXSAVE, FeatureBMI, FeatureTBM, + FeatureLWP, FeatureFMA, FeatureXSAVEOPT, FeatureSlowSHLD, @@ -763,6 +768,7 @@ def : Proc<"bdver4", [ FeatureBMI, FeatureBMI2, FeatureTBM, + FeatureLWP, FeatureFMA, FeatureXSAVEOPT, FeatureSlowSHLD, diff --git a/llvm/lib/Target/X86/X86ISelLowering.cpp b/llvm/lib/Target/X86/X86ISelLowering.cpp index ef5ad4f4605..687dccf06ce 100644 --- a/llvm/lib/Target/X86/X86ISelLowering.cpp +++ b/llvm/lib/Target/X86/X86ISelLowering.cpp @@ -20318,6 +20318,19 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget &Subtarget, // during ExpandISelPseudos in EmitInstrWithCustomInserter. return SDValue(); } + case Intrinsic::x86_lwpins32: + case Intrinsic::x86_lwpins64: { + SDLoc dl(Op); + SDValue Chain = Op->getOperand(0); + SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); + SDValue LwpIns = + DAG.getNode(X86ISD::LWPINS, dl, VTs, Chain, Op->getOperand(2), + Op->getOperand(3), Op->getOperand(4)); + SDValue SetCC = getSETCC(X86::COND_B, LwpIns.getValue(0), dl, DAG); + SDValue Result = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, SetCC); + return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, + LwpIns.getValue(1)); + } } return SDValue(); } @@ -24494,6 +24507,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { case X86ISD::CVTP2UI_RND: return "X86ISD::CVTP2UI_RND"; case X86ISD::CVTS2SI_RND: return "X86ISD::CVTS2SI_RND"; case X86ISD::CVTS2UI_RND: return "X86ISD::CVTS2UI_RND"; + case X86ISD::LWPINS: return "X86ISD::LWPINS"; } return nullptr; } diff --git a/llvm/lib/Target/X86/X86ISelLowering.h b/llvm/lib/Target/X86/X86ISelLowering.h index 46dc587c637..18106c2eb39 100644 --- a/llvm/lib/Target/X86/X86ISelLowering.h +++ b/llvm/lib/Target/X86/X86ISelLowering.h @@ -559,6 +559,9 @@ namespace llvm { // Conversions between float and half-float. CVTPS2PH, CVTPH2PS, + // LWP insert record. + LWPINS, + // Compare and swap. LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE, LCMPXCHG8_DAG, diff --git a/llvm/lib/Target/X86/X86InstrInfo.td b/llvm/lib/Target/X86/X86InstrInfo.td index ce087649867..cdf7ce19cdc 100644 --- a/llvm/lib/Target/X86/X86InstrInfo.td +++ b/llvm/lib/Target/X86/X86InstrInfo.td @@ -283,6 +283,11 @@ def X86SegAlloca : SDNode<"X86ISD::SEG_ALLOCA", SDT_X86SEG_ALLOCA, def X86TLSCall : SDNode<"X86ISD::TLSCALL", SDT_X86TLSCALL, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; +def X86lwpins : SDNode<"X86ISD::LWPINS", + SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisInt<1>, + SDTCisVT<2, i32>, SDTCisVT<3, i32>]>, + [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPSideEffect]>; + //===----------------------------------------------------------------------===// // X86 Operand Definitions. // @@ -836,6 +841,7 @@ def HasFMA : Predicate<"Subtarget->hasFMA()">; def HasFMA4 : Predicate<"Subtarget->hasFMA4()">; def HasXOP : Predicate<"Subtarget->hasXOP()">; def HasTBM : Predicate<"Subtarget->hasTBM()">; +def HasLWP : Predicate<"Subtarget->hasLWP()">; def HasMOVBE : Predicate<"Subtarget->hasMOVBE()">; def HasRDRAND : Predicate<"Subtarget->hasRDRAND()">; def HasF16C : Predicate<"Subtarget->hasF16C()">; @@ -2444,6 +2450,59 @@ defm TZMSK : tbm_binary_intr<0x01, "tzmsk", MRM4r, MRM4m>; } // HasTBM, EFLAGS //===----------------------------------------------------------------------===// +// Lightweight Profiling Instructions + +let Predicates = [HasLWP] in { + +def LLWPCB : I<0x12, MRM0r, (outs), (ins GR32:$src), "llwpcb\t$src", + [(int_x86_llwpcb GR32:$src)], IIC_LWP>, + XOP, XOP9, Requires<[Not64BitMode]>; +def SLWPCB : I<0x12, MRM1r, (outs GR32:$dst), (ins), "slwpcb\t$dst", + [(set GR32:$dst, (int_x86_slwpcb))], IIC_LWP>, + XOP, XOP9, Requires<[Not64BitMode]>; + +def LLWPCB64 : I<0x12, MRM0r, (outs), (ins GR64:$src), "llwpcb\t$src", + [(int_x86_llwpcb GR64:$src)], IIC_LWP>, + XOP, XOP9, VEX_W, Requires<[In64BitMode]>; +def SLWPCB64 : I<0x12, MRM1r, (outs GR64:$dst), (ins), "slwpcb\t$dst", + [(set GR64:$dst, (int_x86_slwpcb))], IIC_LWP>, + XOP, XOP9, VEX_W, Requires<[In64BitMode]>; + +multiclass lwpins_intr<RegisterClass RC> { + def rri : Ii32<0x12, MRM0r, (outs), (ins RC:$src0, GR32:$src1, i32imm:$cntl), + "lwpins\t{$cntl, $src1, $src0|$src0, $src1, $cntl}", + [(set EFLAGS, (X86lwpins RC:$src0, GR32:$src1, imm:$cntl))]>, + XOP_4V, XOPA; + let mayLoad = 1 in + def rmi : Ii32<0x12, MRM0m, (outs), (ins RC:$src0, i32mem:$src1, i32imm:$cntl), + "lwpins\t{$cntl, $src1, $src0|$src0, $src1, $cntl}", + [(set EFLAGS, (X86lwpins RC:$src0, (loadi32 addr:$src1), imm:$cntl))]>, + XOP_4V, XOPA; +} + +let Defs = [EFLAGS] in { + defm LWPINS32 : lwpins_intr<GR32>; + defm LWPINS64 : lwpins_intr<GR64>, VEX_W; +} // EFLAGS + +multiclass lwpval_intr<RegisterClass RC, Intrinsic Int> { + def rri : Ii32<0x12, MRM1r, (outs), (ins RC:$src0, GR32:$src1, i32imm:$cntl), + "lwpval\t{$cntl, $src1, $src0|$src0, $src1, $cntl}", + [(Int RC:$src0, GR32:$src1, imm:$cntl)], IIC_LWP>, + XOP_4V, XOPA; + let mayLoad = 1 in + def rmi : Ii32<0x12, MRM1m, (outs), (ins RC:$src0, i32mem:$src1, i32imm:$cntl), + "lwpval\t{$cntl, $src1, $src0|$src0, $src1, $cntl}", + [(Int RC:$src0, (loadi32 addr:$src1), imm:$cntl)], IIC_LWP>, + XOP_4V, XOPA; +} + +defm LWPVAL32 : lwpval_intr<GR32, int_x86_lwpval32>; +defm LWPVAL64 : lwpval_intr<GR64, int_x86_lwpval64>, VEX_W; + +} // HasLWP + +//===----------------------------------------------------------------------===// // MONITORX/MWAITX Instructions // let SchedRW = [ WriteSystem ] in { diff --git a/llvm/lib/Target/X86/X86Schedule.td b/llvm/lib/Target/X86/X86Schedule.td index 7f7efd7cad3..6580fbdd3db 100644 --- a/llvm/lib/Target/X86/X86Schedule.td +++ b/llvm/lib/Target/X86/X86Schedule.td @@ -1,662 +1,663 @@ -//===-- X86Schedule.td - X86 Scheduling Definitions --------*- tablegen -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// - -// InstrSchedModel annotations for out-of-order CPUs. -// -// These annotations are independent of the itinerary classes defined below. - -// Instructions with folded loads need to read the memory operand immediately, -// but other register operands don't have to be read until the load is ready. -// These operands are marked with ReadAfterLd. -def ReadAfterLd : SchedRead; - -// Instructions with both a load and a store folded are modeled as a folded -// load + WriteRMW. -def WriteRMW : SchedWrite; - -// Most instructions can fold loads, so almost every SchedWrite comes in two -// variants: With and without a folded load. -// An X86FoldableSchedWrite holds a reference to the corresponding SchedWrite -// with a folded load. -class X86FoldableSchedWrite : SchedWrite { - // The SchedWrite to use when a load is folded into the instruction. - SchedWrite Folded; -} - -// Multiclass that produces a linked pair of SchedWrites. -multiclass X86SchedWritePair { - // Register-Memory operation. - def Ld : SchedWrite; - // Register-Register operation. - def NAME : X86FoldableSchedWrite { - let Folded = !cast<SchedWrite>(NAME#"Ld"); - } -} - -// Arithmetic. -defm WriteALU : X86SchedWritePair; // Simple integer ALU op. -defm WriteIMul : X86SchedWritePair; // Integer multiplication. -def WriteIMulH : SchedWrite; // Integer multiplication, high part. -defm WriteIDiv : X86SchedWritePair; // Integer division. -def WriteLEA : SchedWrite; // LEA instructions can't fold loads. - -// Integer shifts and rotates. -defm WriteShift : X86SchedWritePair; - -// Loads, stores, and moves, not folded with other operations. -def WriteLoad : SchedWrite; -def WriteStore : SchedWrite; -def WriteMove : SchedWrite; - -// Idioms that clear a register, like xorps %xmm0, %xmm0. -// These can often bypass execution ports completely. -def WriteZero : SchedWrite; - -// Branches don't produce values, so they have no latency, but they still -// consume resources. Indirect branches can fold loads. -defm WriteJump : X86SchedWritePair; - -// Floating point. This covers both scalar and vector operations. -defm WriteFAdd : X86SchedWritePair; // Floating point add/sub/compare. -defm WriteFMul : X86SchedWritePair; // Floating point multiplication. -defm WriteFDiv : X86SchedWritePair; // Floating point division. -defm WriteFSqrt : X86SchedWritePair; // Floating point square root. -defm WriteFRcp : X86SchedWritePair; // Floating point reciprocal estimate. -defm WriteFRsqrt : X86SchedWritePair; // Floating point reciprocal square root estimate. -defm WriteFMA : X86SchedWritePair; // Fused Multiply Add. -defm WriteFShuffle : X86SchedWritePair; // Floating point vector shuffles. -defm WriteFBlend : X86SchedWritePair; // Floating point vector blends. -defm WriteFVarBlend : X86SchedWritePair; // Fp vector variable blends. - -// FMA Scheduling helper class. -class FMASC { X86FoldableSchedWrite Sched = WriteFAdd; } - -// Vector integer operations. -defm WriteVecALU : X86SchedWritePair; // Vector integer ALU op, no logicals. -defm WriteVecShift : X86SchedWritePair; // Vector integer shifts. -defm WriteVecIMul : X86SchedWritePair; // Vector integer multiply. -defm WriteShuffle : X86SchedWritePair; // Vector shuffles. -defm WriteBlend : X86SchedWritePair; // Vector blends. -defm WriteVarBlend : X86SchedWritePair; // Vector variable blends. -defm WriteMPSAD : X86SchedWritePair; // Vector MPSAD. - -// Vector bitwise operations. -// These are often used on both floating point and integer vectors. -defm WriteVecLogic : X86SchedWritePair; // Vector and/or/xor. - -// Conversion between integer and float. -defm WriteCvtF2I : X86SchedWritePair; // Float -> Integer. -defm WriteCvtI2F : X86SchedWritePair; // Integer -> Float. -defm WriteCvtF2F : X86SchedWritePair; // Float -> Float size conversion. - -// Strings instructions. -// Packed Compare Implicit Length Strings, Return Mask -defm WritePCmpIStrM : X86SchedWritePair; -// Packed Compare Explicit Length Strings, Return Mask -defm WritePCmpEStrM : X86SchedWritePair; -// Packed Compare Implicit Length Strings, Return Index -defm WritePCmpIStrI : X86SchedWritePair; -// Packed Compare Explicit Length Strings, Return Index -defm WritePCmpEStrI : X86SchedWritePair; - -// AES instructions. -defm WriteAESDecEnc : X86SchedWritePair; // Decryption, encryption. -defm WriteAESIMC : X86SchedWritePair; // InvMixColumn. -defm WriteAESKeyGen : X86SchedWritePair; // Key Generation. - -// Carry-less multiplication instructions. -defm WriteCLMul : X86SchedWritePair; - -// Catch-all for expensive system instructions. -def WriteSystem : SchedWrite; - -// AVX2. -defm WriteFShuffle256 : X86SchedWritePair; // Fp 256-bit width vector shuffles. -defm WriteShuffle256 : X86SchedWritePair; // 256-bit width vector shuffles. -defm WriteVarVecShift : X86SchedWritePair; // Variable vector shifts. - -// Old microcoded instructions that nobody use. -def WriteMicrocoded : SchedWrite; - -// Fence instructions. -def WriteFence : SchedWrite; - -// Nop, not very useful expect it provides a model for nops! -def WriteNop : SchedWrite; - -//===----------------------------------------------------------------------===// -// Instruction Itinerary classes used for X86 -def IIC_ALU_MEM : InstrItinClass; -def IIC_ALU_NONMEM : InstrItinClass; -def IIC_LEA : InstrItinClass; -def IIC_LEA_16 : InstrItinClass; -def IIC_MUL8 : InstrItinClass; -def IIC_MUL16_MEM : InstrItinClass; -def IIC_MUL16_REG : InstrItinClass; -def IIC_MUL32_MEM : InstrItinClass; -def IIC_MUL32_REG : InstrItinClass; -def IIC_MUL64 : InstrItinClass; -// imul by al, ax, eax, tax -def IIC_IMUL8 : InstrItinClass; -def IIC_IMUL16_MEM : InstrItinClass; -def IIC_IMUL16_REG : InstrItinClass; -def IIC_IMUL32_MEM : InstrItinClass; -def IIC_IMUL32_REG : InstrItinClass; -def IIC_IMUL64 : InstrItinClass; -// imul reg by reg|mem -def IIC_IMUL16_RM : InstrItinClass; -def IIC_IMUL16_RR : InstrItinClass; -def IIC_IMUL32_RM : InstrItinClass; -def IIC_IMUL32_RR : InstrItinClass; -def IIC_IMUL64_RM : InstrItinClass; -def IIC_IMUL64_RR : InstrItinClass; -// imul reg = reg/mem * imm -def IIC_IMUL16_RMI : InstrItinClass; -def IIC_IMUL16_RRI : InstrItinClass; -def IIC_IMUL32_RMI : InstrItinClass; -def IIC_IMUL32_RRI : InstrItinClass; -def IIC_IMUL64_RMI : InstrItinClass; -def IIC_IMUL64_RRI : InstrItinClass; -// div -def IIC_DIV8_MEM : InstrItinClass; -def IIC_DIV8_REG : InstrItinClass; -def IIC_DIV16 : InstrItinClass; -def IIC_DIV32 : InstrItinClass; -def IIC_DIV64 : InstrItinClass; -// idiv -def IIC_IDIV8 : InstrItinClass; -def IIC_IDIV16 : InstrItinClass; -def IIC_IDIV32 : InstrItinClass; -def IIC_IDIV64 : InstrItinClass; -// neg/not/inc/dec -def IIC_UNARY_REG : InstrItinClass; -def IIC_UNARY_MEM : InstrItinClass; -// add/sub/and/or/xor/sbc/cmp/test -def IIC_BIN_MEM : InstrItinClass; -def IIC_BIN_NONMEM : InstrItinClass; -// adc/sbc -def IIC_BIN_CARRY_MEM : InstrItinClass; -def IIC_BIN_CARRY_NONMEM : InstrItinClass; -// shift/rotate -def IIC_SR : InstrItinClass; -// shift double -def IIC_SHD16_REG_IM : InstrItinClass; -def IIC_SHD16_REG_CL : InstrItinClass; -def IIC_SHD16_MEM_IM : InstrItinClass; -def IIC_SHD16_MEM_CL : InstrItinClass; -def IIC_SHD32_REG_IM : InstrItinClass; -def IIC_SHD32_REG_CL : InstrItinClass; -def IIC_SHD32_MEM_IM : InstrItinClass; -def IIC_SHD32_MEM_CL : InstrItinClass; -def IIC_SHD64_REG_IM : InstrItinClass; -def IIC_SHD64_REG_CL : InstrItinClass; -def IIC_SHD64_MEM_IM : InstrItinClass; -def IIC_SHD64_MEM_CL : InstrItinClass; -// cmov -def IIC_CMOV16_RM : InstrItinClass; -def IIC_CMOV16_RR : InstrItinClass; -def IIC_CMOV32_RM : InstrItinClass; -def IIC_CMOV32_RR : InstrItinClass; -def IIC_CMOV64_RM : InstrItinClass; -def IIC_CMOV64_RR : InstrItinClass; -// set -def IIC_SET_R : InstrItinClass; -def IIC_SET_M : InstrItinClass; -// jmp/jcc/jcxz -def IIC_Jcc : InstrItinClass; -def IIC_JCXZ : InstrItinClass; -def IIC_JMP_REL : InstrItinClass; -def IIC_JMP_REG : InstrItinClass; -def IIC_JMP_MEM : InstrItinClass; -def IIC_JMP_FAR_MEM : InstrItinClass; -def IIC_JMP_FAR_PTR : InstrItinClass; -// loop -def IIC_LOOP : InstrItinClass; -def IIC_LOOPE : InstrItinClass; -def IIC_LOOPNE : InstrItinClass; -// call -def IIC_CALL_RI : InstrItinClass; -def IIC_CALL_MEM : InstrItinClass; -def IIC_CALL_FAR_MEM : InstrItinClass; -def IIC_CALL_FAR_PTR : InstrItinClass; -// ret -def IIC_RET : InstrItinClass; -def IIC_RET_IMM : InstrItinClass; -//sign extension movs -def IIC_MOVSX : InstrItinClass; -def IIC_MOVSX_R16_R8 : InstrItinClass; -def IIC_MOVSX_R16_M8 : InstrItinClass; -def IIC_MOVSX_R16_R16 : InstrItinClass; -def IIC_MOVSX_R32_R32 : InstrItinClass; -//zero extension movs -def IIC_MOVZX : InstrItinClass; -def IIC_MOVZX_R16_R8 : InstrItinClass; -def IIC_MOVZX_R16_M8 : InstrItinClass; - -def IIC_REP_MOVS : InstrItinClass; -def IIC_REP_STOS : InstrItinClass; - -// SSE scalar/parallel binary operations -def IIC_SSE_ALU_F32S_RR : InstrItinClass; -def IIC_SSE_ALU_F32S_RM : InstrItinClass; -def IIC_SSE_ALU_F64S_RR : InstrItinClass; -def IIC_SSE_ALU_F64S_RM : InstrItinClass; -def IIC_SSE_MUL_F32S_RR : InstrItinClass; -def IIC_SSE_MUL_F32S_RM : InstrItinClass; -def IIC_SSE_MUL_F64S_RR : InstrItinClass; -def IIC_SSE_MUL_F64S_RM : InstrItinClass; -def IIC_SSE_DIV_F32S_RR : InstrItinClass; -def IIC_SSE_DIV_F32S_RM : InstrItinClass; -def IIC_SSE_DIV_F64S_RR : InstrItinClass; -def IIC_SSE_DIV_F64S_RM : InstrItinClass; -def IIC_SSE_ALU_F32P_RR : InstrItinClass; -def IIC_SSE_ALU_F32P_RM : InstrItinClass; -def IIC_SSE_ALU_F64P_RR : InstrItinClass; -def IIC_SSE_ALU_F64P_RM : InstrItinClass; -def IIC_SSE_MUL_F32P_RR : InstrItinClass; -def IIC_SSE_MUL_F32P_RM : InstrItinClass; -def IIC_SSE_MUL_F64P_RR : InstrItinClass; -def IIC_SSE_MUL_F64P_RM : InstrItinClass; -def IIC_SSE_DIV_F32P_RR : InstrItinClass; -def IIC_SSE_DIV_F32P_RM : InstrItinClass; -def IIC_SSE_DIV_F64P_RR : InstrItinClass; -def IIC_SSE_DIV_F64P_RM : InstrItinClass; - -def IIC_SSE_COMIS_RR : InstrItinClass; -def IIC_SSE_COMIS_RM : InstrItinClass; - -def IIC_SSE_HADDSUB_RR : InstrItinClass; -def IIC_SSE_HADDSUB_RM : InstrItinClass; - -def IIC_SSE_BIT_P_RR : InstrItinClass; -def IIC_SSE_BIT_P_RM : InstrItinClass; - -def IIC_SSE_INTALU_P_RR : InstrItinClass; -def IIC_SSE_INTALU_P_RM : InstrItinClass; -def IIC_SSE_INTALUQ_P_RR : InstrItinClass; -def IIC_SSE_INTALUQ_P_RM : InstrItinClass; - -def IIC_SSE_INTMUL_P_RR : InstrItinClass; -def IIC_SSE_INTMUL_P_RM : InstrItinClass; - -def IIC_SSE_INTSH_P_RR : InstrItinClass; -def IIC_SSE_INTSH_P_RM : InstrItinClass; -def IIC_SSE_INTSH_P_RI : InstrItinClass; - -def IIC_SSE_INTSHDQ_P_RI : InstrItinClass; - -def IIC_SSE_SHUFP : InstrItinClass; -def IIC_SSE_PSHUF_RI : InstrItinClass; -def IIC_SSE_PSHUF_MI : InstrItinClass; - -def IIC_SSE_UNPCK : InstrItinClass; - -def IIC_SSE_MOVMSK : InstrItinClass; -def IIC_SSE_MASKMOV : InstrItinClass; - -def IIC_SSE_PEXTRW : InstrItinClass; -def IIC_SSE_PINSRW : InstrItinClass; - -def IIC_SSE_PABS_RR : InstrItinClass; -def IIC_SSE_PABS_RM : InstrItinClass; - -def IIC_SSE_SQRTPS_RR : InstrItinClass; -def IIC_SSE_SQRTPS_RM : InstrItinClass; -def IIC_SSE_SQRTSS_RR : InstrItinClass; -def IIC_SSE_SQRTSS_RM : InstrItinClass; -def IIC_SSE_SQRTPD_RR : InstrItinClass; -def IIC_SSE_SQRTPD_RM : InstrItinClass; -def IIC_SSE_SQRTSD_RR : InstrItinClass; -def IIC_SSE_SQRTSD_RM : InstrItinClass; - -def IIC_SSE_RSQRTPS_RR : InstrItinClass; -def IIC_SSE_RSQRTPS_RM : InstrItinClass; -def IIC_SSE_RSQRTSS_RR : InstrItinClass; -def IIC_SSE_RSQRTSS_RM : InstrItinClass; - -def IIC_SSE_RCPP_RR : InstrItinClass; -def IIC_SSE_RCPP_RM : InstrItinClass; -def IIC_SSE_RCPS_RR : InstrItinClass; -def IIC_SSE_RCPS_RM : InstrItinClass; - -def IIC_SSE_MOV_S_RR : InstrItinClass; -def IIC_SSE_MOV_S_RM : InstrItinClass; -def IIC_SSE_MOV_S_MR : InstrItinClass; - -def IIC_SSE_MOVA_P_RR : InstrItinClass; -def IIC_SSE_MOVA_P_RM : InstrItinClass; -def IIC_SSE_MOVA_P_MR : InstrItinClass; - -def IIC_SSE_MOVU_P_RR : InstrItinClass; -def IIC_SSE_MOVU_P_RM : InstrItinClass; -def IIC_SSE_MOVU_P_MR : InstrItinClass; - -def IIC_SSE_MOVDQ : InstrItinClass; -def IIC_SSE_MOVD_ToGP : InstrItinClass; -def IIC_SSE_MOVQ_RR : InstrItinClass; - -def IIC_SSE_MOV_LH : InstrItinClass; - -def IIC_SSE_LDDQU : InstrItinClass; - -def IIC_SSE_MOVNT : InstrItinClass; - -def IIC_SSE_PHADDSUBD_RR : InstrItinClass; -def IIC_SSE_PHADDSUBD_RM : InstrItinClass; -def IIC_SSE_PHADDSUBSW_RR : InstrItinClass; -def IIC_SSE_PHADDSUBSW_RM : InstrItinClass; -def IIC_SSE_PHADDSUBW_RR : InstrItinClass; -def IIC_SSE_PHADDSUBW_RM : InstrItinClass; -def IIC_SSE_PSHUFB_RR : InstrItinClass; -def IIC_SSE_PSHUFB_RM : InstrItinClass; -def IIC_SSE_PSIGN_RR : InstrItinClass; -def IIC_SSE_PSIGN_RM : InstrItinClass; - -def IIC_SSE_PMADD : InstrItinClass; -def IIC_SSE_PMULHRSW : InstrItinClass; -def IIC_SSE_PALIGNRR : InstrItinClass; -def IIC_SSE_PALIGNRM : InstrItinClass; -def IIC_SSE_MWAIT : InstrItinClass; -def IIC_SSE_MONITOR : InstrItinClass; -def IIC_SSE_MWAITX : InstrItinClass; -def IIC_SSE_MONITORX : InstrItinClass; -def IIC_SSE_CLZERO : InstrItinClass; - -def IIC_SSE_PREFETCH : InstrItinClass; -def IIC_SSE_PAUSE : InstrItinClass; -def IIC_SSE_LFENCE : InstrItinClass; -def IIC_SSE_MFENCE : InstrItinClass; -def IIC_SSE_SFENCE : InstrItinClass; -def IIC_SSE_LDMXCSR : InstrItinClass; -def IIC_SSE_STMXCSR : InstrItinClass; - -def IIC_SSE_CVT_PD_RR : InstrItinClass; -def IIC_SSE_CVT_PD_RM : InstrItinClass; -def IIC_SSE_CVT_PS_RR : InstrItinClass; -def IIC_SSE_CVT_PS_RM : InstrItinClass; -def IIC_SSE_CVT_PI2PS_RR : InstrItinClass; -def IIC_SSE_CVT_PI2PS_RM : InstrItinClass; -def IIC_SSE_CVT_Scalar_RR : InstrItinClass; -def IIC_SSE_CVT_Scalar_RM : InstrItinClass; -def IIC_SSE_CVT_SS2SI32_RM : InstrItinClass; -def IIC_SSE_CVT_SS2SI32_RR : InstrItinClass; -def IIC_SSE_CVT_SS2SI64_RM : InstrItinClass; -def IIC_SSE_CVT_SS2SI64_RR : InstrItinClass; -def IIC_SSE_CVT_SD2SI_RM : InstrItinClass; -def IIC_SSE_CVT_SD2SI_RR : InstrItinClass; - -// MMX -def IIC_MMX_MOV_MM_RM : InstrItinClass; -def IIC_MMX_MOV_REG_MM : InstrItinClass; -def IIC_MMX_MOVQ_RM : InstrItinClass; -def IIC_MMX_MOVQ_RR : InstrItinClass; - -def IIC_MMX_ALU_RM : InstrItinClass; -def IIC_MMX_ALU_RR : InstrItinClass; -def IIC_MMX_ALUQ_RM : InstrItinClass; -def IIC_MMX_ALUQ_RR : InstrItinClass; -def IIC_MMX_PHADDSUBW_RM : InstrItinClass; -def IIC_MMX_PHADDSUBW_RR : InstrItinClass; -def IIC_MMX_PHADDSUBD_RM : InstrItinClass; -def IIC_MMX_PHADDSUBD_RR : InstrItinClass; -def IIC_MMX_PMUL : InstrItinClass; -def IIC_MMX_MISC_FUNC_MEM : InstrItinClass; -def IIC_MMX_MISC_FUNC_REG : InstrItinClass; -def IIC_MMX_PSADBW : InstrItinClass; -def IIC_MMX_SHIFT_RI : InstrItinClass; -def IIC_MMX_SHIFT_RM : InstrItinClass; -def IIC_MMX_SHIFT_RR : InstrItinClass; -def IIC_MMX_UNPCK_H_RM : InstrItinClass; -def IIC_MMX_UNPCK_H_RR : InstrItinClass; -def IIC_MMX_UNPCK_L : InstrItinClass; -def IIC_MMX_PCK_RM : InstrItinClass; -def IIC_MMX_PCK_RR : InstrItinClass; -def IIC_MMX_PSHUF : InstrItinClass; -def IIC_MMX_PEXTR : InstrItinClass; -def IIC_MMX_PINSRW : InstrItinClass; -def IIC_MMX_MASKMOV : InstrItinClass; - -def IIC_MMX_CVT_PD_RR : InstrItinClass; -def IIC_MMX_CVT_PD_RM : InstrItinClass; -def IIC_MMX_CVT_PS_RR : InstrItinClass; -def IIC_MMX_CVT_PS_RM : InstrItinClass; - -def IIC_CMPX_LOCK : InstrItinClass; -def IIC_CMPX_LOCK_8 : InstrItinClass; -def IIC_CMPX_LOCK_8B : InstrItinClass; -def IIC_CMPX_LOCK_16B : InstrItinClass; - -def IIC_XADD_LOCK_MEM : InstrItinClass; -def IIC_XADD_LOCK_MEM8 : InstrItinClass; - -def IIC_FILD : InstrItinClass; -def IIC_FLD : InstrItinClass; -def IIC_FLD80 : InstrItinClass; -def IIC_FST : InstrItinClass; -def IIC_FST80 : InstrItinClass; -def IIC_FIST : InstrItinClass; -def IIC_FLDZ : InstrItinClass; -def IIC_FUCOM : InstrItinClass; -def IIC_FUCOMI : InstrItinClass; -def IIC_FCOMI : InstrItinClass; -def IIC_FNSTSW : InstrItinClass; -def IIC_FNSTCW : InstrItinClass; -def IIC_FLDCW : InstrItinClass; -def IIC_FNINIT : InstrItinClass; -def IIC_FFREE : InstrItinClass; -def IIC_FNCLEX : InstrItinClass; -def IIC_WAIT : InstrItinClass; -def IIC_FXAM : InstrItinClass; -def IIC_FNOP : InstrItinClass; -def IIC_FLDL : InstrItinClass; -def IIC_F2XM1 : InstrItinClass; -def IIC_FYL2X : InstrItinClass; -def IIC_FPTAN : InstrItinClass; -def IIC_FPATAN : InstrItinClass; -def IIC_FXTRACT : InstrItinClass; -def IIC_FPREM1 : InstrItinClass; -def IIC_FPSTP : InstrItinClass; -def IIC_FPREM : InstrItinClass; -def IIC_FYL2XP1 : InstrItinClass; -def IIC_FSINCOS : InstrItinClass; -def IIC_FRNDINT : InstrItinClass; -def IIC_FSCALE : InstrItinClass; -def IIC_FCOMPP : InstrItinClass; -def IIC_FXSAVE : InstrItinClass; -def IIC_FXRSTOR : InstrItinClass; - -def IIC_FXCH : InstrItinClass; - -// System instructions -def IIC_CPUID : InstrItinClass; -def IIC_INT : InstrItinClass; -def IIC_INT3 : InstrItinClass; -def IIC_INVD : InstrItinClass; -def IIC_INVLPG : InstrItinClass; -def IIC_IRET : InstrItinClass; -def IIC_HLT : InstrItinClass; -def IIC_LXS : InstrItinClass; -def IIC_LTR : InstrItinClass; -def IIC_RDTSC : InstrItinClass; -def IIC_RSM : InstrItinClass; -def IIC_SIDT : InstrItinClass; -def IIC_SGDT : InstrItinClass; -def IIC_SLDT : InstrItinClass; -def IIC_STR : InstrItinClass; -def IIC_SWAPGS : InstrItinClass; -def IIC_SYSCALL : InstrItinClass; -def IIC_SYS_ENTER_EXIT : InstrItinClass; -def IIC_IN_RR : InstrItinClass; -def IIC_IN_RI : InstrItinClass; -def IIC_OUT_RR : InstrItinClass; -def IIC_OUT_IR : InstrItinClass; -def IIC_INS : InstrItinClass; -def IIC_MOV_REG_DR : InstrItinClass; -def IIC_MOV_DR_REG : InstrItinClass; -def IIC_MOV_REG_CR : InstrItinClass; -def IIC_MOV_CR_REG : InstrItinClass; -def IIC_MOV_REG_SR : InstrItinClass; -def IIC_MOV_MEM_SR : InstrItinClass; -def IIC_MOV_SR_REG : InstrItinClass; -def IIC_MOV_SR_MEM : InstrItinClass; -def IIC_LAR_RM : InstrItinClass; -def IIC_LAR_RR : InstrItinClass; -def IIC_LSL_RM : InstrItinClass; -def IIC_LSL_RR : InstrItinClass; -def IIC_LGDT : InstrItinClass; -def IIC_LIDT : InstrItinClass; -def IIC_LLDT_REG : InstrItinClass; -def IIC_LLDT_MEM : InstrItinClass; -def IIC_PUSH_CS : InstrItinClass; -def IIC_PUSH_SR : InstrItinClass; -def IIC_POP_SR : InstrItinClass; -def IIC_POP_SR_SS : InstrItinClass; -def IIC_VERR : InstrItinClass; -def IIC_VERW_REG : InstrItinClass; -def IIC_VERW_MEM : InstrItinClass; -def IIC_WRMSR : InstrItinClass; -def IIC_RDMSR : InstrItinClass; -def IIC_RDPMC : InstrItinClass; -def IIC_SMSW : InstrItinClass; -def IIC_LMSW_REG : InstrItinClass; -def IIC_LMSW_MEM : InstrItinClass; -def IIC_ENTER : InstrItinClass; -def IIC_LEAVE : InstrItinClass; -def IIC_POP_MEM : InstrItinClass; -def IIC_POP_REG16 : InstrItinClass; -def IIC_POP_REG : InstrItinClass; -def IIC_POP_F : InstrItinClass; -def IIC_POP_FD : InstrItinClass; -def IIC_POP_A : InstrItinClass; -def IIC_PUSH_IMM : InstrItinClass; -def IIC_PUSH_MEM : InstrItinClass; -def IIC_PUSH_REG : InstrItinClass; -def IIC_PUSH_F : InstrItinClass; -def IIC_PUSH_A : InstrItinClass; -def IIC_BSWAP : InstrItinClass; -def IIC_BIT_SCAN_MEM : InstrItinClass; -def IIC_BIT_SCAN_REG : InstrItinClass; -def IIC_MOVS : InstrItinClass; -def IIC_STOS : InstrItinClass; -def IIC_SCAS : InstrItinClass; -def IIC_CMPS : InstrItinClass; -def IIC_MOV : InstrItinClass; -def IIC_MOV_MEM : InstrItinClass; -def IIC_AHF : InstrItinClass; -def IIC_BT_MI : InstrItinClass; -def IIC_BT_MR : InstrItinClass; -def IIC_BT_RI : InstrItinClass; -def IIC_BT_RR : InstrItinClass; -def IIC_BTX_MI : InstrItinClass; -def IIC_BTX_MR : InstrItinClass; -def IIC_BTX_RI : InstrItinClass; -def IIC_BTX_RR : InstrItinClass; -def IIC_XCHG_REG : InstrItinClass; -def IIC_XCHG_MEM : InstrItinClass; -def IIC_XADD_REG : InstrItinClass; -def IIC_XADD_MEM : InstrItinClass; -def IIC_CMPXCHG_MEM : InstrItinClass; -def IIC_CMPXCHG_REG : InstrItinClass; -def IIC_CMPXCHG_MEM8 : InstrItinClass; -def IIC_CMPXCHG_REG8 : InstrItinClass; -def IIC_CMPXCHG_8B : InstrItinClass; -def IIC_CMPXCHG_16B : InstrItinClass; -def IIC_LODS : InstrItinClass; -def IIC_OUTS : InstrItinClass; -def IIC_CLC : InstrItinClass; -def IIC_CLD : InstrItinClass; -def IIC_CLI : InstrItinClass; -def IIC_CMC : InstrItinClass; -def IIC_CLTS : InstrItinClass; -def IIC_STC : InstrItinClass; -def IIC_STI : InstrItinClass; -def IIC_STD : InstrItinClass; -def IIC_XLAT : InstrItinClass; -def IIC_AAA : InstrItinClass; -def IIC_AAD : InstrItinClass; -def IIC_AAM : InstrItinClass; -def IIC_AAS : InstrItinClass; -def IIC_DAA : InstrItinClass; -def IIC_DAS : InstrItinClass; -def IIC_BOUND : InstrItinClass; -def IIC_ARPL_REG : InstrItinClass; -def IIC_ARPL_MEM : InstrItinClass; -def IIC_MOVBE : InstrItinClass; -def IIC_AES : InstrItinClass; -def IIC_BLEND_MEM : InstrItinClass; -def IIC_BLEND_NOMEM : InstrItinClass; -def IIC_CBW : InstrItinClass; -def IIC_CRC32_REG : InstrItinClass; -def IIC_CRC32_MEM : InstrItinClass; -def IIC_SSE_DPPD_RR : InstrItinClass; -def IIC_SSE_DPPD_RM : InstrItinClass; -def IIC_SSE_DPPS_RR : InstrItinClass; -def IIC_SSE_DPPS_RM : InstrItinClass; -def IIC_MMX_EMMS : InstrItinClass; -def IIC_SSE_EXTRACTPS_RR : InstrItinClass; -def IIC_SSE_EXTRACTPS_RM : InstrItinClass; -def IIC_SSE_INSERTPS_RR : InstrItinClass; -def IIC_SSE_INSERTPS_RM : InstrItinClass; -def IIC_SSE_MPSADBW_RR : InstrItinClass; -def IIC_SSE_MPSADBW_RM : InstrItinClass; -def IIC_SSE_PMULLD_RR : InstrItinClass; -def IIC_SSE_PMULLD_RM : InstrItinClass; -def IIC_SSE_ROUNDPS_REG : InstrItinClass; -def IIC_SSE_ROUNDPS_MEM : InstrItinClass; -def IIC_SSE_ROUNDPD_REG : InstrItinClass; -def IIC_SSE_ROUNDPD_MEM : InstrItinClass; -def IIC_SSE_POPCNT_RR : InstrItinClass; -def IIC_SSE_POPCNT_RM : InstrItinClass; -def IIC_SSE_PCLMULQDQ_RR : InstrItinClass; -def IIC_SSE_PCLMULQDQ_RM : InstrItinClass; - -def IIC_NOP : InstrItinClass; - -//===----------------------------------------------------------------------===// -// Processor instruction itineraries. - -// IssueWidth is analogous to the number of decode units. Core and its -// descendents, including Nehalem and SandyBridge have 4 decoders. -// Resources beyond the decoder operate on micro-ops and are bufferred -// so adjacent micro-ops don't directly compete. -// -// MicroOpBufferSize > 1 indicates that RAW dependencies can be -// decoded in the same cycle. The value 32 is a reasonably arbitrary -// number of in-flight instructions. -// -// HighLatency=10 is optimistic. X86InstrInfo::isHighLatencyDef -// indicates high latency opcodes. Alternatively, InstrItinData -// entries may be included here to define specific operand -// latencies. Since these latencies are not used for pipeline hazards, -// they do not need to be exact. -// -// The GenericX86Model contains no instruction itineraries -// and disables PostRAScheduler. -class GenericX86Model : SchedMachineModel { - let IssueWidth = 4; - let MicroOpBufferSize = 32; - let LoadLatency = 4; - let HighLatency = 10; - let PostRAScheduler = 0; - let CompleteModel = 0; -} - -def GenericModel : GenericX86Model; - -// Define a model with the PostRAScheduler enabled. -def GenericPostRAModel : GenericX86Model { - let PostRAScheduler = 1; -} - -include "X86ScheduleAtom.td" -include "X86SchedSandyBridge.td" -include "X86SchedHaswell.td" -include "X86ScheduleSLM.td" -include "X86ScheduleBtVer2.td" - +//===-- X86Schedule.td - X86 Scheduling Definitions --------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// InstrSchedModel annotations for out-of-order CPUs.
+//
+// These annotations are independent of the itinerary classes defined below.
+
+// Instructions with folded loads need to read the memory operand immediately,
+// but other register operands don't have to be read until the load is ready.
+// These operands are marked with ReadAfterLd.
+def ReadAfterLd : SchedRead;
+
+// Instructions with both a load and a store folded are modeled as a folded
+// load + WriteRMW.
+def WriteRMW : SchedWrite;
+
+// Most instructions can fold loads, so almost every SchedWrite comes in two
+// variants: With and without a folded load.
+// An X86FoldableSchedWrite holds a reference to the corresponding SchedWrite
+// with a folded load.
+class X86FoldableSchedWrite : SchedWrite {
+ // The SchedWrite to use when a load is folded into the instruction.
+ SchedWrite Folded;
+}
+
+// Multiclass that produces a linked pair of SchedWrites.
+multiclass X86SchedWritePair {
+ // Register-Memory operation.
+ def Ld : SchedWrite;
+ // Register-Register operation.
+ def NAME : X86FoldableSchedWrite {
+ let Folded = !cast<SchedWrite>(NAME#"Ld");
+ }
+}
+
+// Arithmetic.
+defm WriteALU : X86SchedWritePair; // Simple integer ALU op.
+defm WriteIMul : X86SchedWritePair; // Integer multiplication.
+def WriteIMulH : SchedWrite; // Integer multiplication, high part.
+defm WriteIDiv : X86SchedWritePair; // Integer division.
+def WriteLEA : SchedWrite; // LEA instructions can't fold loads.
+
+// Integer shifts and rotates.
+defm WriteShift : X86SchedWritePair;
+
+// Loads, stores, and moves, not folded with other operations.
+def WriteLoad : SchedWrite;
+def WriteStore : SchedWrite;
+def WriteMove : SchedWrite;
+
+// Idioms that clear a register, like xorps %xmm0, %xmm0.
+// These can often bypass execution ports completely.
+def WriteZero : SchedWrite;
+
+// Branches don't produce values, so they have no latency, but they still
+// consume resources. Indirect branches can fold loads.
+defm WriteJump : X86SchedWritePair;
+
+// Floating point. This covers both scalar and vector operations.
+defm WriteFAdd : X86SchedWritePair; // Floating point add/sub/compare.
+defm WriteFMul : X86SchedWritePair; // Floating point multiplication.
+defm WriteFDiv : X86SchedWritePair; // Floating point division.
+defm WriteFSqrt : X86SchedWritePair; // Floating point square root.
+defm WriteFRcp : X86SchedWritePair; // Floating point reciprocal estimate.
+defm WriteFRsqrt : X86SchedWritePair; // Floating point reciprocal square root estimate.
+defm WriteFMA : X86SchedWritePair; // Fused Multiply Add.
+defm WriteFShuffle : X86SchedWritePair; // Floating point vector shuffles.
+defm WriteFBlend : X86SchedWritePair; // Floating point vector blends.
+defm WriteFVarBlend : X86SchedWritePair; // Fp vector variable blends.
+
+// FMA Scheduling helper class.
+class FMASC { X86FoldableSchedWrite Sched = WriteFAdd; }
+
+// Vector integer operations.
+defm WriteVecALU : X86SchedWritePair; // Vector integer ALU op, no logicals.
+defm WriteVecShift : X86SchedWritePair; // Vector integer shifts.
+defm WriteVecIMul : X86SchedWritePair; // Vector integer multiply.
+defm WriteShuffle : X86SchedWritePair; // Vector shuffles.
+defm WriteBlend : X86SchedWritePair; // Vector blends.
+defm WriteVarBlend : X86SchedWritePair; // Vector variable blends.
+defm WriteMPSAD : X86SchedWritePair; // Vector MPSAD.
+
+// Vector bitwise operations.
+// These are often used on both floating point and integer vectors.
+defm WriteVecLogic : X86SchedWritePair; // Vector and/or/xor.
+
+// Conversion between integer and float.
+defm WriteCvtF2I : X86SchedWritePair; // Float -> Integer.
+defm WriteCvtI2F : X86SchedWritePair; // Integer -> Float.
+defm WriteCvtF2F : X86SchedWritePair; // Float -> Float size conversion.
+
+// Strings instructions.
+// Packed Compare Implicit Length Strings, Return Mask
+defm WritePCmpIStrM : X86SchedWritePair;
+// Packed Compare Explicit Length Strings, Return Mask
+defm WritePCmpEStrM : X86SchedWritePair;
+// Packed Compare Implicit Length Strings, Return Index
+defm WritePCmpIStrI : X86SchedWritePair;
+// Packed Compare Explicit Length Strings, Return Index
+defm WritePCmpEStrI : X86SchedWritePair;
+
+// AES instructions.
+defm WriteAESDecEnc : X86SchedWritePair; // Decryption, encryption.
+defm WriteAESIMC : X86SchedWritePair; // InvMixColumn.
+defm WriteAESKeyGen : X86SchedWritePair; // Key Generation.
+
+// Carry-less multiplication instructions.
+defm WriteCLMul : X86SchedWritePair;
+
+// Catch-all for expensive system instructions.
+def WriteSystem : SchedWrite;
+
+// AVX2.
+defm WriteFShuffle256 : X86SchedWritePair; // Fp 256-bit width vector shuffles.
+defm WriteShuffle256 : X86SchedWritePair; // 256-bit width vector shuffles.
+defm WriteVarVecShift : X86SchedWritePair; // Variable vector shifts.
+
+// Old microcoded instructions that nobody use.
+def WriteMicrocoded : SchedWrite;
+
+// Fence instructions.
+def WriteFence : SchedWrite;
+
+// Nop, not very useful expect it provides a model for nops!
+def WriteNop : SchedWrite;
+
+//===----------------------------------------------------------------------===//
+// Instruction Itinerary classes used for X86
+def IIC_ALU_MEM : InstrItinClass;
+def IIC_ALU_NONMEM : InstrItinClass;
+def IIC_LEA : InstrItinClass;
+def IIC_LEA_16 : InstrItinClass;
+def IIC_MUL8 : InstrItinClass;
+def IIC_MUL16_MEM : InstrItinClass;
+def IIC_MUL16_REG : InstrItinClass;
+def IIC_MUL32_MEM : InstrItinClass;
+def IIC_MUL32_REG : InstrItinClass;
+def IIC_MUL64 : InstrItinClass;
+// imul by al, ax, eax, tax
+def IIC_IMUL8 : InstrItinClass;
+def IIC_IMUL16_MEM : InstrItinClass;
+def IIC_IMUL16_REG : InstrItinClass;
+def IIC_IMUL32_MEM : InstrItinClass;
+def IIC_IMUL32_REG : InstrItinClass;
+def IIC_IMUL64 : InstrItinClass;
+// imul reg by reg|mem
+def IIC_IMUL16_RM : InstrItinClass;
+def IIC_IMUL16_RR : InstrItinClass;
+def IIC_IMUL32_RM : InstrItinClass;
+def IIC_IMUL32_RR : InstrItinClass;
+def IIC_IMUL64_RM : InstrItinClass;
+def IIC_IMUL64_RR : InstrItinClass;
+// imul reg = reg/mem * imm
+def IIC_IMUL16_RMI : InstrItinClass;
+def IIC_IMUL16_RRI : InstrItinClass;
+def IIC_IMUL32_RMI : InstrItinClass;
+def IIC_IMUL32_RRI : InstrItinClass;
+def IIC_IMUL64_RMI : InstrItinClass;
+def IIC_IMUL64_RRI : InstrItinClass;
+// div
+def IIC_DIV8_MEM : InstrItinClass;
+def IIC_DIV8_REG : InstrItinClass;
+def IIC_DIV16 : InstrItinClass;
+def IIC_DIV32 : InstrItinClass;
+def IIC_DIV64 : InstrItinClass;
+// idiv
+def IIC_IDIV8 : InstrItinClass;
+def IIC_IDIV16 : InstrItinClass;
+def IIC_IDIV32 : InstrItinClass;
+def IIC_IDIV64 : InstrItinClass;
+// neg/not/inc/dec
+def IIC_UNARY_REG : InstrItinClass;
+def IIC_UNARY_MEM : InstrItinClass;
+// add/sub/and/or/xor/sbc/cmp/test
+def IIC_BIN_MEM : InstrItinClass;
+def IIC_BIN_NONMEM : InstrItinClass;
+// adc/sbc
+def IIC_BIN_CARRY_MEM : InstrItinClass;
+def IIC_BIN_CARRY_NONMEM : InstrItinClass;
+// shift/rotate
+def IIC_SR : InstrItinClass;
+// shift double
+def IIC_SHD16_REG_IM : InstrItinClass;
+def IIC_SHD16_REG_CL : InstrItinClass;
+def IIC_SHD16_MEM_IM : InstrItinClass;
+def IIC_SHD16_MEM_CL : InstrItinClass;
+def IIC_SHD32_REG_IM : InstrItinClass;
+def IIC_SHD32_REG_CL : InstrItinClass;
+def IIC_SHD32_MEM_IM : InstrItinClass;
+def IIC_SHD32_MEM_CL : InstrItinClass;
+def IIC_SHD64_REG_IM : InstrItinClass;
+def IIC_SHD64_REG_CL : InstrItinClass;
+def IIC_SHD64_MEM_IM : InstrItinClass;
+def IIC_SHD64_MEM_CL : InstrItinClass;
+// cmov
+def IIC_CMOV16_RM : InstrItinClass;
+def IIC_CMOV16_RR : InstrItinClass;
+def IIC_CMOV32_RM : InstrItinClass;
+def IIC_CMOV32_RR : InstrItinClass;
+def IIC_CMOV64_RM : InstrItinClass;
+def IIC_CMOV64_RR : InstrItinClass;
+// set
+def IIC_SET_R : InstrItinClass;
+def IIC_SET_M : InstrItinClass;
+// jmp/jcc/jcxz
+def IIC_Jcc : InstrItinClass;
+def IIC_JCXZ : InstrItinClass;
+def IIC_JMP_REL : InstrItinClass;
+def IIC_JMP_REG : InstrItinClass;
+def IIC_JMP_MEM : InstrItinClass;
+def IIC_JMP_FAR_MEM : InstrItinClass;
+def IIC_JMP_FAR_PTR : InstrItinClass;
+// loop
+def IIC_LOOP : InstrItinClass;
+def IIC_LOOPE : InstrItinClass;
+def IIC_LOOPNE : InstrItinClass;
+// call
+def IIC_CALL_RI : InstrItinClass;
+def IIC_CALL_MEM : InstrItinClass;
+def IIC_CALL_FAR_MEM : InstrItinClass;
+def IIC_CALL_FAR_PTR : InstrItinClass;
+// ret
+def IIC_RET : InstrItinClass;
+def IIC_RET_IMM : InstrItinClass;
+//sign extension movs
+def IIC_MOVSX : InstrItinClass;
+def IIC_MOVSX_R16_R8 : InstrItinClass;
+def IIC_MOVSX_R16_M8 : InstrItinClass;
+def IIC_MOVSX_R16_R16 : InstrItinClass;
+def IIC_MOVSX_R32_R32 : InstrItinClass;
+//zero extension movs
+def IIC_MOVZX : InstrItinClass;
+def IIC_MOVZX_R16_R8 : InstrItinClass;
+def IIC_MOVZX_R16_M8 : InstrItinClass;
+
+def IIC_REP_MOVS : InstrItinClass;
+def IIC_REP_STOS : InstrItinClass;
+
+// SSE scalar/parallel binary operations
+def IIC_SSE_ALU_F32S_RR : InstrItinClass;
+def IIC_SSE_ALU_F32S_RM : InstrItinClass;
+def IIC_SSE_ALU_F64S_RR : InstrItinClass;
+def IIC_SSE_ALU_F64S_RM : InstrItinClass;
+def IIC_SSE_MUL_F32S_RR : InstrItinClass;
+def IIC_SSE_MUL_F32S_RM : InstrItinClass;
+def IIC_SSE_MUL_F64S_RR : InstrItinClass;
+def IIC_SSE_MUL_F64S_RM : InstrItinClass;
+def IIC_SSE_DIV_F32S_RR : InstrItinClass;
+def IIC_SSE_DIV_F32S_RM : InstrItinClass;
+def IIC_SSE_DIV_F64S_RR : InstrItinClass;
+def IIC_SSE_DIV_F64S_RM : InstrItinClass;
+def IIC_SSE_ALU_F32P_RR : InstrItinClass;
+def IIC_SSE_ALU_F32P_RM : InstrItinClass;
+def IIC_SSE_ALU_F64P_RR : InstrItinClass;
+def IIC_SSE_ALU_F64P_RM : InstrItinClass;
+def IIC_SSE_MUL_F32P_RR : InstrItinClass;
+def IIC_SSE_MUL_F32P_RM : InstrItinClass;
+def IIC_SSE_MUL_F64P_RR : InstrItinClass;
+def IIC_SSE_MUL_F64P_RM : InstrItinClass;
+def IIC_SSE_DIV_F32P_RR : InstrItinClass;
+def IIC_SSE_DIV_F32P_RM : InstrItinClass;
+def IIC_SSE_DIV_F64P_RR : InstrItinClass;
+def IIC_SSE_DIV_F64P_RM : InstrItinClass;
+
+def IIC_SSE_COMIS_RR : InstrItinClass;
+def IIC_SSE_COMIS_RM : InstrItinClass;
+
+def IIC_SSE_HADDSUB_RR : InstrItinClass;
+def IIC_SSE_HADDSUB_RM : InstrItinClass;
+
+def IIC_SSE_BIT_P_RR : InstrItinClass;
+def IIC_SSE_BIT_P_RM : InstrItinClass;
+
+def IIC_SSE_INTALU_P_RR : InstrItinClass;
+def IIC_SSE_INTALU_P_RM : InstrItinClass;
+def IIC_SSE_INTALUQ_P_RR : InstrItinClass;
+def IIC_SSE_INTALUQ_P_RM : InstrItinClass;
+
+def IIC_SSE_INTMUL_P_RR : InstrItinClass;
+def IIC_SSE_INTMUL_P_RM : InstrItinClass;
+
+def IIC_SSE_INTSH_P_RR : InstrItinClass;
+def IIC_SSE_INTSH_P_RM : InstrItinClass;
+def IIC_SSE_INTSH_P_RI : InstrItinClass;
+
+def IIC_SSE_INTSHDQ_P_RI : InstrItinClass;
+
+def IIC_SSE_SHUFP : InstrItinClass;
+def IIC_SSE_PSHUF_RI : InstrItinClass;
+def IIC_SSE_PSHUF_MI : InstrItinClass;
+
+def IIC_SSE_UNPCK : InstrItinClass;
+
+def IIC_SSE_MOVMSK : InstrItinClass;
+def IIC_SSE_MASKMOV : InstrItinClass;
+
+def IIC_SSE_PEXTRW : InstrItinClass;
+def IIC_SSE_PINSRW : InstrItinClass;
+
+def IIC_SSE_PABS_RR : InstrItinClass;
+def IIC_SSE_PABS_RM : InstrItinClass;
+
+def IIC_SSE_SQRTPS_RR : InstrItinClass;
+def IIC_SSE_SQRTPS_RM : InstrItinClass;
+def IIC_SSE_SQRTSS_RR : InstrItinClass;
+def IIC_SSE_SQRTSS_RM : InstrItinClass;
+def IIC_SSE_SQRTPD_RR : InstrItinClass;
+def IIC_SSE_SQRTPD_RM : InstrItinClass;
+def IIC_SSE_SQRTSD_RR : InstrItinClass;
+def IIC_SSE_SQRTSD_RM : InstrItinClass;
+
+def IIC_SSE_RSQRTPS_RR : InstrItinClass;
+def IIC_SSE_RSQRTPS_RM : InstrItinClass;
+def IIC_SSE_RSQRTSS_RR : InstrItinClass;
+def IIC_SSE_RSQRTSS_RM : InstrItinClass;
+
+def IIC_SSE_RCPP_RR : InstrItinClass;
+def IIC_SSE_RCPP_RM : InstrItinClass;
+def IIC_SSE_RCPS_RR : InstrItinClass;
+def IIC_SSE_RCPS_RM : InstrItinClass;
+
+def IIC_SSE_MOV_S_RR : InstrItinClass;
+def IIC_SSE_MOV_S_RM : InstrItinClass;
+def IIC_SSE_MOV_S_MR : InstrItinClass;
+
+def IIC_SSE_MOVA_P_RR : InstrItinClass;
+def IIC_SSE_MOVA_P_RM : InstrItinClass;
+def IIC_SSE_MOVA_P_MR : InstrItinClass;
+
+def IIC_SSE_MOVU_P_RR : InstrItinClass;
+def IIC_SSE_MOVU_P_RM : InstrItinClass;
+def IIC_SSE_MOVU_P_MR : InstrItinClass;
+
+def IIC_SSE_MOVDQ : InstrItinClass;
+def IIC_SSE_MOVD_ToGP : InstrItinClass;
+def IIC_SSE_MOVQ_RR : InstrItinClass;
+
+def IIC_SSE_MOV_LH : InstrItinClass;
+
+def IIC_SSE_LDDQU : InstrItinClass;
+
+def IIC_SSE_MOVNT : InstrItinClass;
+
+def IIC_SSE_PHADDSUBD_RR : InstrItinClass;
+def IIC_SSE_PHADDSUBD_RM : InstrItinClass;
+def IIC_SSE_PHADDSUBSW_RR : InstrItinClass;
+def IIC_SSE_PHADDSUBSW_RM : InstrItinClass;
+def IIC_SSE_PHADDSUBW_RR : InstrItinClass;
+def IIC_SSE_PHADDSUBW_RM : InstrItinClass;
+def IIC_SSE_PSHUFB_RR : InstrItinClass;
+def IIC_SSE_PSHUFB_RM : InstrItinClass;
+def IIC_SSE_PSIGN_RR : InstrItinClass;
+def IIC_SSE_PSIGN_RM : InstrItinClass;
+
+def IIC_SSE_PMADD : InstrItinClass;
+def IIC_SSE_PMULHRSW : InstrItinClass;
+def IIC_SSE_PALIGNRR : InstrItinClass;
+def IIC_SSE_PALIGNRM : InstrItinClass;
+def IIC_SSE_MWAIT : InstrItinClass;
+def IIC_SSE_MONITOR : InstrItinClass;
+def IIC_SSE_MWAITX : InstrItinClass;
+def IIC_SSE_MONITORX : InstrItinClass;
+def IIC_SSE_CLZERO : InstrItinClass;
+
+def IIC_SSE_PREFETCH : InstrItinClass;
+def IIC_SSE_PAUSE : InstrItinClass;
+def IIC_SSE_LFENCE : InstrItinClass;
+def IIC_SSE_MFENCE : InstrItinClass;
+def IIC_SSE_SFENCE : InstrItinClass;
+def IIC_SSE_LDMXCSR : InstrItinClass;
+def IIC_SSE_STMXCSR : InstrItinClass;
+
+def IIC_SSE_CVT_PD_RR : InstrItinClass;
+def IIC_SSE_CVT_PD_RM : InstrItinClass;
+def IIC_SSE_CVT_PS_RR : InstrItinClass;
+def IIC_SSE_CVT_PS_RM : InstrItinClass;
+def IIC_SSE_CVT_PI2PS_RR : InstrItinClass;
+def IIC_SSE_CVT_PI2PS_RM : InstrItinClass;
+def IIC_SSE_CVT_Scalar_RR : InstrItinClass;
+def IIC_SSE_CVT_Scalar_RM : InstrItinClass;
+def IIC_SSE_CVT_SS2SI32_RM : InstrItinClass;
+def IIC_SSE_CVT_SS2SI32_RR : InstrItinClass;
+def IIC_SSE_CVT_SS2SI64_RM : InstrItinClass;
+def IIC_SSE_CVT_SS2SI64_RR : InstrItinClass;
+def IIC_SSE_CVT_SD2SI_RM : InstrItinClass;
+def IIC_SSE_CVT_SD2SI_RR : InstrItinClass;
+
+// MMX
+def IIC_MMX_MOV_MM_RM : InstrItinClass;
+def IIC_MMX_MOV_REG_MM : InstrItinClass;
+def IIC_MMX_MOVQ_RM : InstrItinClass;
+def IIC_MMX_MOVQ_RR : InstrItinClass;
+
+def IIC_MMX_ALU_RM : InstrItinClass;
+def IIC_MMX_ALU_RR : InstrItinClass;
+def IIC_MMX_ALUQ_RM : InstrItinClass;
+def IIC_MMX_ALUQ_RR : InstrItinClass;
+def IIC_MMX_PHADDSUBW_RM : InstrItinClass;
+def IIC_MMX_PHADDSUBW_RR : InstrItinClass;
+def IIC_MMX_PHADDSUBD_RM : InstrItinClass;
+def IIC_MMX_PHADDSUBD_RR : InstrItinClass;
+def IIC_MMX_PMUL : InstrItinClass;
+def IIC_MMX_MISC_FUNC_MEM : InstrItinClass;
+def IIC_MMX_MISC_FUNC_REG : InstrItinClass;
+def IIC_MMX_PSADBW : InstrItinClass;
+def IIC_MMX_SHIFT_RI : InstrItinClass;
+def IIC_MMX_SHIFT_RM : InstrItinClass;
+def IIC_MMX_SHIFT_RR : InstrItinClass;
+def IIC_MMX_UNPCK_H_RM : InstrItinClass;
+def IIC_MMX_UNPCK_H_RR : InstrItinClass;
+def IIC_MMX_UNPCK_L : InstrItinClass;
+def IIC_MMX_PCK_RM : InstrItinClass;
+def IIC_MMX_PCK_RR : InstrItinClass;
+def IIC_MMX_PSHUF : InstrItinClass;
+def IIC_MMX_PEXTR : InstrItinClass;
+def IIC_MMX_PINSRW : InstrItinClass;
+def IIC_MMX_MASKMOV : InstrItinClass;
+
+def IIC_MMX_CVT_PD_RR : InstrItinClass;
+def IIC_MMX_CVT_PD_RM : InstrItinClass;
+def IIC_MMX_CVT_PS_RR : InstrItinClass;
+def IIC_MMX_CVT_PS_RM : InstrItinClass;
+
+def IIC_CMPX_LOCK : InstrItinClass;
+def IIC_CMPX_LOCK_8 : InstrItinClass;
+def IIC_CMPX_LOCK_8B : InstrItinClass;
+def IIC_CMPX_LOCK_16B : InstrItinClass;
+
+def IIC_XADD_LOCK_MEM : InstrItinClass;
+def IIC_XADD_LOCK_MEM8 : InstrItinClass;
+
+def IIC_FILD : InstrItinClass;
+def IIC_FLD : InstrItinClass;
+def IIC_FLD80 : InstrItinClass;
+def IIC_FST : InstrItinClass;
+def IIC_FST80 : InstrItinClass;
+def IIC_FIST : InstrItinClass;
+def IIC_FLDZ : InstrItinClass;
+def IIC_FUCOM : InstrItinClass;
+def IIC_FUCOMI : InstrItinClass;
+def IIC_FCOMI : InstrItinClass;
+def IIC_FNSTSW : InstrItinClass;
+def IIC_FNSTCW : InstrItinClass;
+def IIC_FLDCW : InstrItinClass;
+def IIC_FNINIT : InstrItinClass;
+def IIC_FFREE : InstrItinClass;
+def IIC_FNCLEX : InstrItinClass;
+def IIC_WAIT : InstrItinClass;
+def IIC_FXAM : InstrItinClass;
+def IIC_FNOP : InstrItinClass;
+def IIC_FLDL : InstrItinClass;
+def IIC_F2XM1 : InstrItinClass;
+def IIC_FYL2X : InstrItinClass;
+def IIC_FPTAN : InstrItinClass;
+def IIC_FPATAN : InstrItinClass;
+def IIC_FXTRACT : InstrItinClass;
+def IIC_FPREM1 : InstrItinClass;
+def IIC_FPSTP : InstrItinClass;
+def IIC_FPREM : InstrItinClass;
+def IIC_FYL2XP1 : InstrItinClass;
+def IIC_FSINCOS : InstrItinClass;
+def IIC_FRNDINT : InstrItinClass;
+def IIC_FSCALE : InstrItinClass;
+def IIC_FCOMPP : InstrItinClass;
+def IIC_FXSAVE : InstrItinClass;
+def IIC_FXRSTOR : InstrItinClass;
+
+def IIC_FXCH : InstrItinClass;
+
+// System instructions
+def IIC_CPUID : InstrItinClass;
+def IIC_INT : InstrItinClass;
+def IIC_INT3 : InstrItinClass;
+def IIC_INVD : InstrItinClass;
+def IIC_INVLPG : InstrItinClass;
+def IIC_IRET : InstrItinClass;
+def IIC_HLT : InstrItinClass;
+def IIC_LXS : InstrItinClass;
+def IIC_LTR : InstrItinClass;
+def IIC_RDTSC : InstrItinClass;
+def IIC_RSM : InstrItinClass;
+def IIC_SIDT : InstrItinClass;
+def IIC_SGDT : InstrItinClass;
+def IIC_SLDT : InstrItinClass;
+def IIC_STR : InstrItinClass;
+def IIC_SWAPGS : InstrItinClass;
+def IIC_SYSCALL : InstrItinClass;
+def IIC_SYS_ENTER_EXIT : InstrItinClass;
+def IIC_IN_RR : InstrItinClass;
+def IIC_IN_RI : InstrItinClass;
+def IIC_OUT_RR : InstrItinClass;
+def IIC_OUT_IR : InstrItinClass;
+def IIC_INS : InstrItinClass;
+def IIC_LWP : InstrItinClass;
+def IIC_MOV_REG_DR : InstrItinClass;
+def IIC_MOV_DR_REG : InstrItinClass;
+def IIC_MOV_REG_CR : InstrItinClass;
+def IIC_MOV_CR_REG : InstrItinClass;
+def IIC_MOV_REG_SR : InstrItinClass;
+def IIC_MOV_MEM_SR : InstrItinClass;
+def IIC_MOV_SR_REG : InstrItinClass;
+def IIC_MOV_SR_MEM : InstrItinClass;
+def IIC_LAR_RM : InstrItinClass;
+def IIC_LAR_RR : InstrItinClass;
+def IIC_LSL_RM : InstrItinClass;
+def IIC_LSL_RR : InstrItinClass;
+def IIC_LGDT : InstrItinClass;
+def IIC_LIDT : InstrItinClass;
+def IIC_LLDT_REG : InstrItinClass;
+def IIC_LLDT_MEM : InstrItinClass;
+def IIC_PUSH_CS : InstrItinClass;
+def IIC_PUSH_SR : InstrItinClass;
+def IIC_POP_SR : InstrItinClass;
+def IIC_POP_SR_SS : InstrItinClass;
+def IIC_VERR : InstrItinClass;
+def IIC_VERW_REG : InstrItinClass;
+def IIC_VERW_MEM : InstrItinClass;
+def IIC_WRMSR : InstrItinClass;
+def IIC_RDMSR : InstrItinClass;
+def IIC_RDPMC : InstrItinClass;
+def IIC_SMSW : InstrItinClass;
+def IIC_LMSW_REG : InstrItinClass;
+def IIC_LMSW_MEM : InstrItinClass;
+def IIC_ENTER : InstrItinClass;
+def IIC_LEAVE : InstrItinClass;
+def IIC_POP_MEM : InstrItinClass;
+def IIC_POP_REG16 : InstrItinClass;
+def IIC_POP_REG : InstrItinClass;
+def IIC_POP_F : InstrItinClass;
+def IIC_POP_FD : InstrItinClass;
+def IIC_POP_A : InstrItinClass;
+def IIC_PUSH_IMM : InstrItinClass;
+def IIC_PUSH_MEM : InstrItinClass;
+def IIC_PUSH_REG : InstrItinClass;
+def IIC_PUSH_F : InstrItinClass;
+def IIC_PUSH_A : InstrItinClass;
+def IIC_BSWAP : InstrItinClass;
+def IIC_BIT_SCAN_MEM : InstrItinClass;
+def IIC_BIT_SCAN_REG : InstrItinClass;
+def IIC_MOVS : InstrItinClass;
+def IIC_STOS : InstrItinClass;
+def IIC_SCAS : InstrItinClass;
+def IIC_CMPS : InstrItinClass;
+def IIC_MOV : InstrItinClass;
+def IIC_MOV_MEM : InstrItinClass;
+def IIC_AHF : InstrItinClass;
+def IIC_BT_MI : InstrItinClass;
+def IIC_BT_MR : InstrItinClass;
+def IIC_BT_RI : InstrItinClass;
+def IIC_BT_RR : InstrItinClass;
+def IIC_BTX_MI : InstrItinClass;
+def IIC_BTX_MR : InstrItinClass;
+def IIC_BTX_RI : InstrItinClass;
+def IIC_BTX_RR : InstrItinClass;
+def IIC_XCHG_REG : InstrItinClass;
+def IIC_XCHG_MEM : InstrItinClass;
+def IIC_XADD_REG : InstrItinClass;
+def IIC_XADD_MEM : InstrItinClass;
+def IIC_CMPXCHG_MEM : InstrItinClass;
+def IIC_CMPXCHG_REG : InstrItinClass;
+def IIC_CMPXCHG_MEM8 : InstrItinClass;
+def IIC_CMPXCHG_REG8 : InstrItinClass;
+def IIC_CMPXCHG_8B : InstrItinClass;
+def IIC_CMPXCHG_16B : InstrItinClass;
+def IIC_LODS : InstrItinClass;
+def IIC_OUTS : InstrItinClass;
+def IIC_CLC : InstrItinClass;
+def IIC_CLD : InstrItinClass;
+def IIC_CLI : InstrItinClass;
+def IIC_CMC : InstrItinClass;
+def IIC_CLTS : InstrItinClass;
+def IIC_STC : InstrItinClass;
+def IIC_STI : InstrItinClass;
+def IIC_STD : InstrItinClass;
+def IIC_XLAT : InstrItinClass;
+def IIC_AAA : InstrItinClass;
+def IIC_AAD : InstrItinClass;
+def IIC_AAM : InstrItinClass;
+def IIC_AAS : InstrItinClass;
+def IIC_DAA : InstrItinClass;
+def IIC_DAS : InstrItinClass;
+def IIC_BOUND : InstrItinClass;
+def IIC_ARPL_REG : InstrItinClass;
+def IIC_ARPL_MEM : InstrItinClass;
+def IIC_MOVBE : InstrItinClass;
+def IIC_AES : InstrItinClass;
+def IIC_BLEND_MEM : InstrItinClass;
+def IIC_BLEND_NOMEM : InstrItinClass;
+def IIC_CBW : InstrItinClass;
+def IIC_CRC32_REG : InstrItinClass;
+def IIC_CRC32_MEM : InstrItinClass;
+def IIC_SSE_DPPD_RR : InstrItinClass;
+def IIC_SSE_DPPD_RM : InstrItinClass;
+def IIC_SSE_DPPS_RR : InstrItinClass;
+def IIC_SSE_DPPS_RM : InstrItinClass;
+def IIC_MMX_EMMS : InstrItinClass;
+def IIC_SSE_EXTRACTPS_RR : InstrItinClass;
+def IIC_SSE_EXTRACTPS_RM : InstrItinClass;
+def IIC_SSE_INSERTPS_RR : InstrItinClass;
+def IIC_SSE_INSERTPS_RM : InstrItinClass;
+def IIC_SSE_MPSADBW_RR : InstrItinClass;
+def IIC_SSE_MPSADBW_RM : InstrItinClass;
+def IIC_SSE_PMULLD_RR : InstrItinClass;
+def IIC_SSE_PMULLD_RM : InstrItinClass;
+def IIC_SSE_ROUNDPS_REG : InstrItinClass;
+def IIC_SSE_ROUNDPS_MEM : InstrItinClass;
+def IIC_SSE_ROUNDPD_REG : InstrItinClass;
+def IIC_SSE_ROUNDPD_MEM : InstrItinClass;
+def IIC_SSE_POPCNT_RR : InstrItinClass;
+def IIC_SSE_POPCNT_RM : InstrItinClass;
+def IIC_SSE_PCLMULQDQ_RR : InstrItinClass;
+def IIC_SSE_PCLMULQDQ_RM : InstrItinClass;
+
+def IIC_NOP : InstrItinClass;
+
+//===----------------------------------------------------------------------===//
+// Processor instruction itineraries.
+
+// IssueWidth is analogous to the number of decode units. Core and its
+// descendents, including Nehalem and SandyBridge have 4 decoders.
+// Resources beyond the decoder operate on micro-ops and are bufferred
+// so adjacent micro-ops don't directly compete.
+//
+// MicroOpBufferSize > 1 indicates that RAW dependencies can be
+// decoded in the same cycle. The value 32 is a reasonably arbitrary
+// number of in-flight instructions.
+//
+// HighLatency=10 is optimistic. X86InstrInfo::isHighLatencyDef
+// indicates high latency opcodes. Alternatively, InstrItinData
+// entries may be included here to define specific operand
+// latencies. Since these latencies are not used for pipeline hazards,
+// they do not need to be exact.
+//
+// The GenericX86Model contains no instruction itineraries
+// and disables PostRAScheduler.
+class GenericX86Model : SchedMachineModel {
+ let IssueWidth = 4;
+ let MicroOpBufferSize = 32;
+ let LoadLatency = 4;
+ let HighLatency = 10;
+ let PostRAScheduler = 0;
+ let CompleteModel = 0;
+}
+
+def GenericModel : GenericX86Model;
+
+// Define a model with the PostRAScheduler enabled.
+def GenericPostRAModel : GenericX86Model {
+ let PostRAScheduler = 1;
+}
+
+include "X86ScheduleAtom.td"
+include "X86SchedSandyBridge.td"
+include "X86SchedHaswell.td"
+include "X86ScheduleSLM.td"
+include "X86ScheduleBtVer2.td"
+
diff --git a/llvm/lib/Target/X86/X86Subtarget.cpp b/llvm/lib/Target/X86/X86Subtarget.cpp index 82ff436f7eb..9ab751e2b00 100644 --- a/llvm/lib/Target/X86/X86Subtarget.cpp +++ b/llvm/lib/Target/X86/X86Subtarget.cpp @@ -265,6 +265,7 @@ void X86Subtarget::initializeEnvironment() { HasFMA4 = false; HasXOP = false; HasTBM = false; + HasLWP = false; HasMOVBE = false; HasRDRAND = false; HasF16C = false; diff --git a/llvm/lib/Target/X86/X86Subtarget.h b/llvm/lib/Target/X86/X86Subtarget.h index 8568cf04e7d..de1514243ae 100644 --- a/llvm/lib/Target/X86/X86Subtarget.h +++ b/llvm/lib/Target/X86/X86Subtarget.h @@ -124,6 +124,9 @@ protected: /// Target has TBM instructions. bool HasTBM; + /// Target has LWP instructions + bool HasLWP; + /// True if the processor has the MOVBE instruction. bool HasMOVBE; @@ -447,6 +450,7 @@ public: bool hasAnyFMA() const { return hasFMA() || hasFMA4(); } bool hasXOP() const { return HasXOP; } bool hasTBM() const { return HasTBM; } + bool hasLWP() const { return HasLWP; } bool hasMOVBE() const { return HasMOVBE; } bool hasRDRAND() const { return HasRDRAND; } bool hasF16C() const { return HasF16C; } diff --git a/llvm/test/CodeGen/X86/lwp-intrinsics-x86_64.ll b/llvm/test/CodeGen/X86/lwp-intrinsics-x86_64.ll new file mode 100644 index 00000000000..9ee95267fc3 --- /dev/null +++ b/llvm/test/CodeGen/X86/lwp-intrinsics-x86_64.ll @@ -0,0 +1,49 @@ +; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py +; RUN: llc < %s -mtriple=x86_64-unknown -mattr=+lwp | FileCheck %s --check-prefix=X64 +; RUN: llc < %s -mtriple=x86_64-unknown -mcpu=bdver1 | FileCheck %s --check-prefix=X64 +; RUN: llc < %s -mtriple=x86_64-unknown -mcpu=bdver2 | FileCheck %s --check-prefix=X64 +; RUN: llc < %s -mtriple=x86_64-unknown -mcpu=bdver3 | FileCheck %s --check-prefix=X64 +; RUN: llc < %s -mtriple=x86_64-unknown -mcpu=bdver4 | FileCheck %s --check-prefix=X64 + +define i8 @test_lwpins64_rri(i64 %a0, i32 %a1) nounwind { +; X64-LABEL: test_lwpins64_rri: +; X64: # BB#0: +; X64-NEXT: lwpins $-1985229329, %esi, %rdi # imm = 0x89ABCDEF +; X64-NEXT: setb %al +; X64-NEXT: retq + %1 = tail call i8 @llvm.x86.lwpins64(i64 %a0, i32 %a1, i32 2309737967) + ret i8 %1 +} + +define i8 @test_lwpins64_rmi(i64 %a0, i32 *%p1) nounwind { +; X64-LABEL: test_lwpins64_rmi: +; X64: # BB#0: +; X64-NEXT: lwpins $1985229328, (%rsi), %rdi # imm = 0x76543210 +; X64-NEXT: setb %al +; X64-NEXT: retq + %a1 = load i32, i32 *%p1 + %1 = tail call i8 @llvm.x86.lwpins64(i64 %a0, i32 %a1, i32 1985229328) + ret i8 %1 +} + +define void @test_lwpval64_rri(i64 %a0, i32 %a1) nounwind { +; X64-LABEL: test_lwpval64_rri: +; X64: # BB#0: +; X64-NEXT: lwpval $-19088744, %esi, %rdi # imm = 0xFEDCBA98 +; X64-NEXT: retq + tail call void @llvm.x86.lwpval64(i64 %a0, i32 %a1, i32 4275878552) + ret void +} + +define void @test_lwpval64_rmi(i64 %a0, i32 *%p1) nounwind { +; X64-LABEL: test_lwpval64_rmi: +; X64: # BB#0: +; X64-NEXT: lwpval $305419896, (%rsi), %rdi # imm = 0x12345678 +; X64-NEXT: retq + %a1 = load i32, i32 *%p1 + tail call void @llvm.x86.lwpval64(i64 %a0, i32 %a1, i32 305419896) + ret void +} + +declare i8 @llvm.x86.lwpins64(i64, i32, i32) nounwind +declare void @llvm.x86.lwpval64(i64, i32, i32) nounwind diff --git a/llvm/test/CodeGen/X86/lwp-intrinsics.ll b/llvm/test/CodeGen/X86/lwp-intrinsics.ll new file mode 100644 index 00000000000..c949bc80608 --- /dev/null +++ b/llvm/test/CodeGen/X86/lwp-intrinsics.ll @@ -0,0 +1,121 @@ +; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py +; RUN: llc < %s -mtriple=i686-unknown -mattr=+lwp | FileCheck %s --check-prefix=X86 +; RUN: llc < %s -mtriple=i686-unknown -mcpu=bdver1 | FileCheck %s --check-prefix=X86 +; RUN: llc < %s -mtriple=i686-unknown -mcpu=bdver2 | FileCheck %s --check-prefix=X86 +; RUN: llc < %s -mtriple=i686-unknown -mcpu=bdver3 | FileCheck %s --check-prefix=X86 +; RUN: llc < %s -mtriple=i686-unknown -mcpu=bdver4 | FileCheck %s --check-prefix=X86 +; RUN: llc < %s -mtriple=x86_64-unknown -mattr=+lwp | FileCheck %s --check-prefix=X64 +; RUN: llc < %s -mtriple=x86_64-unknown -mcpu=bdver1 | FileCheck %s --check-prefix=X64 +; RUN: llc < %s -mtriple=x86_64-unknown -mcpu=bdver2 | FileCheck %s --check-prefix=X64 +; RUN: llc < %s -mtriple=x86_64-unknown -mcpu=bdver3 | FileCheck %s --check-prefix=X64 +; RUN: llc < %s -mtriple=x86_64-unknown -mcpu=bdver4 | FileCheck %s --check-prefix=X64 + +define void @test_llwpcb(i8 *%a0) nounwind { +; X86-LABEL: test_llwpcb: +; X86: # BB#0: +; X86-NEXT: movl {{[0-9]+}}(%esp), %eax +; X86-NEXT: llwpcb %eax +; X86-NEXT: retl +; +; X64-LABEL: test_llwpcb: +; X64: # BB#0: +; X64-NEXT: llwpcb %rdi +; X64-NEXT: retq + tail call void @llvm.x86.llwpcb(i8 *%a0) + ret void +} + +define i8* @test_slwpcb(i8 *%a0) nounwind { +; X86-LABEL: test_slwpcb: +; X86: # BB#0: +; X86-NEXT: slwpcb %eax +; X86-NEXT: retl +; +; X64-LABEL: test_slwpcb: +; X64: # BB#0: +; X64-NEXT: slwpcb %rax +; X64-NEXT: retq + %1 = tail call i8* @llvm.x86.slwpcb() + ret i8 *%1 +} + +define i8 @test_lwpins32_rri(i32 %a0, i32 %a1) nounwind { +; X86-LABEL: test_lwpins32_rri: +; X86: # BB#0: +; X86-NEXT: movl {{[0-9]+}}(%esp), %eax +; X86-NEXT: movl {{[0-9]+}}(%esp), %ecx +; X86-NEXT: addl %ecx, %ecx +; X86-NEXT: lwpins $-1985229329, %ecx, %eax # imm = 0x89ABCDEF +; X86-NEXT: setb %al +; X86-NEXT: retl +; +; X64-LABEL: test_lwpins32_rri: +; X64: # BB#0: +; X64-NEXT: addl %esi, %esi +; X64-NEXT: lwpins $-1985229329, %esi, %edi # imm = 0x89ABCDEF +; X64-NEXT: setb %al +; X64-NEXT: retq + %1 = add i32 %a1, %a1 + %2 = tail call i8 @llvm.x86.lwpins32(i32 %a0, i32 %1, i32 2309737967) + ret i8 %2 +} + +define i8 @test_lwpins32_rmi(i32 %a0, i32 *%p1) nounwind { +; X86-LABEL: test_lwpins32_rmi: +; X86: # BB#0: +; X86-NEXT: movl {{[0-9]+}}(%esp), %eax +; X86-NEXT: movl {{[0-9]+}}(%esp), %ecx +; X86-NEXT: lwpins $1985229328, (%eax), %ecx # imm = 0x76543210 +; X86-NEXT: setb %al +; X86-NEXT: retl +; +; X64-LABEL: test_lwpins32_rmi: +; X64: # BB#0: +; X64-NEXT: lwpins $1985229328, (%rsi), %edi # imm = 0x76543210 +; X64-NEXT: setb %al +; X64-NEXT: retq + %a1 = load i32, i32 *%p1 + %1 = tail call i8 @llvm.x86.lwpins32(i32 %a0, i32 %a1, i32 1985229328) + ret i8 %1 +} + +define void @test_lwpval32_rri(i32 %a0, i32 %a1) nounwind { +; X86-LABEL: test_lwpval32_rri: +; X86: # BB#0: +; X86-NEXT: movl {{[0-9]+}}(%esp), %eax +; X86-NEXT: movl {{[0-9]+}}(%esp), %ecx +; X86-NEXT: addl %ecx, %ecx +; X86-NEXT: lwpval $-19088744, %ecx, %eax # imm = 0xFEDCBA98 +; X86-NEXT: retl +; +; X64-LABEL: test_lwpval32_rri: +; X64: # BB#0: +; X64-NEXT: addl %esi, %esi +; X64-NEXT: lwpval $-19088744, %esi, %edi # imm = 0xFEDCBA98 +; X64-NEXT: retq + %1 = add i32 %a1, %a1 + tail call void @llvm.x86.lwpval32(i32 %a0, i32 %1, i32 4275878552) + ret void +} + +define void @test_lwpval32_rmi(i32 %a0, i32 *%p1) nounwind { +; X86-LABEL: test_lwpval32_rmi: +; X86: # BB#0: +; X86-NEXT: movl {{[0-9]+}}(%esp), %eax +; X86-NEXT: movl {{[0-9]+}}(%esp), %ecx +; X86-NEXT: lwpval $305419896, (%eax), %ecx # imm = 0x12345678 +; X86-NEXT: retl +; +; X64-LABEL: test_lwpval32_rmi: +; X64: # BB#0: +; X64-NEXT: lwpval $305419896, (%rsi), %edi # imm = 0x12345678 +; X64-NEXT: retq + %a1 = load i32, i32 *%p1 + tail call void @llvm.x86.lwpval32(i32 %a0, i32 %a1, i32 305419896) + ret void +} + +declare void @llvm.x86.llwpcb(i8*) nounwind +declare i8* @llvm.x86.slwpcb() nounwind +declare i8 @llvm.x86.lwpins32(i32, i32, i32) nounwind +declare void @llvm.x86.lwpval32(i32, i32, i32) nounwind diff --git a/llvm/test/MC/Disassembler/X86/x86-32.txt b/llvm/test/MC/Disassembler/X86/x86-32.txt index 9dd49e51d91..1b865d37bf0 100644 --- a/llvm/test/MC/Disassembler/X86/x86-32.txt +++ b/llvm/test/MC/Disassembler/X86/x86-32.txt @@ -773,3 +773,21 @@ #CHECK: getsec 0x0f 0x37 + +#CHECK: llwpcb %ecx +0x8f 0xe9 0x78 0x12 0xc1 + +#CHECK: slwpcb %ecx +0x8f 0xe9 0x78 0x12 0xc9 + +# CHECK: lwpins $305419896, %ebx, %eax +0x8f 0xea 0x78 0x12 0xc3 0x78 0x56 0x34 0x12 + +# CHECK: lwpins $591751049, (%esp), %edx +0x8f 0xea 0x68 0x12 0x04 0x24 0x89 0x67 0x45 0x23 + +# CHECK: lwpval $1737075661, %ebx, %eax +0x8f 0xea 0x78 0x12 0xcb 0xcd 0xab 0x89 0x67 + +# CHECK: lwpval $2309737967, (%esp), %edx +0x8f 0xea 0x68 0x12 0x0c 0x24 0xef 0xcd 0xab 0x89 diff --git a/llvm/test/MC/Disassembler/X86/x86-64.txt b/llvm/test/MC/Disassembler/X86/x86-64.txt index 1511347306a..659ad9051fd 100644 --- a/llvm/test/MC/Disassembler/X86/x86-64.txt +++ b/llvm/test/MC/Disassembler/X86/x86-64.txt @@ -456,3 +456,27 @@ # CHECK: callq -32769 0xe8 0xff 0x7f 0xff 0xff + +# CHECK: llwpcb %rax +0x8f 0xe9 0xf8 0x12 0xc0 + +# CHECK: slwpcb %rax +0x8f 0xe9 0xf8 0x12 0xc8 + +# CHECK: lwpins $305419896, %ebx, %rax +0x8f 0xea 0xf8 0x12 0xc3 0x78 0x56 0x34 0x12 + +# CHECK: lwpins $591751049, (%rsp), %rdx +0x8f 0xea 0xe8 0x12 0x04 0x24 0x89 0x67 0x45 0x23 + +# CHECK: lwpins $591751049, (%esp), %edx +0x67 0x8f 0xea 0x68 0x12 0x04 0x24 0x89 0x67 0x45 0x23 + +# CHECK: lwpval $1737075661, %ebx, %rax +0x8f 0xea 0xf8 0x12 0xcb 0xcd 0xab 0x89 0x67 + +# CHECK: lwpval $2309737967, (%rsp), %rdx +0x8f 0xea 0xe8 0x12 0x0c 0x24 0xef 0xcd 0xab 0x89 + +# CHECK: lwpval $2309737967, (%esp), %edx +0x67 0x8f 0xea 0x68 0x12 0x0c 0x24 0xef 0xcd 0xab 0x89 diff --git a/llvm/test/MC/X86/lwp-x86_64.s b/llvm/test/MC/X86/lwp-x86_64.s new file mode 100644 index 00000000000..92f15967461 --- /dev/null +++ b/llvm/test/MC/X86/lwp-x86_64.s @@ -0,0 +1,25 @@ +# RUN: llvm-mc -triple x86_64-unknown-unknown --show-encoding %s | FileCheck %s --check-prefix=CHECK + +llwpcb %rcx +# CHECK: llwpcb %rcx +# CHECK: encoding: [0x8f,0xe9,0xf8,0x12,0xc1] + +slwpcb %rax +# CHECK: slwpcb %rax +# CHECK: encoding: [0x8f,0xe9,0xf8,0x12,0xc8] + +lwpins $305419896, %ebx, %rax +# CHECK: lwpins $305419896, %ebx, %rax +# CHECK: encoding: [0x8f,0xea,0xf8,0x12,0xc3,0x78,0x56,0x34,0x12] + +lwpins $591751049, (%rsp), %rdx +# CHECK: lwpins $591751049, (%rsp), %rdx +# CHECK: encoding: [0x8f,0xea,0xe8,0x12,0x04,0x24,0x89,0x67,0x45,0x23] + +lwpval $1737075661, %ebx, %rax +# CHECK: lwpval $1737075661, %ebx, %rax +# CHECK: encoding: [0x8f,0xea,0xf8,0x12,0xcb,0xcd,0xab,0x89,0x67] + +lwpval $2309737967, (%rsp), %rdx +# CHECK: lwpval $2309737967, (%rsp), %rdx +# CHECK: encoding: [0x8f,0xea,0xe8,0x12,0x0c,0x24,0xef,0xcd,0xab,0x89] diff --git a/llvm/test/MC/X86/lwp.s b/llvm/test/MC/X86/lwp.s new file mode 100644 index 00000000000..43d6f2cd7e3 --- /dev/null +++ b/llvm/test/MC/X86/lwp.s @@ -0,0 +1,32 @@ +# RUN: llvm-mc -triple i686-unknown-unknown --show-encoding %s | FileCheck %s --check-prefix=CHECK --check-prefix=CHECK-X86 +# RUN: llvm-mc -triple x86_64-unknown-unknown --show-encoding %s | FileCheck %s --check-prefix=CHECK --check-prefix=CHECK-X64 + +llwpcb %ecx +# CHECK: llwpcb %ecx +# CHECK-X86: encoding: [0x8f,0xe9,0x78,0x12,0xc1] +# CHECK-X64: encoding: [0x8f,0xe9,0x78,0x12,0xc1] + +slwpcb %eax +# CHECK: slwpcb %eax +# CHECK-X86: encoding: [0x8f,0xe9,0x78,0x12,0xc8] +# CHECK-X64: encoding: [0x8f,0xe9,0x78,0x12,0xc8] + +lwpins $305419896, %ebx, %eax +# CHECK: lwpins $305419896, %ebx, %eax +# CHECK-X86: encoding: [0x8f,0xea,0x78,0x12,0xc3,0x78,0x56,0x34,0x12] +# CHECK-X64: encoding: [0x8f,0xea,0x78,0x12,0xc3,0x78,0x56,0x34,0x12] + +lwpins $591751049, (%esp), %edx +# CHECK: lwpins $591751049, (%esp), %edx +# CHECK-X86: encoding: [0x8f,0xea,0x68,0x12,0x04,0x24,0x89,0x67,0x45,0x23] +# CHECK-X64: encoding: [0x67,0x8f,0xea,0x68,0x12,0x04,0x24,0x89,0x67,0x45,0x23] + +lwpval $1737075661, %ebx, %eax +# CHECK: lwpval $1737075661, %ebx, %eax +# CHECK-X86: encoding: [0x8f,0xea,0x78,0x12,0xcb,0xcd,0xab,0x89,0x67] +# CHECK-X64: encoding: [0x8f,0xea,0x78,0x12,0xcb,0xcd,0xab,0x89,0x67] + +lwpval $2309737967, (%esp), %edx +# CHECK: lwpval $2309737967, (%esp), %edx +# CHECK-X86: encoding: [0x8f,0xea,0x68,0x12,0x0c,0x24,0xef,0xcd,0xab,0x89] +# CHECK-X64: encoding: [0x67,0x8f,0xea,0x68,0x12,0x0c,0x24,0xef,0xcd,0xab,0x89] |

