diff options
Diffstat (limited to 'llvm')
| -rw-r--r-- | llvm/lib/CodeGen/CMakeLists.txt | 1 | ||||
| -rw-r--r-- | llvm/lib/CodeGen/VirtRegRewriter.cpp | 2633 | ||||
| -rw-r--r-- | llvm/lib/CodeGen/VirtRegRewriter.h | 32 | 
3 files changed, 0 insertions, 2666 deletions
diff --git a/llvm/lib/CodeGen/CMakeLists.txt b/llvm/lib/CodeGen/CMakeLists.txt index 1c39cd22f25..c8d4dcf8398 100644 --- a/llvm/lib/CodeGen/CMakeLists.txt +++ b/llvm/lib/CodeGen/CMakeLists.txt @@ -97,7 +97,6 @@ add_llvm_library(LLVMCodeGen    TwoAddressInstructionPass.cpp    UnreachableBlockElim.cpp    VirtRegMap.cpp -  VirtRegRewriter.cpp    )  add_llvm_library_dependencies(LLVMCodeGen diff --git a/llvm/lib/CodeGen/VirtRegRewriter.cpp b/llvm/lib/CodeGen/VirtRegRewriter.cpp deleted file mode 100644 index a5ec797b27d..00000000000 --- a/llvm/lib/CodeGen/VirtRegRewriter.cpp +++ /dev/null @@ -1,2633 +0,0 @@ -//===-- llvm/CodeGen/Rewriter.cpp -  Rewriter -----------------------------===// -// -//                     The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "virtregrewriter" -#include "VirtRegRewriter.h" -#include "VirtRegMap.h" -#include "llvm/Function.h" -#include "llvm/CodeGen/LiveIntervalAnalysis.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Target/TargetInstrInfo.h" -#include "llvm/Target/TargetLowering.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/Statistic.h" -using namespace llvm; - -STATISTIC(NumDSE     , "Number of dead stores elided"); -STATISTIC(NumDSS     , "Number of dead spill slots removed"); -STATISTIC(NumCommutes, "Number of instructions commuted"); -STATISTIC(NumDRM     , "Number of re-materializable defs elided"); -STATISTIC(NumStores  , "Number of stores added"); -STATISTIC(NumPSpills , "Number of physical register spills"); -STATISTIC(NumOmitted , "Number of reloads omitted"); -STATISTIC(NumAvoided , "Number of reloads deemed unnecessary"); -STATISTIC(NumCopified, "Number of available reloads turned into copies"); -STATISTIC(NumReMats  , "Number of re-materialization"); -STATISTIC(NumLoads   , "Number of loads added"); -STATISTIC(NumReused  , "Number of values reused"); -STATISTIC(NumDCE     , "Number of copies elided"); -STATISTIC(NumSUnfold , "Number of stores unfolded"); -STATISTIC(NumModRefUnfold, "Number of modref unfolded"); - -namespace { -  enum RewriterName { local, trivial }; -} - -static cl::opt<RewriterName> -RewriterOpt("rewriter", -            cl::desc("Rewriter to use (default=local)"), -            cl::Prefix, -            cl::values(clEnumVal(local,   "local rewriter"), -                       clEnumVal(trivial, "trivial rewriter"), -                       clEnumValEnd), -            cl::init(local)); - -static cl::opt<bool> -ScheduleSpills("schedule-spills", -               cl::desc("Schedule spill code"), -               cl::init(false)); - -VirtRegRewriter::~VirtRegRewriter() {} - -/// substitutePhysReg - Replace virtual register in MachineOperand with a -/// physical register. Do the right thing with the sub-register index. -/// Note that operands may be added, so the MO reference is no longer valid. -static void substitutePhysReg(MachineOperand &MO, unsigned Reg, -                              const TargetRegisterInfo &TRI) { -  if (MO.getSubReg()) { -    MO.substPhysReg(Reg, TRI); - -    // Any kill flags apply to the full virtual register, so they also apply to -    // the full physical register. -    // We assume that partial defs have already been decorated with a super-reg -    // <imp-def> operand by LiveIntervals. -    MachineInstr &MI = *MO.getParent(); -    if (MO.isUse() && !MO.isUndef() && -        (MO.isKill() || MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0)))) -      MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true); -  } else { -    MO.setReg(Reg); -  } -} - -namespace { - -/// This class is intended for use with the new spilling framework only. It -/// rewrites vreg def/uses to use the assigned preg, but does not insert any -/// spill code. -struct TrivialRewriter : public VirtRegRewriter { - -  bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, -                            LiveIntervals* LIs) { -    DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n"); -    DEBUG(dbgs() << "********** Function: " -          << MF.getFunction()->getName() << '\n'); -    DEBUG(dbgs() << "**** Machine Instrs" -          << "(NOTE! Does not include spills and reloads!) ****\n"); -    DEBUG(MF.dump()); - -    MachineRegisterInfo *mri = &MF.getRegInfo(); -    const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo(); - -    bool changed = false; - -    for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end(); -         liItr != liEnd; ++liItr) { - -      const LiveInterval *li = liItr->second; -      unsigned reg = li->reg; - -      if (TargetRegisterInfo::isPhysicalRegister(reg)) { -        if (!li->empty()) -          mri->setPhysRegUsed(reg); -      } -      else { -        if (!VRM.hasPhys(reg)) -          continue; -        unsigned pReg = VRM.getPhys(reg); -        mri->setPhysRegUsed(pReg); -        // Copy the register use-list before traversing it. -        SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist; -        for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg), -               E = mri->reg_end(); I != E; ++I) -          reglist.push_back(std::make_pair(&*I, I.getOperandNo())); -        for (unsigned N=0; N != reglist.size(); ++N) -          substitutePhysReg(reglist[N].first->getOperand(reglist[N].second), -                            pReg, *tri); -        changed |= !reglist.empty(); -      } -    } - -    DEBUG(dbgs() << "**** Post Machine Instrs ****\n"); -    DEBUG(MF.dump()); - -    return changed; -  } - -}; - -} - -// ************************************************************************ // - -namespace { - -/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB -/// from top down, keep track of which spill slots or remat are available in -/// each register. -/// -/// Note that not all physregs are created equal here.  In particular, some -/// physregs are reloads that we are allowed to clobber or ignore at any time. -/// Other physregs are values that the register allocated program is using -/// that we cannot CHANGE, but we can read if we like.  We keep track of this -/// on a per-stack-slot / remat id basis as the low bit in the value of the -/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks -/// this bit and addAvailable sets it if. -class AvailableSpills { -  const TargetRegisterInfo *TRI; -  const TargetInstrInfo *TII; - -  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled -  // or remat'ed virtual register values that are still available, due to -  // being loaded or stored to, but not invalidated yet. -  std::map<int, unsigned> SpillSlotsOrReMatsAvailable; - -  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable, -  // indicating which stack slot values are currently held by a physreg.  This -  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a -  // physreg is modified. -  std::multimap<unsigned, int> PhysRegsAvailable; - -  void disallowClobberPhysRegOnly(unsigned PhysReg); - -  void ClobberPhysRegOnly(unsigned PhysReg); -public: -  AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii) -    : TRI(tri), TII(tii) { -  } - -  /// clear - Reset the state. -  void clear() { -    SpillSlotsOrReMatsAvailable.clear(); -    PhysRegsAvailable.clear(); -  } - -  const TargetRegisterInfo *getRegInfo() const { return TRI; } - -  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is -  /// available in a physical register, return that PhysReg, otherwise -  /// return 0. -  unsigned getSpillSlotOrReMatPhysReg(int Slot) const { -    std::map<int, unsigned>::const_iterator I = -      SpillSlotsOrReMatsAvailable.find(Slot); -    if (I != SpillSlotsOrReMatsAvailable.end()) { -      return I->second >> 1;  // Remove the CanClobber bit. -    } -    return 0; -  } - -  /// addAvailable - Mark that the specified stack slot / remat is available -  /// in the specified physreg.  If CanClobber is true, the physreg can be -  /// modified at any time without changing the semantics of the program. -  void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) { -    // If this stack slot is thought to be available in some other physreg, -    // remove its record. -    ModifyStackSlotOrReMat(SlotOrReMat); - -    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat)); -    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | -                                              (unsigned)CanClobber; - -    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) -      DEBUG(dbgs() << "Remembering RM#" -                   << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1); -    else -      DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat); -    DEBUG(dbgs() << " in physreg " << TRI->getName(Reg) -          << (CanClobber ? " canclobber" : "") << "\n"); -  } - -  /// canClobberPhysRegForSS - Return true if the spiller is allowed to change -  /// the value of the specified stackslot register if it desires. The -  /// specified stack slot must be available in a physreg for this query to -  /// make sense. -  bool canClobberPhysRegForSS(int SlotOrReMat) const { -    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) && -           "Value not available!"); -    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1; -  } - -  /// canClobberPhysReg - Return true if the spiller is allowed to clobber the -  /// physical register where values for some stack slot(s) might be -  /// available. -  bool canClobberPhysReg(unsigned PhysReg) const { -    std::multimap<unsigned, int>::const_iterator I = -      PhysRegsAvailable.lower_bound(PhysReg); -    while (I != PhysRegsAvailable.end() && I->first == PhysReg) { -      int SlotOrReMat = I->second; -      I++; -      if (!canClobberPhysRegForSS(SlotOrReMat)) -        return false; -    } -    return true; -  } - -  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified -  /// stackslot register. The register is still available but is no longer -  /// allowed to be modifed. -  void disallowClobberPhysReg(unsigned PhysReg); - -  /// ClobberPhysReg - This is called when the specified physreg changes -  /// value.  We use this to invalidate any info about stuff that lives in -  /// it and any of its aliases. -  void ClobberPhysReg(unsigned PhysReg); - -  /// ModifyStackSlotOrReMat - This method is called when the value in a stack -  /// slot changes.  This removes information about which register the -  /// previous value for this slot lives in (as the previous value is dead -  /// now). -  void ModifyStackSlotOrReMat(int SlotOrReMat); - -  /// ClobberSharingStackSlots - When a register mapped to a stack slot changes, -  /// other stack slots sharing the same register are no longer valid. -  void ClobberSharingStackSlots(int StackSlot); - -  /// AddAvailableRegsToLiveIn - Availability information is being kept coming -  /// into the specified MBB. Add available physical registers as potential -  /// live-in's. If they are reused in the MBB, they will be added to the -  /// live-in set to make register scavenger and post-allocation scheduler. -  void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills, -                                std::vector<MachineOperand*> &KillOps); -}; - -} - -// ************************************************************************ // - -// Given a location where a reload of a spilled register or a remat of -// a constant is to be inserted, attempt to find a safe location to -// insert the load at an earlier point in the basic-block, to hide -// latency of the load and to avoid address-generation interlock -// issues. -static MachineBasicBlock::iterator -ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc, -                 MachineBasicBlock::iterator const Begin, -                 unsigned PhysReg, -                 const TargetRegisterInfo *TRI, -                 bool DoReMat, -                 int SSorRMId, -                 const TargetInstrInfo *TII, -                 const MachineFunction &MF) -{ -  if (!ScheduleSpills) -    return InsertLoc; - -  // Spill backscheduling is of primary interest to addresses, so -  // don't do anything if the register isn't in the register class -  // used for pointers. - -  const TargetLowering *TL = MF.getTarget().getTargetLowering(); - -  if (!TL->isTypeLegal(TL->getPointerTy())) -    // Believe it or not, this is true on 16-bit targets like PIC16. -    return InsertLoc; - -  const TargetRegisterClass *ptrRegClass = -    TL->getRegClassFor(TL->getPointerTy()); -  if (!ptrRegClass->contains(PhysReg)) -    return InsertLoc; - -  // Scan upwards through the preceding instructions. If an instruction doesn't -  // reference the stack slot or the register we're loading, we can -  // backschedule the reload up past it. -  MachineBasicBlock::iterator NewInsertLoc = InsertLoc; -  while (NewInsertLoc != Begin) { -    MachineBasicBlock::iterator Prev = prior(NewInsertLoc); -    for (unsigned i = 0; i < Prev->getNumOperands(); ++i) { -      MachineOperand &Op = Prev->getOperand(i); -      if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId) -        goto stop; -    } -    if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 || -        Prev->findRegisterDefOperand(PhysReg)) -      goto stop; -    for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias) -      if (Prev->findRegisterUseOperandIdx(*Alias) != -1 || -          Prev->findRegisterDefOperand(*Alias)) -        goto stop; -    NewInsertLoc = Prev; -  } -stop:; - -  // If we made it to the beginning of the block, turn around and move back -  // down just past any existing reloads. They're likely to be reloads/remats -  // for instructions earlier than what our current reload/remat is for, so -  // they should be scheduled earlier. -  if (NewInsertLoc == Begin) { -    int FrameIdx; -    while (InsertLoc != NewInsertLoc && -           (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) || -            TII->isTriviallyReMaterializable(NewInsertLoc))) -      ++NewInsertLoc; -  } - -  return NewInsertLoc; -} - -namespace { - -// ReusedOp - For each reused operand, we keep track of a bit of information, -// in case we need to rollback upon processing a new operand.  See comments -// below. -struct ReusedOp { -  // The MachineInstr operand that reused an available value. -  unsigned Operand; - -  // StackSlotOrReMat - The spill slot or remat id of the value being reused. -  unsigned StackSlotOrReMat; - -  // PhysRegReused - The physical register the value was available in. -  unsigned PhysRegReused; - -  // AssignedPhysReg - The physreg that was assigned for use by the reload. -  unsigned AssignedPhysReg; - -  // VirtReg - The virtual register itself. -  unsigned VirtReg; - -  ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr, -           unsigned vreg) -    : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr), -      AssignedPhysReg(apr), VirtReg(vreg) {} -}; - -/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that -/// is reused instead of reloaded. -class ReuseInfo { -  MachineInstr &MI; -  std::vector<ReusedOp> Reuses; -  BitVector PhysRegsClobbered; -public: -  ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) { -    PhysRegsClobbered.resize(tri->getNumRegs()); -  } - -  bool hasReuses() const { -    return !Reuses.empty(); -  } - -  /// addReuse - If we choose to reuse a virtual register that is already -  /// available instead of reloading it, remember that we did so. -  void addReuse(unsigned OpNo, unsigned StackSlotOrReMat, -                unsigned PhysRegReused, unsigned AssignedPhysReg, -                unsigned VirtReg) { -    // If the reload is to the assigned register anyway, no undo will be -    // required. -    if (PhysRegReused == AssignedPhysReg) return; - -    // Otherwise, remember this. -    Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused, -                              AssignedPhysReg, VirtReg)); -  } - -  void markClobbered(unsigned PhysReg) { -    PhysRegsClobbered.set(PhysReg); -  } - -  bool isClobbered(unsigned PhysReg) const { -    return PhysRegsClobbered.test(PhysReg); -  } - -  /// GetRegForReload - We are about to emit a reload into PhysReg.  If there -  /// is some other operand that is using the specified register, either pick -  /// a new register to use, or evict the previous reload and use this reg. -  unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg, -                           MachineFunction &MF, MachineInstr *MI, -                           AvailableSpills &Spills, -                           std::vector<MachineInstr*> &MaybeDeadStores, -                           SmallSet<unsigned, 8> &Rejected, -                           BitVector &RegKills, -                           std::vector<MachineOperand*> &KillOps, -                           VirtRegMap &VRM); - -  /// GetRegForReload - Helper for the above GetRegForReload(). Add a -  /// 'Rejected' set to remember which registers have been considered and -  /// rejected for the reload. This avoids infinite looping in case like -  /// this: -  /// t1 := op t2, t3 -  /// t2 <- assigned r0 for use by the reload but ended up reuse r1 -  /// t3 <- assigned r1 for use by the reload but ended up reuse r0 -  /// t1 <- desires r1 -  ///       sees r1 is taken by t2, tries t2's reload register r0 -  ///       sees r0 is taken by t3, tries t3's reload register r1 -  ///       sees r1 is taken by t2, tries t2's reload register r0 ... -  unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI, -                           AvailableSpills &Spills, -                           std::vector<MachineInstr*> &MaybeDeadStores, -                           BitVector &RegKills, -                           std::vector<MachineOperand*> &KillOps, -                           VirtRegMap &VRM) { -    SmallSet<unsigned, 8> Rejected; -    MachineFunction &MF = *MI->getParent()->getParent(); -    const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg); -    return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores, -                           Rejected, RegKills, KillOps, VRM); -  } -}; - -} - -// ****************** // -// Utility Functions  // -// ****************** // - -/// findSinglePredSuccessor - Return via reference a vector of machine basic -/// blocks each of which is a successor of the specified BB and has no other -/// predecessor. -static void findSinglePredSuccessor(MachineBasicBlock *MBB, -                                   SmallVectorImpl<MachineBasicBlock *> &Succs){ -  for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), -         SE = MBB->succ_end(); SI != SE; ++SI) { -    MachineBasicBlock *SuccMBB = *SI; -    if (SuccMBB->pred_size() == 1) -      Succs.push_back(SuccMBB); -  } -} - -/// ResurrectConfirmedKill - Helper for ResurrectKill. This register is killed -/// but not re-defined and it's being reused. Remove the kill flag for the -/// register and unset the kill's marker and last kill operand. -static void ResurrectConfirmedKill(unsigned Reg, const TargetRegisterInfo* TRI, -                                   BitVector &RegKills, -                                   std::vector<MachineOperand*> &KillOps) { -  DEBUG(dbgs() << "Resurrect " << TRI->getName(Reg) << "\n"); - -  MachineOperand *KillOp = KillOps[Reg]; -  KillOp->setIsKill(false); -  // KillOps[Reg] might be a def of a super-register. -  unsigned KReg = KillOp->getReg(); -  if (!RegKills[KReg]) -    return; - -  assert(KillOps[KReg]->getParent() == KillOp->getParent() && -         "invalid superreg kill flags"); -  KillOps[KReg] = NULL; -  RegKills.reset(KReg); - -  // If it's a def of a super-register. Its other sub-regsters are no -  // longer killed as well. -  for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) { -    DEBUG(dbgs() << "  Resurrect subreg " << TRI->getName(*SR) << "\n"); - -    assert(KillOps[*SR]->getParent() == KillOp->getParent() && -           "invalid subreg kill flags"); -    KillOps[*SR] = NULL; -    RegKills.reset(*SR); -  } -} - -/// ResurrectKill - Invalidate kill info associated with a previous MI. An -/// optimization may have decided that it's safe to reuse a previously killed -/// register. If we fail to erase the invalid kill flags, then the register -/// scavenger may later clobber the register used by this MI. Note that this -/// must be done even if this MI is being deleted! Consider: -/// -/// USE $r1 (vreg1) <kill> -/// ... -/// $r1(vreg3) = COPY $r1 (vreg2) -/// -/// RegAlloc has smartly assigned all three vregs to the same physreg. Initially -/// vreg1's only use is a kill. The rewriter doesn't know it should be live -/// until it rewrites vreg2. At that points it sees that the copy is dead and -/// deletes it. However, deleting the copy implicitly forwards liveness of $r1 -/// (it's copy coalescing). We must resurrect $r1 by removing the kill flag at -/// vreg1 before deleting the copy. -static void ResurrectKill(MachineInstr &MI, unsigned Reg, -                          const TargetRegisterInfo* TRI, BitVector &RegKills, -                          std::vector<MachineOperand*> &KillOps) { -  if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) { -    ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps); -    return; -  } -  // No previous kill for this reg. Check for subreg kills as well. -  // d4 = -  // store d4, fi#0 -  // ... -  //    = s8<kill> -  // ... -  //    = d4  <avoiding reload> -  for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { -    unsigned SReg = *SR; -    if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI) -      ResurrectConfirmedKill(SReg, TRI, RegKills, KillOps); -  } -} - -/// InvalidateKills - MI is going to be deleted. If any of its operands are -/// marked kill, then invalidate the information. -static void InvalidateKills(MachineInstr &MI, -                            const TargetRegisterInfo* TRI, -                            BitVector &RegKills, -                            std::vector<MachineOperand*> &KillOps, -                            SmallVector<unsigned, 2> *KillRegs = NULL) { -  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { -    MachineOperand &MO = MI.getOperand(i); -    if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef()) -      continue; -    unsigned Reg = MO.getReg(); -    if (TargetRegisterInfo::isVirtualRegister(Reg)) -      continue; -    if (KillRegs) -      KillRegs->push_back(Reg); -    assert(Reg < KillOps.size()); -    if (KillOps[Reg] == &MO) { -      // This operand was the kill, now no longer. -      KillOps[Reg] = NULL; -      RegKills.reset(Reg); -      for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { -        if (RegKills[*SR]) { -          assert(KillOps[*SR] == &MO && "bad subreg kill flags"); -          KillOps[*SR] = NULL; -          RegKills.reset(*SR); -        } -      } -    } -    else { -      // This operand may have reused a previously killed reg. Keep it live in -      // case it continues to be used after erasing this instruction. -      ResurrectKill(MI, Reg, TRI, RegKills, KillOps); -    } -  } -} - -/// InvalidateRegDef - If the def operand of the specified def MI is now dead -/// (since its spill instruction is removed), mark it isDead. Also checks if -/// the def MI has other definition operands that are not dead. Returns it by -/// reference. -static bool InvalidateRegDef(MachineBasicBlock::iterator I, -                             MachineInstr &NewDef, unsigned Reg, -                             bool &HasLiveDef, -                             const TargetRegisterInfo *TRI) { -  // Due to remat, it's possible this reg isn't being reused. That is, -  // the def of this reg (by prev MI) is now dead. -  MachineInstr *DefMI = I; -  MachineOperand *DefOp = NULL; -  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) { -    MachineOperand &MO = DefMI->getOperand(i); -    if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef()) -      continue; -    if (MO.getReg() == Reg) -      DefOp = &MO; -    else if (!MO.isDead()) -      HasLiveDef = true; -  } -  if (!DefOp) -    return false; - -  bool FoundUse = false, Done = false; -  MachineBasicBlock::iterator E = &NewDef; -  ++I; ++E; -  for (; !Done && I != E; ++I) { -    MachineInstr *NMI = I; -    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) { -      MachineOperand &MO = NMI->getOperand(j); -      if (!MO.isReg() || MO.getReg() == 0 || -          (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg()))) -        continue; -      if (MO.isUse()) -        FoundUse = true; -      Done = true; // Stop after scanning all the operands of this MI. -    } -  } -  if (!FoundUse) { -    // Def is dead! -    DefOp->setIsDead(); -    return true; -  } -  return false; -} - -/// UpdateKills - Track and update kill info. If a MI reads a register that is -/// marked kill, then it must be due to register reuse. Transfer the kill info -/// over. -static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI, -                        BitVector &RegKills, -                        std::vector<MachineOperand*> &KillOps) { -  // These do not affect kill info at all. -  if (MI.isDebugValue()) -    return; -  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { -    MachineOperand &MO = MI.getOperand(i); -    if (!MO.isReg() || !MO.isUse() || MO.isUndef()) -      continue; -    unsigned Reg = MO.getReg(); -    if (Reg == 0) -      continue; - -    // This operand may have reused a previously killed reg. Keep it live. -    ResurrectKill(MI, Reg, TRI, RegKills, KillOps); - -    if (MO.isKill()) { -      RegKills.set(Reg); -      KillOps[Reg] = &MO; -      for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { -        RegKills.set(*SR); -        KillOps[*SR] = &MO; -      } -    } -  } - -  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { -    const MachineOperand &MO = MI.getOperand(i); -    if (!MO.isReg() || !MO.getReg() || !MO.isDef()) -      continue; -    unsigned Reg = MO.getReg(); -    RegKills.reset(Reg); -    KillOps[Reg] = NULL; -    // It also defines (or partially define) aliases. -    for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { -      RegKills.reset(*SR); -      KillOps[*SR] = NULL; -    } -    for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) { -      RegKills.reset(*SR); -      KillOps[*SR] = NULL; -    } -  } -} - -/// ReMaterialize - Re-materialize definition for Reg targeting DestReg. -/// -static void ReMaterialize(MachineBasicBlock &MBB, -                          MachineBasicBlock::iterator &MII, -                          unsigned DestReg, unsigned Reg, -                          const TargetInstrInfo *TII, -                          const TargetRegisterInfo *TRI, -                          VirtRegMap &VRM) { -  MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg); -#ifndef NDEBUG -  const MCInstrDesc &MCID = ReMatDefMI->getDesc(); -  assert(MCID.getNumDefs() == 1 && -         "Don't know how to remat instructions that define > 1 values!"); -#endif -  TII->reMaterialize(MBB, MII, DestReg, 0, ReMatDefMI, *TRI); -  MachineInstr *NewMI = prior(MII); -  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { -    MachineOperand &MO = NewMI->getOperand(i); -    if (!MO.isReg() || MO.getReg() == 0) -      continue; -    unsigned VirtReg = MO.getReg(); -    if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) -      continue; -    assert(MO.isUse()); -    unsigned Phys = VRM.getPhys(VirtReg); -    assert(Phys && "Virtual register is not assigned a register?"); -    substitutePhysReg(MO, Phys, *TRI); -  } -  ++NumReMats; -} - -/// findSuperReg - Find the SubReg's super-register of given register class -/// where its SubIdx sub-register is SubReg. -static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg, -                             unsigned SubIdx, const TargetRegisterInfo *TRI) { -  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); -       I != E; ++I) { -    unsigned Reg = *I; -    if (TRI->getSubReg(Reg, SubIdx) == SubReg) -      return Reg; -  } -  return 0; -} - -// ******************************** // -// Available Spills Implementation  // -// ******************************** // - -/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified -/// stackslot register. The register is still available but is no longer -/// allowed to be modifed. -void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) { -  std::multimap<unsigned, int>::iterator I = -    PhysRegsAvailable.lower_bound(PhysReg); -  while (I != PhysRegsAvailable.end() && I->first == PhysReg) { -    int SlotOrReMat = I->second; -    I++; -    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && -           "Bidirectional map mismatch!"); -    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1; -    DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg) -         << " copied, it is available for use but can no longer be modified\n"); -  } -} - -/// disallowClobberPhysReg - Unset the CanClobber bit of the specified -/// stackslot register and its aliases. The register and its aliases may -/// still available but is no longer allowed to be modifed. -void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) { -  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) -    disallowClobberPhysRegOnly(*AS); -  disallowClobberPhysRegOnly(PhysReg); -} - -/// ClobberPhysRegOnly - This is called when the specified physreg changes -/// value.  We use this to invalidate any info about stuff we thing lives in it. -void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) { -  std::multimap<unsigned, int>::iterator I = -    PhysRegsAvailable.lower_bound(PhysReg); -  while (I != PhysRegsAvailable.end() && I->first == PhysReg) { -    int SlotOrReMat = I->second; -    PhysRegsAvailable.erase(I++); -    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && -           "Bidirectional map mismatch!"); -    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat); -    DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg) -          << " clobbered, invalidating "); -    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) -      DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n"); -    else -      DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n"); -  } -} - -/// ClobberPhysReg - This is called when the specified physreg changes -/// value.  We use this to invalidate any info about stuff we thing lives in -/// it and any of its aliases. -void AvailableSpills::ClobberPhysReg(unsigned PhysReg) { -  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) -    ClobberPhysRegOnly(*AS); -  ClobberPhysRegOnly(PhysReg); -} - -/// AddAvailableRegsToLiveIn - Availability information is being kept coming -/// into the specified MBB. Add available physical registers as potential -/// live-in's. If they are reused in the MBB, they will be added to the -/// live-in set to make register scavenger and post-allocation scheduler. -void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, -                                        BitVector &RegKills, -                                        std::vector<MachineOperand*> &KillOps) { -  std::set<unsigned> NotAvailable; -  for (std::multimap<unsigned, int>::iterator -         I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end(); -       I != E; ++I) { -    unsigned Reg = I->first; -    const TargetRegisterClass* RC = TRI->getMinimalPhysRegClass(Reg); -    // FIXME: A temporary workaround. We can't reuse available value if it's -    // not safe to move the def of the virtual register's class. e.g. -    // X86::RFP* register classes. Do not add it as a live-in. -    if (!TII->isSafeToMoveRegClassDefs(RC)) -      // This is no longer available. -      NotAvailable.insert(Reg); -    else { -      MBB.addLiveIn(Reg); -      if (RegKills[Reg]) -        ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps); -    } - -    // Skip over the same register. -    std::multimap<unsigned, int>::iterator NI = llvm::next(I); -    while (NI != E && NI->first == Reg) { -      ++I; -      ++NI; -    } -  } - -  for (std::set<unsigned>::iterator I = NotAvailable.begin(), -         E = NotAvailable.end(); I != E; ++I) { -    ClobberPhysReg(*I); -    for (const unsigned *SubRegs = TRI->getSubRegisters(*I); -       *SubRegs; ++SubRegs) -      ClobberPhysReg(*SubRegs); -  } -} - -/// ModifyStackSlotOrReMat - This method is called when the value in a stack -/// slot changes.  This removes information about which register the previous -/// value for this slot lives in (as the previous value is dead now). -void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) { -  std::map<int, unsigned>::iterator It = -    SpillSlotsOrReMatsAvailable.find(SlotOrReMat); -  if (It == SpillSlotsOrReMatsAvailable.end()) return; -  unsigned Reg = It->second >> 1; -  SpillSlotsOrReMatsAvailable.erase(It); - -  // This register may hold the value of multiple stack slots, only remove this -  // stack slot from the set of values the register contains. -  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg); -  for (; ; ++I) { -    assert(I != PhysRegsAvailable.end() && I->first == Reg && -           "Map inverse broken!"); -    if (I->second == SlotOrReMat) break; -  } -  PhysRegsAvailable.erase(I); -} - -void AvailableSpills::ClobberSharingStackSlots(int StackSlot) { -  std::map<int, unsigned>::iterator It = -    SpillSlotsOrReMatsAvailable.find(StackSlot); -  if (It == SpillSlotsOrReMatsAvailable.end()) return; -  unsigned Reg = It->second >> 1; - -  // Erase entries in PhysRegsAvailable for other stack slots. -  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg); -  while (I != PhysRegsAvailable.end() && I->first == Reg) { -    std::multimap<unsigned, int>::iterator NextI = llvm::next(I); -    if (I->second != StackSlot) { -      DEBUG(dbgs() << "Clobbered sharing SS#" << I->second << " in " -                   << PrintReg(Reg, TRI) << '\n'); -      SpillSlotsOrReMatsAvailable.erase(I->second); -      PhysRegsAvailable.erase(I); -    } -    I = NextI; -  } -} - -// ************************** // -// Reuse Info Implementation  // -// ************************** // - -/// GetRegForReload - We are about to emit a reload into PhysReg.  If there -/// is some other operand that is using the specified register, either pick -/// a new register to use, or evict the previous reload and use this reg. -unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC, -                         unsigned PhysReg, -                         MachineFunction &MF, -                         MachineInstr *MI, AvailableSpills &Spills, -                         std::vector<MachineInstr*> &MaybeDeadStores, -                         SmallSet<unsigned, 8> &Rejected, -                         BitVector &RegKills, -                         std::vector<MachineOperand*> &KillOps, -                         VirtRegMap &VRM) { -  const TargetInstrInfo* TII = MF.getTarget().getInstrInfo(); -  const TargetRegisterInfo *TRI = Spills.getRegInfo(); - -  if (Reuses.empty()) return PhysReg;  // This is most often empty. - -  for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) { -    ReusedOp &Op = Reuses[ro]; -    // If we find some other reuse that was supposed to use this register -    // exactly for its reload, we can change this reload to use ITS reload -    // register. That is, unless its reload register has already been -    // considered and subsequently rejected because it has also been reused -    // by another operand. -    if (Op.PhysRegReused == PhysReg && -        Rejected.count(Op.AssignedPhysReg) == 0 && -        RC->contains(Op.AssignedPhysReg)) { -      // Yup, use the reload register that we didn't use before. -      unsigned NewReg = Op.AssignedPhysReg; -      Rejected.insert(PhysReg); -      return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, -                             Rejected, RegKills, KillOps, VRM); -    } else { -      // Otherwise, we might also have a problem if a previously reused -      // value aliases the new register. If so, codegen the previous reload -      // and use this one. -      unsigned PRRU = Op.PhysRegReused; -      if (TRI->regsOverlap(PRRU, PhysReg)) { -        // Okay, we found out that an alias of a reused register -        // was used.  This isn't good because it means we have -        // to undo a previous reuse. -        MachineBasicBlock *MBB = MI->getParent(); -        const TargetRegisterClass *AliasRC = -          MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg); - -        // Copy Op out of the vector and remove it, we're going to insert an -        // explicit load for it. -        ReusedOp NewOp = Op; -        Reuses.erase(Reuses.begin()+ro); - -        // MI may be using only a sub-register of PhysRegUsed. -        unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg(); -        unsigned SubIdx = 0; -        assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) && -               "A reuse cannot be a virtual register"); -        if (PRRU != RealPhysRegUsed) { -          // What was the sub-register index? -          SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed); -          assert(SubIdx && -                 "Operand physreg is not a sub-register of PhysRegUsed"); -        } - -        // Ok, we're going to try to reload the assigned physreg into the -        // slot that we were supposed to in the first place.  However, that -        // register could hold a reuse.  Check to see if it conflicts or -        // would prefer us to use a different register. -        unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg, -                                              MF, MI, Spills, MaybeDeadStores, -                                              Rejected, RegKills, KillOps, VRM); - -        bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT; -        int SSorRMId = DoReMat -          ? VRM.getReMatId(NewOp.VirtReg) : (int) NewOp.StackSlotOrReMat; - -        // Back-schedule reloads and remats. -        MachineBasicBlock::iterator InsertLoc = -          ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, -                           DoReMat, SSorRMId, TII, MF); - -        if (DoReMat) { -          ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII, -                        TRI, VRM); -        } else { -          TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg, -                                    NewOp.StackSlotOrReMat, AliasRC, TRI); -          MachineInstr *LoadMI = prior(InsertLoc); -          VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI); -          // Any stores to this stack slot are not dead anymore. -          MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL; -          ++NumLoads; -        } -        Spills.ClobberPhysReg(NewPhysReg); -        Spills.ClobberPhysReg(NewOp.PhysRegReused); - -        unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg; -        MI->getOperand(NewOp.Operand).setReg(RReg); -        MI->getOperand(NewOp.Operand).setSubReg(0); - -        Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg); -        UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); -        DEBUG(dbgs() << '\t' << *prior(InsertLoc)); - -        DEBUG(dbgs() << "Reuse undone!\n"); -        --NumReused; - -        // Finally, PhysReg is now available, go ahead and use it. -        return PhysReg; -      } -    } -  } -  return PhysReg; -} - -// ************************************************************************ // - -/// FoldsStackSlotModRef - Return true if the specified MI folds the specified -/// stack slot mod/ref. It also checks if it's possible to unfold the -/// instruction by having it define a specified physical register instead. -static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg, -                                 const TargetInstrInfo *TII, -                                 const TargetRegisterInfo *TRI, -                                 VirtRegMap &VRM) { -  if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI)) -    return false; - -  bool Found = false; -  VirtRegMap::MI2VirtMapTy::const_iterator I, End; -  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) { -    unsigned VirtReg = I->second.first; -    VirtRegMap::ModRef MR = I->second.second; -    if (MR & VirtRegMap::isModRef) -      if (VRM.getStackSlot(VirtReg) == SS) { -        Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0; -        break; -      } -  } -  if (!Found) -    return false; - -  // Does the instruction uses a register that overlaps the scratch register? -  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { -    MachineOperand &MO = MI.getOperand(i); -    if (!MO.isReg() || MO.getReg() == 0) -      continue; -    unsigned Reg = MO.getReg(); -    if (TargetRegisterInfo::isVirtualRegister(Reg)) { -      if (!VRM.hasPhys(Reg)) -        continue; -      Reg = VRM.getPhys(Reg); -    } -    if (TRI->regsOverlap(PhysReg, Reg)) -      return false; -  } -  return true; -} - -/// FindFreeRegister - Find a free register of a given register class by looking -/// at (at most) the last two machine instructions. -static unsigned FindFreeRegister(MachineBasicBlock::iterator MII, -                                 MachineBasicBlock &MBB, -                                 const TargetRegisterClass *RC, -                                 const TargetRegisterInfo *TRI, -                                 BitVector &AllocatableRegs) { -  BitVector Defs(TRI->getNumRegs()); -  BitVector Uses(TRI->getNumRegs()); -  SmallVector<unsigned, 4> LocalUses; -  SmallVector<unsigned, 4> Kills; - -  // Take a look at 2 instructions at most. -  unsigned Count = 0; -  while (Count < 2) { -    if (MII == MBB.begin()) -      break; -    MachineInstr *PrevMI = prior(MII); -    MII = PrevMI; - -    if (PrevMI->isDebugValue()) -      continue; // Skip over dbg_value instructions. -    ++Count; - -    for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) { -      MachineOperand &MO = PrevMI->getOperand(i); -      if (!MO.isReg() || MO.getReg() == 0) -        continue; -      unsigned Reg = MO.getReg(); -      if (MO.isDef()) { -        Defs.set(Reg); -        for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) -          Defs.set(*AS); -      } else  { -        LocalUses.push_back(Reg); -        if (MO.isKill() && AllocatableRegs[Reg]) -          Kills.push_back(Reg); -      } -    } - -    for (unsigned i = 0, e = Kills.size(); i != e; ++i) { -      unsigned Kill = Kills[i]; -      if (!Defs[Kill] && !Uses[Kill] && -          RC->contains(Kill)) -        return Kill; -    } -    for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) { -      unsigned Reg = LocalUses[i]; -      Uses.set(Reg); -      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) -        Uses.set(*AS); -    } -  } - -  return 0; -} - -static -void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg, -                         const TargetRegisterInfo &TRI) { -  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { -    MachineOperand &MO = MI->getOperand(i); -    if (MO.isReg() && MO.getReg() == VirtReg) -      substitutePhysReg(MO, PhysReg, TRI); -  } -} - -namespace { - -struct RefSorter { -  bool operator()(const std::pair<MachineInstr*, int> &A, -                  const std::pair<MachineInstr*, int> &B) { -    return A.second < B.second; -  } -}; - -// ***************************** // -// Local Spiller Implementation  // -// ***************************** // - -class LocalRewriter : public VirtRegRewriter { -  MachineRegisterInfo *MRI; -  const TargetRegisterInfo *TRI; -  const TargetInstrInfo *TII; -  VirtRegMap *VRM; -  LiveIntervals *LIs; -  BitVector AllocatableRegs; -  DenseMap<MachineInstr*, unsigned> DistanceMap; -  DenseMap<int, SmallVector<MachineInstr*,4> > Slot2DbgValues; - -  MachineBasicBlock *MBB;       // Basic block currently being processed. - -public: - -  bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, -                            LiveIntervals* LIs); - -private: -  void EraseInstr(MachineInstr *MI) { -    VRM->RemoveMachineInstrFromMaps(MI); -    LIs->RemoveMachineInstrFromMaps(MI); -    MI->eraseFromParent(); -  } - -  bool OptimizeByUnfold2(unsigned VirtReg, int SS, -                         MachineBasicBlock::iterator &MII, -                         std::vector<MachineInstr*> &MaybeDeadStores, -                         AvailableSpills &Spills, -                         BitVector &RegKills, -                         std::vector<MachineOperand*> &KillOps); - -  bool OptimizeByUnfold(MachineBasicBlock::iterator &MII, -                        std::vector<MachineInstr*> &MaybeDeadStores, -                        AvailableSpills &Spills, -                        BitVector &RegKills, -                        std::vector<MachineOperand*> &KillOps); - -  bool CommuteToFoldReload(MachineBasicBlock::iterator &MII, -                           unsigned VirtReg, unsigned SrcReg, int SS, -                           AvailableSpills &Spills, -                           BitVector &RegKills, -                           std::vector<MachineOperand*> &KillOps, -                           const TargetRegisterInfo *TRI); - -  void SpillRegToStackSlot(MachineBasicBlock::iterator &MII, -                           int Idx, unsigned PhysReg, int StackSlot, -                           const TargetRegisterClass *RC, -                           bool isAvailable, MachineInstr *&LastStore, -                           AvailableSpills &Spills, -                           SmallSet<MachineInstr*, 4> &ReMatDefs, -                           BitVector &RegKills, -                           std::vector<MachineOperand*> &KillOps); - -  void TransferDeadness(unsigned Reg, BitVector &RegKills, -                        std::vector<MachineOperand*> &KillOps); - -  bool InsertEmergencySpills(MachineInstr *MI); - -  bool InsertRestores(MachineInstr *MI, -                      AvailableSpills &Spills, -                      BitVector &RegKills, -                      std::vector<MachineOperand*> &KillOps); - -  bool InsertSpills(MachineInstr *MI); - -  void ProcessUses(MachineInstr &MI, AvailableSpills &Spills, -                   std::vector<MachineInstr*> &MaybeDeadStores, -                   BitVector &RegKills, -                   ReuseInfo &ReusedOperands, -                   std::vector<MachineOperand*> &KillOps); - -  void RewriteMBB(LiveIntervals *LIs, -                  AvailableSpills &Spills, BitVector &RegKills, -                  std::vector<MachineOperand*> &KillOps); -}; -} - -bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm, -                                         LiveIntervals* lis) { -  MRI = &MF.getRegInfo(); -  TRI = MF.getTarget().getRegisterInfo(); -  TII = MF.getTarget().getInstrInfo(); -  VRM = &vrm; -  LIs = lis; -  AllocatableRegs = TRI->getAllocatableSet(MF); -  DEBUG(dbgs() << "\n**** Local spiller rewriting function '" -        << MF.getFunction()->getName() << "':\n"); -  DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and" -        " reloads!) ****\n"); -  DEBUG(MF.print(dbgs(), LIs->getSlotIndexes())); - -  // Spills - Keep track of which spilled values are available in physregs -  // so that we can choose to reuse the physregs instead of emitting -  // reloads. This is usually refreshed per basic block. -  AvailableSpills Spills(TRI, TII); - -  // Keep track of kill information. -  BitVector RegKills(TRI->getNumRegs()); -  std::vector<MachineOperand*> KillOps; -  KillOps.resize(TRI->getNumRegs(), NULL); - -  // SingleEntrySuccs - Successor blocks which have a single predecessor. -  SmallVector<MachineBasicBlock*, 4> SinglePredSuccs; -  SmallPtrSet<MachineBasicBlock*,16> EarlyVisited; - -  // Traverse the basic blocks depth first. -  MachineBasicBlock *Entry = MF.begin(); -  SmallPtrSet<MachineBasicBlock*,16> Visited; -  for (df_ext_iterator<MachineBasicBlock*, -         SmallPtrSet<MachineBasicBlock*,16> > -         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); -       DFI != E; ++DFI) { -    MBB = *DFI; -    if (!EarlyVisited.count(MBB)) -      RewriteMBB(LIs, Spills, RegKills, KillOps); - -    // If this MBB is the only predecessor of a successor. Keep the -    // availability information and visit it next. -    do { -      // Keep visiting single predecessor successor as long as possible. -      SinglePredSuccs.clear(); -      findSinglePredSuccessor(MBB, SinglePredSuccs); -      if (SinglePredSuccs.empty()) -        MBB = 0; -      else { -        // FIXME: More than one successors, each of which has MBB has -        // the only predecessor. -        MBB = SinglePredSuccs[0]; -        if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) { -          Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps); -          RewriteMBB(LIs, Spills, RegKills, KillOps); -        } -      } -    } while (MBB); - -    // Clear the availability info. -    Spills.clear(); -  } - -  DEBUG(dbgs() << "**** Post Machine Instrs ****\n"); -  DEBUG(MF.print(dbgs(), LIs->getSlotIndexes())); - -  // Mark unused spill slots. -  MachineFrameInfo *MFI = MF.getFrameInfo(); -  int SS = VRM->getLowSpillSlot(); -  if (SS != VirtRegMap::NO_STACK_SLOT) { -    for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS) { -      SmallVector<MachineInstr*, 4> &DbgValues = Slot2DbgValues[SS]; -      if (!VRM->isSpillSlotUsed(SS)) { -        MFI->RemoveStackObject(SS); -        for (unsigned j = 0, ee = DbgValues.size(); j != ee; ++j) { -          MachineInstr *DVMI = DbgValues[j]; -          DEBUG(dbgs() << "Removing debug info referencing FI#" << SS << '\n'); -          EraseInstr(DVMI); -        } -        ++NumDSS; -      } -      DbgValues.clear(); -    } -  } -  Slot2DbgValues.clear(); - -  return true; -} - -/// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if -/// a scratch register is available. -///     xorq  %r12<kill>, %r13 -///     addq  %rax, -184(%rbp) -///     addq  %r13, -184(%rbp) -/// ==> -///     xorq  %r12<kill>, %r13 -///     movq  -184(%rbp), %r12 -///     addq  %rax, %r12 -///     addq  %r13, %r12 -///     movq  %r12, -184(%rbp) -bool LocalRewriter:: -OptimizeByUnfold2(unsigned VirtReg, int SS, -                  MachineBasicBlock::iterator &MII, -                  std::vector<MachineInstr*> &MaybeDeadStores, -                  AvailableSpills &Spills, -                  BitVector &RegKills, -                  std::vector<MachineOperand*> &KillOps) { - -  MachineBasicBlock::iterator NextMII = llvm::next(MII); -  // Skip over dbg_value instructions. -  while (NextMII != MBB->end() && NextMII->isDebugValue()) -    NextMII = llvm::next(NextMII); -  if (NextMII == MBB->end()) -    return false; - -  if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0) -    return false; - -  // Now let's see if the last couple of instructions happens to have freed up -  // a register. -  const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); -  unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs); -  if (!PhysReg) -    return false; - -  MachineFunction &MF = *MBB->getParent(); -  TRI = MF.getTarget().getRegisterInfo(); -  MachineInstr &MI = *MII; -  if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM)) -    return false; - -  // If the next instruction also folds the same SS modref and can be unfoled, -  // then it's worthwhile to issue a load from SS into the free register and -  // then unfold these instructions. -  if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM)) -    return false; - -  // Back-schedule reloads and remats. -  ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF); - -  // Load from SS to the spare physical register. -  TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC, TRI); -  // This invalidates Phys. -  Spills.ClobberPhysReg(PhysReg); -  // Remember it's available. -  Spills.addAvailable(SS, PhysReg); -  MaybeDeadStores[SS] = NULL; - -  // Unfold current MI. -  SmallVector<MachineInstr*, 4> NewMIs; -  if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs)) -    llvm_unreachable("Unable unfold the load / store folding instruction!"); -  assert(NewMIs.size() == 1); -  AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI); -  VRM->transferRestorePts(&MI, NewMIs[0]); -  MII = MBB->insert(MII, NewMIs[0]); -  InvalidateKills(MI, TRI, RegKills, KillOps); -  EraseInstr(&MI); -  ++NumModRefUnfold; - -  // Unfold next instructions that fold the same SS. -  do { -    MachineInstr &NextMI = *NextMII; -    NextMII = llvm::next(NextMII); -    NewMIs.clear(); -    if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs)) -      llvm_unreachable("Unable unfold the load / store folding instruction!"); -    assert(NewMIs.size() == 1); -    AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI); -    VRM->transferRestorePts(&NextMI, NewMIs[0]); -    MBB->insert(NextMII, NewMIs[0]); -    InvalidateKills(NextMI, TRI, RegKills, KillOps); -    EraseInstr(&NextMI); -    ++NumModRefUnfold; -    // Skip over dbg_value instructions. -    while (NextMII != MBB->end() && NextMII->isDebugValue()) -      NextMII = llvm::next(NextMII); -    if (NextMII == MBB->end()) -      break; -  } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM)); - -  // Store the value back into SS. -  TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC, TRI); -  MachineInstr *StoreMI = prior(NextMII); -  VRM->addSpillSlotUse(SS, StoreMI); -  VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); - -  return true; -} - -/// OptimizeByUnfold - Turn a store folding instruction into a load folding -/// instruction. e.g. -///     xorl  %edi, %eax -///     movl  %eax, -32(%ebp) -///     movl  -36(%ebp), %eax -///     orl   %eax, -32(%ebp) -/// ==> -///     xorl  %edi, %eax -///     orl   -36(%ebp), %eax -///     mov   %eax, -32(%ebp) -/// This enables unfolding optimization for a subsequent instruction which will -/// also eliminate the newly introduced store instruction. -bool LocalRewriter:: -OptimizeByUnfold(MachineBasicBlock::iterator &MII, -                 std::vector<MachineInstr*> &MaybeDeadStores, -                 AvailableSpills &Spills, -                 BitVector &RegKills, -                 std::vector<MachineOperand*> &KillOps) { -  MachineFunction &MF = *MBB->getParent(); -  MachineInstr &MI = *MII; -  unsigned UnfoldedOpc = 0; -  unsigned UnfoldPR = 0; -  unsigned UnfoldVR = 0; -  int FoldedSS = VirtRegMap::NO_STACK_SLOT; -  VirtRegMap::MI2VirtMapTy::const_iterator I, End; -  for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) { -    // Only transform a MI that folds a single register. -    if (UnfoldedOpc) -      return false; -    UnfoldVR = I->second.first; -    VirtRegMap::ModRef MR = I->second.second; -    // MI2VirtMap be can updated which invalidate the iterator. -    // Increment the iterator first. -    ++I; -    if (VRM->isAssignedReg(UnfoldVR)) -      continue; -    // If this reference is not a use, any previous store is now dead. -    // Otherwise, the store to this stack slot is not dead anymore. -    FoldedSS = VRM->getStackSlot(UnfoldVR); -    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS]; -    if (DeadStore && (MR & VirtRegMap::isModRef)) { -      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS); -      if (!PhysReg || !DeadStore->readsRegister(PhysReg)) -        continue; -      UnfoldPR = PhysReg; -      UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), -                                                    false, true); -    } -  } - -  if (!UnfoldedOpc) { -    if (!UnfoldVR) -      return false; - -    // Look for other unfolding opportunities. -    return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills, -                             RegKills, KillOps); -  } - -  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { -    MachineOperand &MO = MI.getOperand(i); -    if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse()) -      continue; -    unsigned VirtReg = MO.getReg(); -    if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg()) -      continue; -    if (VRM->isAssignedReg(VirtReg)) { -      unsigned PhysReg = VRM->getPhys(VirtReg); -      if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR)) -        return false; -    } else if (VRM->isReMaterialized(VirtReg)) -      continue; -    int SS = VRM->getStackSlot(VirtReg); -    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); -    if (PhysReg) { -      if (TRI->regsOverlap(PhysReg, UnfoldPR)) -        return false; -      continue; -    } -    if (VRM->hasPhys(VirtReg)) { -      PhysReg = VRM->getPhys(VirtReg); -      if (!TRI->regsOverlap(PhysReg, UnfoldPR)) -        continue; -    } - -    // Ok, we'll need to reload the value into a register which makes -    // it impossible to perform the store unfolding optimization later. -    // Let's see if it is possible to fold the load if the store is -    // unfolded. This allows us to perform the store unfolding -    // optimization. -    SmallVector<MachineInstr*, 4> NewMIs; -    if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) { -      assert(NewMIs.size() == 1); -      MachineInstr *NewMI = NewMIs.back(); -      MBB->insert(MII, NewMI); -      NewMIs.clear(); -      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false); -      assert(Idx != -1); -      SmallVector<unsigned, 1> Ops; -      Ops.push_back(Idx); -      MachineInstr *FoldedMI = TII->foldMemoryOperand(NewMI, Ops, SS); -      NewMI->eraseFromParent(); -      if (FoldedMI) { -        VRM->addSpillSlotUse(SS, FoldedMI); -        if (!VRM->hasPhys(UnfoldVR)) -          VRM->assignVirt2Phys(UnfoldVR, UnfoldPR); -        VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); -        MII = FoldedMI; -        InvalidateKills(MI, TRI, RegKills, KillOps); -        EraseInstr(&MI); -        return true; -      } -    } -  } - -  return false; -} - -/// CommuteChangesDestination - We are looking for r0 = op r1, r2 and -/// where SrcReg is r1 and it is tied to r0. Return true if after -/// commuting this instruction it will be r0 = op r2, r1. -static bool CommuteChangesDestination(MachineInstr *DefMI, -                                      const MCInstrDesc &MCID, -                                      unsigned SrcReg, -                                      const TargetInstrInfo *TII, -                                      unsigned &DstIdx) { -  if (MCID.getNumDefs() != 1 && MCID.getNumOperands() != 3) -    return false; -  if (!DefMI->getOperand(1).isReg() || -      DefMI->getOperand(1).getReg() != SrcReg) -    return false; -  unsigned DefIdx; -  if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0) -    return false; -  unsigned SrcIdx1, SrcIdx2; -  if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2)) -    return false; -  if (SrcIdx1 == 1 && SrcIdx2 == 2) { -    DstIdx = 2; -    return true; -  } -  return false; -} - -/// CommuteToFoldReload - -/// Look for -/// r1 = load fi#1 -/// r1 = op r1, r2<kill> -/// store r1, fi#1 -/// -/// If op is commutable and r2 is killed, then we can xform these to -/// r2 = op r2, fi#1 -/// store r2, fi#1 -bool LocalRewriter:: -CommuteToFoldReload(MachineBasicBlock::iterator &MII, -                    unsigned VirtReg, unsigned SrcReg, int SS, -                    AvailableSpills &Spills, -                    BitVector &RegKills, -                    std::vector<MachineOperand*> &KillOps, -                    const TargetRegisterInfo *TRI) { -  if (MII == MBB->begin() || !MII->killsRegister(SrcReg)) -    return false; - -  MachineInstr &MI = *MII; -  MachineBasicBlock::iterator DefMII = prior(MII); -  MachineInstr *DefMI = DefMII; -  const MCInstrDesc &MCID = DefMI->getDesc(); -  unsigned NewDstIdx; -  if (DefMII != MBB->begin() && -      MCID.isCommutable() && -      CommuteChangesDestination(DefMI, MCID, SrcReg, TII, NewDstIdx)) { -    MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); -    unsigned NewReg = NewDstMO.getReg(); -    if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg)) -      return false; -    MachineInstr *ReloadMI = prior(DefMII); -    int FrameIdx; -    unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx); -    if (DestReg != SrcReg || FrameIdx != SS) -      return false; -    int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false); -    if (UseIdx == -1) -      return false; -    unsigned DefIdx; -    if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx)) -      return false; -    assert(DefMI->getOperand(DefIdx).isReg() && -           DefMI->getOperand(DefIdx).getReg() == SrcReg); - -    // Now commute def instruction. -    MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true); -    if (!CommutedMI) -      return false; -    MBB->insert(MII, CommutedMI); -    SmallVector<unsigned, 1> Ops; -    Ops.push_back(NewDstIdx); -    MachineInstr *FoldedMI = TII->foldMemoryOperand(CommutedMI, Ops, SS); -    // Not needed since foldMemoryOperand returns new MI. -    CommutedMI->eraseFromParent(); -    if (!FoldedMI) -      return false; - -    VRM->addSpillSlotUse(SS, FoldedMI); -    VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); -    // Insert new def MI and spill MI. -    const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); -    TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC, TRI); -    MII = prior(MII); -    MachineInstr *StoreMI = MII; -    VRM->addSpillSlotUse(SS, StoreMI); -    VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); -    MII = FoldedMI;  // Update MII to backtrack. - -    // Delete all 3 old instructions. -    InvalidateKills(*ReloadMI, TRI, RegKills, KillOps); -    EraseInstr(ReloadMI); -    InvalidateKills(*DefMI, TRI, RegKills, KillOps); -    EraseInstr(DefMI); -    InvalidateKills(MI, TRI, RegKills, KillOps); -    EraseInstr(&MI); - -    // If NewReg was previously holding value of some SS, it's now clobbered. -    // This has to be done now because it's a physical register. When this -    // instruction is re-visited, it's ignored. -    Spills.ClobberPhysReg(NewReg); - -    ++NumCommutes; -    return true; -  } - -  return false; -} - -/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if -/// the last store to the same slot is now dead. If so, remove the last store. -void LocalRewriter:: -SpillRegToStackSlot(MachineBasicBlock::iterator &MII, -                    int Idx, unsigned PhysReg, int StackSlot, -                    const TargetRegisterClass *RC, -                    bool isAvailable, MachineInstr *&LastStore, -                    AvailableSpills &Spills, -                    SmallSet<MachineInstr*, 4> &ReMatDefs, -                    BitVector &RegKills, -                    std::vector<MachineOperand*> &KillOps) { - -  MachineBasicBlock::iterator oldNextMII = llvm::next(MII); -  TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC, -                           TRI); -  MachineInstr *StoreMI = prior(oldNextMII); -  VRM->addSpillSlotUse(StackSlot, StoreMI); -  DEBUG(dbgs() << "Store:\t" << *StoreMI); - -  // If there is a dead store to this stack slot, nuke it now. -  if (LastStore) { -    DEBUG(dbgs() << "Removed dead store:\t" << *LastStore); -    ++NumDSE; -    SmallVector<unsigned, 2> KillRegs; -    InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs); -    MachineBasicBlock::iterator PrevMII = LastStore; -    bool CheckDef = PrevMII != MBB->begin(); -    if (CheckDef) -      --PrevMII; -    EraseInstr(LastStore); -    if (CheckDef) { -      // Look at defs of killed registers on the store. Mark the defs -      // as dead since the store has been deleted and they aren't -      // being reused. -      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) { -        bool HasOtherDef = false; -        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) { -          MachineInstr *DeadDef = PrevMII; -          if (ReMatDefs.count(DeadDef) && !HasOtherDef) { -            // FIXME: This assumes a remat def does not have side effects. -            EraseInstr(DeadDef); -            ++NumDRM; -          } -        } -      } -    } -  } - -  // Allow for multi-instruction spill sequences, as on PPC Altivec.  Presume -  // the last of multiple instructions is the actual store. -  LastStore = prior(oldNextMII); - -  // If the stack slot value was previously available in some other -  // register, change it now.  Otherwise, make the register available, -  // in PhysReg. -  Spills.ModifyStackSlotOrReMat(StackSlot); -  Spills.ClobberPhysReg(PhysReg); -  Spills.addAvailable(StackSlot, PhysReg, isAvailable); -  ++NumStores; -} - -/// isSafeToDelete - Return true if this instruction doesn't produce any side -/// effect and all of its defs are dead. -static bool isSafeToDelete(MachineInstr &MI) { -  const MCInstrDesc &MCID = MI.getDesc(); -  if (MCID.mayLoad() || MCID.mayStore() || MCID.isTerminator() || -      MCID.isCall() || MCID.isBarrier() || MCID.isReturn() || -      MI.isLabel() || MI.isDebugValue() || -      MI.hasUnmodeledSideEffects()) -    return false; - -  // Technically speaking inline asm without side effects and no defs can still -  // be deleted. But there is so much bad inline asm code out there, we should -  // let them be. -  if (MI.isInlineAsm()) -    return false; - -  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { -    MachineOperand &MO = MI.getOperand(i); -    if (!MO.isReg() || !MO.getReg()) -      continue; -    if (MO.isDef() && !MO.isDead()) -      return false; -    if (MO.isUse() && MO.isKill()) -      // FIXME: We can't remove kill markers or else the scavenger will assert. -      // An alternative is to add a ADD pseudo instruction to replace kill -      // markers. -      return false; -  } -  return true; -} - -/// TransferDeadness - A identity copy definition is dead and it's being -/// removed. Find the last def or use and mark it as dead / kill. -void LocalRewriter:: -TransferDeadness(unsigned Reg, BitVector &RegKills, -                 std::vector<MachineOperand*> &KillOps) { -  SmallPtrSet<MachineInstr*, 4> Seens; -  SmallVector<std::pair<MachineInstr*, int>,8> Refs; -  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg), -         RE = MRI->reg_end(); RI != RE; ++RI) { -    MachineInstr *UDMI = &*RI; -    if (UDMI->isDebugValue() || UDMI->getParent() != MBB) -      continue; -    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI); -    if (DI == DistanceMap.end()) -      continue; -    if (Seens.insert(UDMI)) -      Refs.push_back(std::make_pair(UDMI, DI->second)); -  } - -  if (Refs.empty()) -    return; -  std::sort(Refs.begin(), Refs.end(), RefSorter()); - -  while (!Refs.empty()) { -    MachineInstr *LastUDMI = Refs.back().first; -    Refs.pop_back(); - -    MachineOperand *LastUD = NULL; -    for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) { -      MachineOperand &MO = LastUDMI->getOperand(i); -      if (!MO.isReg() || MO.getReg() != Reg) -        continue; -      if (!LastUD || (LastUD->isUse() && MO.isDef())) -        LastUD = &MO; -      if (LastUDMI->isRegTiedToDefOperand(i)) -        break; -    } -    if (LastUD->isDef()) { -      // If the instruction has no side effect, delete it and propagate -      // backward further. Otherwise, mark is dead and we are done. -      if (!isSafeToDelete(*LastUDMI)) { -        LastUD->setIsDead(); -        break; -      } -      EraseInstr(LastUDMI); -    } else { -      LastUD->setIsKill(); -      RegKills.set(Reg); -      KillOps[Reg] = LastUD; -      break; -    } -  } -} - -/// InsertEmergencySpills - Insert emergency spills before MI if requested by -/// VRM. Return true if spills were inserted. -bool LocalRewriter::InsertEmergencySpills(MachineInstr *MI) { -  if (!VRM->hasEmergencySpills(MI)) -    return false; -  MachineBasicBlock::iterator MII = MI; -  SmallSet<int, 4> UsedSS; -  std::vector<unsigned> &EmSpills = VRM->getEmergencySpills(MI); -  for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) { -    unsigned PhysReg = EmSpills[i]; -    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysReg); -    assert(RC && "Unable to determine register class!"); -    int SS = VRM->getEmergencySpillSlot(RC); -    if (UsedSS.count(SS)) -      llvm_unreachable("Need to spill more than one physical registers!"); -    UsedSS.insert(SS); -    TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC, TRI); -    MachineInstr *StoreMI = prior(MII); -    VRM->addSpillSlotUse(SS, StoreMI); - -    // Back-schedule reloads and remats. -    MachineBasicBlock::iterator InsertLoc = -      ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false, SS, -                       TII, *MBB->getParent()); - -    TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC, TRI); - -    MachineInstr *LoadMI = prior(InsertLoc); -    VRM->addSpillSlotUse(SS, LoadMI); -    ++NumPSpills; -    DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); -  } -  return true; -} - -/// InsertRestores - Restore registers before MI is requested by VRM. Return -/// true is any instructions were inserted. -bool LocalRewriter::InsertRestores(MachineInstr *MI, -                                   AvailableSpills &Spills, -                                   BitVector &RegKills, -                                   std::vector<MachineOperand*> &KillOps) { -  if (!VRM->isRestorePt(MI)) -    return false; -  MachineBasicBlock::iterator MII = MI; -  std::vector<unsigned> &RestoreRegs = VRM->getRestorePtRestores(MI); -  for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) { -    unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order. -    if (!VRM->getPreSplitReg(VirtReg)) -      continue; // Split interval spilled again. -    unsigned Phys = VRM->getPhys(VirtReg); -    MRI->setPhysRegUsed(Phys); - -    // Check if the value being restored if available. If so, it must be -    // from a predecessor BB that fallthrough into this BB. We do not -    // expect: -    // BB1: -    // r1 = load fi#1 -    // ... -    //    = r1<kill> -    // ... # r1 not clobbered -    // ... -    //    = load fi#1 -    bool DoReMat = VRM->isReMaterialized(VirtReg); -    int SSorRMId = DoReMat -      ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg); -    unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); -    if (InReg == Phys) { -      // If the value is already available in the expected register, save -      // a reload / remat. -      if (SSorRMId) -        DEBUG(dbgs() << "Reusing RM#" -                     << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1); -      else -        DEBUG(dbgs() << "Reusing SS#" << SSorRMId); -      DEBUG(dbgs() << " from physreg " -                   << TRI->getName(InReg) << " for " << PrintReg(VirtReg) -                   <<" instead of reloading into physreg " -                   << TRI->getName(Phys) << '\n'); - -      // Reusing a physreg may resurrect it. But we expect ProcessUses to update -      // the kill flags for the current instruction after processing it. - -      ++NumOmitted; -      continue; -    } else if (InReg && InReg != Phys) { -      if (SSorRMId) -        DEBUG(dbgs() << "Reusing RM#" -                     << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1); -      else -        DEBUG(dbgs() << "Reusing SS#" << SSorRMId); -      DEBUG(dbgs() << " from physreg " -                   << TRI->getName(InReg) << " for " << PrintReg(VirtReg) -                   <<" by copying it into physreg " -                   << TRI->getName(Phys) << '\n'); - -      // If the reloaded / remat value is available in another register, -      // copy it to the desired register. - -      // Back-schedule reloads and remats. -      MachineBasicBlock::iterator InsertLoc = -        ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII, -                         *MBB->getParent()); -      MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI->getDebugLoc(), -                                     TII->get(TargetOpcode::COPY), Phys) -                               .addReg(InReg, RegState::Kill); - -      // This invalidates Phys. -      Spills.ClobberPhysReg(Phys); -      // Remember it's available. -      Spills.addAvailable(SSorRMId, Phys); - -      CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse); -      UpdateKills(*CopyMI, TRI, RegKills, KillOps); - -      DEBUG(dbgs() << '\t' << *CopyMI); -      ++NumCopified; -      continue; -    } - -    // Back-schedule reloads and remats. -    MachineBasicBlock::iterator InsertLoc = -      ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII, -                       *MBB->getParent()); - -    if (VRM->isReMaterialized(VirtReg)) { -      ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM); -    } else { -      const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); -      TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC, TRI); -      MachineInstr *LoadMI = prior(InsertLoc); -      VRM->addSpillSlotUse(SSorRMId, LoadMI); -      ++NumLoads; -      DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); -    } - -    // This invalidates Phys. -    Spills.ClobberPhysReg(Phys); -    // Remember it's available. -    Spills.addAvailable(SSorRMId, Phys); - -    UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); -    DEBUG(dbgs() << '\t' << *prior(MII)); -  } -  return true; -} - -/// InsertSpills - Insert spills after MI if requested by VRM. Return -/// true if spills were inserted. -bool LocalRewriter::InsertSpills(MachineInstr *MI) { -  if (!VRM->isSpillPt(MI)) -    return false; -  MachineBasicBlock::iterator MII = MI; -  std::vector<std::pair<unsigned,bool> > &SpillRegs = -    VRM->getSpillPtSpills(MI); -  for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) { -    unsigned VirtReg = SpillRegs[i].first; -    bool isKill = SpillRegs[i].second; -    if (!VRM->getPreSplitReg(VirtReg)) -      continue; // Split interval spilled again. -    const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); -    unsigned Phys = VRM->getPhys(VirtReg); -    int StackSlot = VRM->getStackSlot(VirtReg); -    MachineBasicBlock::iterator oldNextMII = llvm::next(MII); -    TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot, -                             RC, TRI); -    MachineInstr *StoreMI = prior(oldNextMII); -    VRM->addSpillSlotUse(StackSlot, StoreMI); -    DEBUG(dbgs() << "Store:\t" << *StoreMI); -    VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); -  } -  return true; -} - - -/// ProcessUses - Process all of MI's spilled operands and all available -/// operands. -void LocalRewriter::ProcessUses(MachineInstr &MI, AvailableSpills &Spills, -                                std::vector<MachineInstr*> &MaybeDeadStores, -                                BitVector &RegKills, -                                ReuseInfo &ReusedOperands, -                                std::vector<MachineOperand*> &KillOps) { -  // Clear kill info. -  SmallSet<unsigned, 2> KilledMIRegs; -  SmallVector<unsigned, 4> VirtUseOps; -  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { -    MachineOperand &MO = MI.getOperand(i); -    if (!MO.isReg() || MO.getReg() == 0) -      continue;   // Ignore non-register operands. - -    unsigned VirtReg = MO.getReg(); - -    if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) { -      // Ignore physregs for spilling, but remember that it is used by this -      // function. -      MRI->setPhysRegUsed(VirtReg); -      continue; -    } - -    // We want to process implicit virtual register uses first. -    if (MO.isImplicit()) -      // If the virtual register is implicitly defined, emit a implicit_def -      // before so scavenger knows it's "defined". -      // FIXME: This is a horrible hack done the by register allocator to -      // remat a definition with virtual register operand. -      VirtUseOps.insert(VirtUseOps.begin(), i); -    else -      VirtUseOps.push_back(i); - -    // A partial def causes problems because the same operand both reads and -    // writes the register. This rewriter is designed to rewrite uses and defs -    // separately, so a partial def would already have been rewritten to a -    // physreg by the time we get to processing defs. -    // Add an implicit use operand to model the partial def. -    if (MO.isDef() && MO.getSubReg() && MI.readsVirtualRegister(VirtReg) && -        MI.findRegisterUseOperandIdx(VirtReg) == -1) { -      VirtUseOps.insert(VirtUseOps.begin(), MI.getNumOperands()); -      MI.addOperand(MachineOperand::CreateReg(VirtReg, -                                              false,  // isDef -                                              true)); // isImplicit -      DEBUG(dbgs() << "Partial redef: " << MI); -    } -  } - -  // Process all of the spilled uses and all non spilled reg references. -  SmallVector<int, 2> PotentialDeadStoreSlots; -  KilledMIRegs.clear(); -  for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) { -    unsigned i = VirtUseOps[j]; -    unsigned VirtReg = MI.getOperand(i).getReg(); -    assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && -           "Not a virtual register?"); - -    unsigned SubIdx = MI.getOperand(i).getSubReg(); -    if (VRM->isAssignedReg(VirtReg)) { -      // This virtual register was assigned a physreg! -      unsigned Phys = VRM->getPhys(VirtReg); -      MRI->setPhysRegUsed(Phys); -      if (MI.getOperand(i).isDef()) -        ReusedOperands.markClobbered(Phys); -      substitutePhysReg(MI.getOperand(i), Phys, *TRI); -      if (VRM->isImplicitlyDefined(VirtReg)) -        // FIXME: Is this needed? -        BuildMI(*MBB, &MI, MI.getDebugLoc(), -                TII->get(TargetOpcode::IMPLICIT_DEF), Phys); -      continue; -    } - -    // This virtual register is now known to be a spilled value. -    if (!MI.getOperand(i).isUse()) -      continue;  // Handle defs in the loop below (handle use&def here though) - -    bool AvoidReload = MI.getOperand(i).isUndef(); -    // Check if it is defined by an implicit def. It should not be spilled. -    // Note, this is for correctness reason. e.g. -    // 8   %reg1024<def> = IMPLICIT_DEF -    // 12  %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2 -    // The live range [12, 14) are not part of the r1024 live interval since -    // it's defined by an implicit def. It will not conflicts with live -    // interval of r1025. Now suppose both registers are spilled, you can -    // easily see a situation where both registers are reloaded before -    // the INSERT_SUBREG and both target registers that would overlap. -    bool DoReMat = VRM->isReMaterialized(VirtReg); -    int SSorRMId = DoReMat -      ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg); -    int ReuseSlot = SSorRMId; - -    // Check to see if this stack slot is available. -    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); - -    // If this is a sub-register use, make sure the reuse register is in the -    // right register class. For example, for x86 not all of the 32-bit -    // registers have accessible sub-registers. -    // Similarly so for EXTRACT_SUBREG. Consider this: -    // EDI = op -    // MOV32_mr fi#1, EDI -    // ... -    //       = EXTRACT_SUBREG fi#1 -    // fi#1 is available in EDI, but it cannot be reused because it's not in -    // the right register file. -    if (PhysReg && !AvoidReload && SubIdx) { -      const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); -      if (!RC->contains(PhysReg)) -        PhysReg = 0; -    } - -    if (PhysReg && !AvoidReload) { -      // This spilled operand might be part of a two-address operand.  If this -      // is the case, then changing it will necessarily require changing the -      // def part of the instruction as well.  However, in some cases, we -      // aren't allowed to modify the reused register.  If none of these cases -      // apply, reuse it. -      bool CanReuse = true; -      bool isTied = MI.isRegTiedToDefOperand(i); -      if (isTied) { -        // Okay, we have a two address operand.  We can reuse this physreg as -        // long as we are allowed to clobber the value and there isn't an -        // earlier def that has already clobbered the physreg. -        CanReuse = !ReusedOperands.isClobbered(PhysReg) && -          Spills.canClobberPhysReg(PhysReg); -      } -      // If this is an asm, and a PhysReg alias is used elsewhere as an -      // earlyclobber operand, we can't also use it as an input. -      if (MI.isInlineAsm()) { -        for (unsigned k = 0, e = MI.getNumOperands(); k != e; ++k) { -          MachineOperand &MOk = MI.getOperand(k); -          if (MOk.isReg() && MOk.isEarlyClobber() && -              TRI->regsOverlap(MOk.getReg(), PhysReg)) { -            CanReuse = false; -            DEBUG(dbgs() << "Not reusing physreg " << TRI->getName(PhysReg) -                         << " for " << PrintReg(VirtReg) << ": " << MOk -                         << '\n'); -            break; -          } -        } -      } - -      if (CanReuse) { -        // If this stack slot value is already available, reuse it! -        if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) -          DEBUG(dbgs() << "Reusing RM#" -                << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1); -        else -          DEBUG(dbgs() << "Reusing SS#" << ReuseSlot); -        DEBUG(dbgs() << " from physreg " -              << TRI->getName(PhysReg) << " for " << PrintReg(VirtReg) -              << " instead of reloading into " -              << PrintReg(VRM->getPhys(VirtReg), TRI) << '\n'); -        unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; -        MI.getOperand(i).setReg(RReg); -        MI.getOperand(i).setSubReg(0); - -        // Reusing a physreg may resurrect it. But we expect ProcessUses to -        // update the kill flags for the current instr after processing it. - -        // The only technical detail we have is that we don't know that -        // PhysReg won't be clobbered by a reloaded stack slot that occurs -        // later in the instruction.  In particular, consider 'op V1, V2'. -        // If V1 is available in physreg R0, we would choose to reuse it -        // here, instead of reloading it into the register the allocator -        // indicated (say R1).  However, V2 might have to be reloaded -        // later, and it might indicate that it needs to live in R0.  When -        // this occurs, we need to have information available that -        // indicates it is safe to use R1 for the reload instead of R0. -        // -        // To further complicate matters, we might conflict with an alias, -        // or R0 and R1 might not be compatible with each other.  In this -        // case, we actually insert a reload for V1 in R1, ensuring that -        // we can get at R0 or its alias. -        ReusedOperands.addReuse(i, ReuseSlot, PhysReg, -                                VRM->getPhys(VirtReg), VirtReg); -        if (isTied) -          // Only mark it clobbered if this is a use&def operand. -          ReusedOperands.markClobbered(PhysReg); -        ++NumReused; - -        if (MI.getOperand(i).isKill() && -            ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) { - -          // The store of this spilled value is potentially dead, but we -          // won't know for certain until we've confirmed that the re-use -          // above is valid, which means waiting until the other operands -          // are processed. For now we just track the spill slot, we'll -          // remove it after the other operands are processed if valid. - -          PotentialDeadStoreSlots.push_back(ReuseSlot); -        } - -        // Mark is isKill if it's there no other uses of the same virtual -        // register and it's not a two-address operand. IsKill will be -        // unset if reg is reused. -        if (!isTied && KilledMIRegs.count(VirtReg) == 0) { -          MI.getOperand(i).setIsKill(); -          KilledMIRegs.insert(VirtReg); -        } -        continue; -      }  // CanReuse - -      // Otherwise we have a situation where we have a two-address instruction -      // whose mod/ref operand needs to be reloaded.  This reload is already -      // available in some register "PhysReg", but if we used PhysReg as the -      // operand to our 2-addr instruction, the instruction would modify -      // PhysReg.  This isn't cool if something later uses PhysReg and expects -      // to get its initial value. -      // -      // To avoid this problem, and to avoid doing a load right after a store, -      // we emit a copy from PhysReg into the designated register for this -      // operand. -      // -      // This case also applies to an earlyclobber'd PhysReg. -      unsigned DesignatedReg = VRM->getPhys(VirtReg); -      assert(DesignatedReg && "Must map virtreg to physreg!"); - -      // Note that, if we reused a register for a previous operand, the -      // register we want to reload into might not actually be -      // available.  If this occurs, use the register indicated by the -      // reuser. -      if (ReusedOperands.hasReuses()) -        DesignatedReg = ReusedOperands. -          GetRegForReload(VirtReg, DesignatedReg, &MI, Spills, -                          MaybeDeadStores, RegKills, KillOps, *VRM); - -      // If the mapped designated register is actually the physreg we have -      // incoming, we don't need to inserted a dead copy. -      if (DesignatedReg == PhysReg) { -        // If this stack slot value is already available, reuse it! -        if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) -          DEBUG(dbgs() << "Reusing RM#" -                << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1); -        else -          DEBUG(dbgs() << "Reusing SS#" << ReuseSlot); -        DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg) -              << " for " << PrintReg(VirtReg) -              << " instead of reloading into same physreg.\n"); -        unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; -        MI.getOperand(i).setReg(RReg); -        MI.getOperand(i).setSubReg(0); -        ReusedOperands.markClobbered(RReg); -        ++NumReused; -        continue; -      } - -      MRI->setPhysRegUsed(DesignatedReg); -      ReusedOperands.markClobbered(DesignatedReg); - -      // Back-schedule reloads and remats. -      MachineBasicBlock::iterator InsertLoc = -        ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat, -                         SSorRMId, TII, *MBB->getParent()); -      MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(), -                                     TII->get(TargetOpcode::COPY), -                                     DesignatedReg).addReg(PhysReg); -      CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse); -      UpdateKills(*CopyMI, TRI, RegKills, KillOps); - -      // This invalidates DesignatedReg. -      Spills.ClobberPhysReg(DesignatedReg); - -      Spills.addAvailable(ReuseSlot, DesignatedReg); -      unsigned RReg = -        SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg; -      MI.getOperand(i).setReg(RReg); -      MI.getOperand(i).setSubReg(0); -      DEBUG(dbgs() << '\t' << *prior(InsertLoc)); -      ++NumReused; -      continue; -    } // if (PhysReg) - -    // Otherwise, reload it and remember that we have it. -    PhysReg = VRM->getPhys(VirtReg); -    assert(PhysReg && "Must map virtreg to physreg!"); - -    // Note that, if we reused a register for a previous operand, the -    // register we want to reload into might not actually be -    // available.  If this occurs, use the register indicated by the -    // reuser. -    if (ReusedOperands.hasReuses()) -      PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI, -                  Spills, MaybeDeadStores, RegKills, KillOps, *VRM); - -    MRI->setPhysRegUsed(PhysReg); -    ReusedOperands.markClobbered(PhysReg); -    if (AvoidReload) -      ++NumAvoided; -    else { -      // Back-schedule reloads and remats. -      MachineBasicBlock::iterator InsertLoc = -        ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, DoReMat, -                         SSorRMId, TII, *MBB->getParent()); - -      if (DoReMat) { -        ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM); -      } else { -        const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); -        TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI); -        MachineInstr *LoadMI = prior(InsertLoc); -        VRM->addSpillSlotUse(SSorRMId, LoadMI); -        ++NumLoads; -        DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); -      } -      // This invalidates PhysReg. -      Spills.ClobberPhysReg(PhysReg); - -      // Any stores to this stack slot are not dead anymore. -      if (!DoReMat) -        MaybeDeadStores[SSorRMId] = NULL; -      Spills.addAvailable(SSorRMId, PhysReg); -      // Assumes this is the last use. IsKill will be unset if reg is reused -      // unless it's a two-address operand. -      if (!MI.isRegTiedToDefOperand(i) && -          KilledMIRegs.count(VirtReg) == 0) { -        MI.getOperand(i).setIsKill(); -        KilledMIRegs.insert(VirtReg); -      } - -      UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); -      DEBUG(dbgs() << '\t' << *prior(InsertLoc)); -    } -    unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; -    MI.getOperand(i).setReg(RReg); -    MI.getOperand(i).setSubReg(0); -  } - -  // Ok - now we can remove stores that have been confirmed dead. -  for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) { -    // This was the last use and the spilled value is still available -    // for reuse. That means the spill was unnecessary! -    int PDSSlot = PotentialDeadStoreSlots[j]; -    MachineInstr* DeadStore = MaybeDeadStores[PDSSlot]; -    if (DeadStore) { -      DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore); -      InvalidateKills(*DeadStore, TRI, RegKills, KillOps); -      EraseInstr(DeadStore); -      MaybeDeadStores[PDSSlot] = NULL; -      ++NumDSE; -    } -  } -} - -/// rewriteMBB - Keep track of which spills are available even after the -/// register allocator is done with them.  If possible, avoid reloading vregs. -void -LocalRewriter::RewriteMBB(LiveIntervals *LIs, -                          AvailableSpills &Spills, BitVector &RegKills, -                          std::vector<MachineOperand*> &KillOps) { - -  DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '" -               << MBB->getName() << "':\n"); - -  MachineFunction &MF = *MBB->getParent(); - -  // MaybeDeadStores - When we need to write a value back into a stack slot, -  // keep track of the inserted store.  If the stack slot value is never read -  // (because the value was used from some available register, for example), and -  // subsequently stored to, the original store is dead.  This map keeps track -  // of inserted stores that are not used.  If we see a subsequent store to the -  // same stack slot, the original store is deleted. -  std::vector<MachineInstr*> MaybeDeadStores; -  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL); - -  // ReMatDefs - These are rematerializable def MIs which are not deleted. -  SmallSet<MachineInstr*, 4> ReMatDefs; - -  // Keep track of the registers we have already spilled in case there are -  // multiple defs of the same register in MI. -  SmallSet<unsigned, 8> SpilledMIRegs; - -  RegKills.reset(); -  KillOps.clear(); -  KillOps.resize(TRI->getNumRegs(), NULL); - -  DistanceMap.clear(); -  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); -       MII != E; ) { -    MachineBasicBlock::iterator NextMII = llvm::next(MII); - -    if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps)) -      NextMII = llvm::next(MII); - -    if (InsertEmergencySpills(MII)) -      NextMII = llvm::next(MII); - -    InsertRestores(MII, Spills, RegKills, KillOps); - -    if (InsertSpills(MII)) -      NextMII = llvm::next(MII); - -    bool Erased = false; -    bool BackTracked = false; -    MachineInstr &MI = *MII; - -    // Remember DbgValue's which reference stack slots. -    if (MI.isDebugValue() && MI.getOperand(0).isFI()) -      Slot2DbgValues[MI.getOperand(0).getIndex()].push_back(&MI); - -    /// ReusedOperands - Keep track of operand reuse in case we need to undo -    /// reuse. -    ReuseInfo ReusedOperands(MI, TRI); - -    ProcessUses(MI, Spills, MaybeDeadStores, RegKills, ReusedOperands, KillOps); - -    DEBUG(dbgs() << '\t' << MI); - - -    // If we have folded references to memory operands, make sure we clear all -    // physical registers that may contain the value of the spilled virtual -    // register - -    // Copy the folded virts to a small vector, we may change MI2VirtMap. -    SmallVector<std::pair<unsigned, VirtRegMap::ModRef>, 4> FoldedVirts; -    // C++0x FTW! -    for (std::pair<VirtRegMap::MI2VirtMapTy::const_iterator, -                   VirtRegMap::MI2VirtMapTy::const_iterator> FVRange = -           VRM->getFoldedVirts(&MI); -         FVRange.first != FVRange.second; ++FVRange.first) -      FoldedVirts.push_back(FVRange.first->second); - -    SmallSet<int, 2> FoldedSS; -    for (unsigned FVI = 0, FVE = FoldedVirts.size(); FVI != FVE; ++FVI) { -      unsigned VirtReg = FoldedVirts[FVI].first; -      VirtRegMap::ModRef MR = FoldedVirts[FVI].second; -      DEBUG(dbgs() << "Folded " << PrintReg(VirtReg) << "  MR: " << MR); - -      int SS = VRM->getStackSlot(VirtReg); -      if (SS == VirtRegMap::NO_STACK_SLOT) -        continue; -      FoldedSS.insert(SS); -      DEBUG(dbgs() << " - StackSlot: " << SS << "\n"); - -      // If this folded instruction is just a use, check to see if it's a -      // straight load from the virt reg slot. -      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) { -        int FrameIdx; -        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx); -        if (DestReg && FrameIdx == SS) { -          // If this spill slot is available, turn it into a copy (or nothing) -          // instead of leaving it as a load! -          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) { -            DEBUG(dbgs() << "Promoted Load To Copy: " << MI); -            if (DestReg != InReg) { -              MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg); -              MachineInstr *CopyMI = BuildMI(*MBB, &MI, MI.getDebugLoc(), -                                             TII->get(TargetOpcode::COPY)) -                .addReg(DestReg, RegState::Define, DefMO->getSubReg()) -                .addReg(InReg, RegState::Kill); -              // Revisit the copy so we make sure to notice the effects of the -              // operation on the destreg (either needing to RA it if it's -              // virtual or needing to clobber any values if it's physical). -              NextMII = CopyMI; -              NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse); -              BackTracked = true; -            } else { -              DEBUG(dbgs() << "Removing now-noop copy: " << MI); -              // InvalidateKills resurrects any prior kill of the copy's source -              // allowing the source reg to be reused in place of the copy. -              Spills.disallowClobberPhysReg(InReg); -            } - -            InvalidateKills(MI, TRI, RegKills, KillOps); -            EraseInstr(&MI); -            Erased = true; -            goto ProcessNextInst; -          } -        } else { -          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); -          SmallVector<MachineInstr*, 4> NewMIs; -          if (PhysReg && -              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)){ -            MBB->insert(MII, NewMIs[0]); -            InvalidateKills(MI, TRI, RegKills, KillOps); -            EraseInstr(&MI); -            Erased = true; -            --NextMII;  // backtrack to the unfolded instruction. -            BackTracked = true; -            goto ProcessNextInst; -          } -        } -      } - -      // If this reference is not a use, any previous store is now dead. -      // Otherwise, the store to this stack slot is not dead anymore. -      MachineInstr* DeadStore = MaybeDeadStores[SS]; -      if (DeadStore) { -        bool isDead = !(MR & VirtRegMap::isRef); -        MachineInstr *NewStore = NULL; -        if (MR & VirtRegMap::isModRef) { -          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); -          SmallVector<MachineInstr*, 4> NewMIs; -          // We can reuse this physreg as long as we are allowed to clobber -          // the value and there isn't an earlier def that has already clobbered -          // the physreg. -          if (PhysReg && -              !ReusedOperands.isClobbered(PhysReg) && -              Spills.canClobberPhysReg(PhysReg) && -              !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable! -            MachineOperand *KillOpnd = -              DeadStore->findRegisterUseOperand(PhysReg, true); -            // Note, if the store is storing a sub-register, it's possible the -            // super-register is needed below. -            if (KillOpnd && !KillOpnd->getSubReg() && -                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){ -              MBB->insert(MII, NewMIs[0]); -              NewStore = NewMIs[1]; -              MBB->insert(MII, NewStore); -              VRM->addSpillSlotUse(SS, NewStore); -              InvalidateKills(MI, TRI, RegKills, KillOps); -              EraseInstr(&MI); -              Erased = true; -              --NextMII; -              --NextMII;  // backtrack to the unfolded instruction. -              BackTracked = true; -              isDead = true; -              ++NumSUnfold; -            } -          } -        } - -        if (isDead) {  // Previous store is dead. -          // If we get here, the store is dead, nuke it now. -          DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore); -          InvalidateKills(*DeadStore, TRI, RegKills, KillOps); -          EraseInstr(DeadStore); -          if (!NewStore) -            ++NumDSE; -        } - -        MaybeDeadStores[SS] = NULL; -        if (NewStore) { -          // Treat this store as a spill merged into a copy. That makes the -          // stack slot value available. -          VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod); -          goto ProcessNextInst; -        } -      } - -      // If the spill slot value is available, and this is a new definition of -      // the value, the value is not available anymore. -      if (MR & VirtRegMap::isMod) { -        // Notice that the value in this stack slot has been modified. -        Spills.ModifyStackSlotOrReMat(SS); - -        // If this is *just* a mod of the value, check to see if this is just a -        // store to the spill slot (i.e. the spill got merged into the copy). If -        // so, realize that the vreg is available now, and add the store to the -        // MaybeDeadStore info. -        int StackSlot; -        if (!(MR & VirtRegMap::isRef)) { -          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) { -            assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) && -                   "Src hasn't been allocated yet?"); - -            if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot, -                                    Spills, RegKills, KillOps, TRI)) { -              NextMII = llvm::next(MII); -              BackTracked = true; -              goto ProcessNextInst; -            } - -            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark -            // this as a potentially dead store in case there is a subsequent -            // store into the stack slot without a read from it. -            MaybeDeadStores[StackSlot] = &MI; - -            // If the stack slot value was previously available in some other -            // register, change it now.  Otherwise, make the register -            // available in PhysReg. -            Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg)); -          } -        } -      } -    } - -    // Process all of the spilled defs. -    SpilledMIRegs.clear(); -    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { -      MachineOperand &MO = MI.getOperand(i); -      if (!(MO.isReg() && MO.getReg() && MO.isDef())) -        continue; - -      unsigned VirtReg = MO.getReg(); -      if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) { -        // Check to see if this is a noop copy.  If so, eliminate the -        // instruction before considering the dest reg to be changed. -        // Also check if it's copying from an "undef", if so, we can't -        // eliminate this or else the undef marker is lost and it will -        // confuses the scavenger. This is extremely rare. -        if (MI.isIdentityCopy() && !MI.getOperand(1).isUndef() && -            MI.getNumOperands() == 2) { -          ++NumDCE; -          DEBUG(dbgs() << "Removing now-noop copy: " << MI); -          SmallVector<unsigned, 2> KillRegs; -          InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs); -          if (MO.isDead() && !KillRegs.empty()) { -            // Source register or an implicit super/sub-register use is killed. -            assert(TRI->regsOverlap(KillRegs[0], MI.getOperand(0).getReg())); -            // Last def is now dead. -            TransferDeadness(MI.getOperand(1).getReg(), RegKills, KillOps); -          } -          EraseInstr(&MI); -          Erased = true; -          Spills.disallowClobberPhysReg(VirtReg); -          goto ProcessNextInst; -        } - -        // If it's not a no-op copy, it clobbers the value in the destreg. -        Spills.ClobberPhysReg(VirtReg); -        ReusedOperands.markClobbered(VirtReg); - -        // Check to see if this instruction is a load from a stack slot into -        // a register.  If so, this provides the stack slot value in the reg. -        int FrameIdx; -        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) { -          assert(DestReg == VirtReg && "Unknown load situation!"); - -          // If it is a folded reference, then it's not safe to clobber. -          bool Folded = FoldedSS.count(FrameIdx); -          // Otherwise, if it wasn't available, remember that it is now! -          Spills.addAvailable(FrameIdx, DestReg, !Folded); -          goto ProcessNextInst; -        } - -        continue; -      } - -      unsigned SubIdx = MO.getSubReg(); -      bool DoReMat = VRM->isReMaterialized(VirtReg); -      if (DoReMat) -        ReMatDefs.insert(&MI); - -      // The only vregs left are stack slot definitions. -      int StackSlot = VRM->getStackSlot(VirtReg); -      const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); - -      // If this def is part of a two-address operand, make sure to execute -      // the store from the correct physical register. -      unsigned PhysReg; -      unsigned TiedOp; -      if (MI.isRegTiedToUseOperand(i, &TiedOp)) { -        PhysReg = MI.getOperand(TiedOp).getReg(); -        if (SubIdx) { -          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI); -          assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg && -                 "Can't find corresponding super-register!"); -          PhysReg = SuperReg; -        } -      } else { -        PhysReg = VRM->getPhys(VirtReg); -        if (ReusedOperands.isClobbered(PhysReg)) { -          // Another def has taken the assigned physreg. It must have been a -          // use&def which got it due to reuse. Undo the reuse! -          PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI, -                      Spills, MaybeDeadStores, RegKills, KillOps, *VRM); -        } -      } - -      // If StackSlot is available in a register that also holds other stack -      // slots, clobber those stack slots now. -      Spills.ClobberSharingStackSlots(StackSlot); - -      assert(PhysReg && "VR not assigned a physical register?"); -      MRI->setPhysRegUsed(PhysReg); -      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; -      ReusedOperands.markClobbered(RReg); -      MI.getOperand(i).setReg(RReg); -      MI.getOperand(i).setSubReg(0); - -      if (!MO.isDead() && SpilledMIRegs.insert(VirtReg)) { -        MachineInstr *&LastStore = MaybeDeadStores[StackSlot]; -        SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true, -          LastStore, Spills, ReMatDefs, RegKills, KillOps); -        NextMII = llvm::next(MII); - -        // Check to see if this is a noop copy.  If so, eliminate the -        // instruction before considering the dest reg to be changed. -        if (MI.isIdentityCopy()) { -          ++NumDCE; -          DEBUG(dbgs() << "Removing now-noop copy: " << MI); -          InvalidateKills(MI, TRI, RegKills, KillOps); -          EraseInstr(&MI); -          Erased = true; -          UpdateKills(*LastStore, TRI, RegKills, KillOps); -          goto ProcessNextInst; -        } -      } -    } -    ProcessNextInst: -    // Delete dead instructions without side effects. -    if (!Erased && !BackTracked && isSafeToDelete(MI)) { -      InvalidateKills(MI, TRI, RegKills, KillOps); -      EraseInstr(&MI); -      Erased = true; -    } -    if (!Erased) -      DistanceMap.insert(std::make_pair(&MI, DistanceMap.size())); -    if (!Erased && !BackTracked) { -      for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II) -        UpdateKills(*II, TRI, RegKills, KillOps); -    } -    MII = NextMII; -  } - -} - -llvm::VirtRegRewriter* llvm::createVirtRegRewriter() { -  switch (RewriterOpt) { -  default: llvm_unreachable("Unreachable!"); -  case local: -    return new LocalRewriter(); -  case trivial: -    return new TrivialRewriter(); -  } -} diff --git a/llvm/lib/CodeGen/VirtRegRewriter.h b/llvm/lib/CodeGen/VirtRegRewriter.h deleted file mode 100644 index 93474e0d7ff..00000000000 --- a/llvm/lib/CodeGen/VirtRegRewriter.h +++ /dev/null @@ -1,32 +0,0 @@ -//===-- llvm/CodeGen/VirtRegRewriter.h - VirtRegRewriter -*- C++ -*--------===// -// -//                     The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_CODEGEN_VIRTREGREWRITER_H -#define LLVM_CODEGEN_VIRTREGREWRITER_H - -namespace llvm { -  class LiveIntervals; -  class MachineFunction; -  class VirtRegMap; -   -  /// VirtRegRewriter interface: Implementations of this interface assign -  /// spilled virtual registers to stack slots, rewriting the code. -  struct VirtRegRewriter { -    virtual ~VirtRegRewriter(); -    virtual bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, -                                      LiveIntervals* LIs) = 0; -  }; - -  /// createVirtRegRewriter - Create an return a rewriter object, as specified -  /// on the command line. -  VirtRegRewriter* createVirtRegRewriter(); - -} - -#endif  | 

