summaryrefslogtreecommitdiffstats
path: root/llvm/unittests/Analysis
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/unittests/Analysis')
-rw-r--r--llvm/unittests/Analysis/CMakeLists.txt1
-rw-r--r--llvm/unittests/Analysis/MemorySSA.cpp865
2 files changed, 866 insertions, 0 deletions
diff --git a/llvm/unittests/Analysis/CMakeLists.txt b/llvm/unittests/Analysis/CMakeLists.txt
index 625816ffb08..40d5ea5f5ad 100644
--- a/llvm/unittests/Analysis/CMakeLists.txt
+++ b/llvm/unittests/Analysis/CMakeLists.txt
@@ -15,6 +15,7 @@ add_llvm_unittest(AnalysisTests
LazyCallGraphTest.cpp
LoopInfoTest.cpp
MemoryBuiltinsTest.cpp
+ MemorySSA.cpp
ProfileSummaryInfoTest.cpp
ScalarEvolutionTest.cpp
TBAATest.cpp
diff --git a/llvm/unittests/Analysis/MemorySSA.cpp b/llvm/unittests/Analysis/MemorySSA.cpp
new file mode 100644
index 00000000000..08b0e830a9b
--- /dev/null
+++ b/llvm/unittests/Analysis/MemorySSA.cpp
@@ -0,0 +1,865 @@
+//===- MemorySSA.cpp - Unit tests for MemorySSA ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "gtest/gtest.h"
+
+using namespace llvm;
+
+const static char DLString[] = "e-i64:64-f80:128-n8:16:32:64-S128";
+
+/// There's a lot of common setup between these tests. This fixture helps reduce
+/// that. Tests should mock up a function, store it in F, and then call
+/// setupAnalyses().
+class MemorySSATest : public testing::Test {
+protected:
+ // N.B. Many of these members depend on each other (e.g. the Module depends on
+ // the Context, etc.). So, order matters here (and in TestAnalyses).
+ LLVMContext C;
+ Module M;
+ IRBuilder<> B;
+ DataLayout DL;
+ TargetLibraryInfoImpl TLII;
+ TargetLibraryInfo TLI;
+ Function *F;
+
+ // Things that we need to build after the function is created.
+ struct TestAnalyses {
+ DominatorTree DT;
+ AssumptionCache AC;
+ AAResults AA;
+ BasicAAResult BAA;
+ // We need to defer MSSA construction until AA is *entirely* set up, which
+ // requires calling addAAResult. Hence, we just use a pointer here.
+ std::unique_ptr<MemorySSA> MSSA;
+ MemorySSAWalker *Walker;
+
+ TestAnalyses(MemorySSATest &Test)
+ : DT(*Test.F), AC(*Test.F), AA(Test.TLI),
+ BAA(Test.DL, Test.TLI, AC, &DT) {
+ AA.addAAResult(BAA);
+ MSSA = make_unique<MemorySSA>(*Test.F, &AA, &DT);
+ Walker = MSSA->getWalker();
+ }
+ };
+
+ std::unique_ptr<TestAnalyses> Analyses;
+
+ void setupAnalyses() {
+ assert(F);
+ Analyses.reset(new TestAnalyses(*this));
+ }
+
+public:
+ MemorySSATest()
+ : M("MemorySSATest", C), B(C), DL(DLString), TLI(TLII), F(nullptr) {}
+};
+
+TEST_F(MemorySSATest, CreateALoad) {
+ // We create a diamond where there is a store on one side, and then after
+ // building MemorySSA, create a load after the merge point, and use it to test
+ // updating by creating an access for the load.
+ F = Function::Create(
+ FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ BasicBlock *Entry(BasicBlock::Create(C, "", F));
+ BasicBlock *Left(BasicBlock::Create(C, "", F));
+ BasicBlock *Right(BasicBlock::Create(C, "", F));
+ BasicBlock *Merge(BasicBlock::Create(C, "", F));
+ B.SetInsertPoint(Entry);
+ B.CreateCondBr(B.getTrue(), Left, Right);
+ B.SetInsertPoint(Left);
+ Argument *PointerArg = &*F->arg_begin();
+ B.CreateStore(B.getInt8(16), PointerArg);
+ BranchInst::Create(Merge, Left);
+ BranchInst::Create(Merge, Right);
+
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAUpdater Updater(&MSSA);
+ // Add the load
+ B.SetInsertPoint(Merge);
+ LoadInst *LoadInst = B.CreateLoad(PointerArg);
+
+ // MemoryPHI should already exist.
+ MemoryPhi *MP = MSSA.getMemoryAccess(Merge);
+ EXPECT_NE(MP, nullptr);
+
+ // Create the load memory acccess
+ MemoryUse *LoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
+ LoadInst, MP, Merge, MemorySSA::Beginning));
+ MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
+ EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
+ MSSA.verifyMemorySSA();
+}
+TEST_F(MemorySSATest, CreateLoadsAndStoreUpdater) {
+ // We create a diamond, then build memoryssa with no memory accesses, and
+ // incrementally update it by inserting a store in the, entry, a load in the
+ // merge point, then a store in the branch, another load in the merge point,
+ // and then a store in the entry.
+ F = Function::Create(
+ FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ BasicBlock *Entry(BasicBlock::Create(C, "", F));
+ BasicBlock *Left(BasicBlock::Create(C, "", F));
+ BasicBlock *Right(BasicBlock::Create(C, "", F));
+ BasicBlock *Merge(BasicBlock::Create(C, "", F));
+ B.SetInsertPoint(Entry);
+ B.CreateCondBr(B.getTrue(), Left, Right);
+ B.SetInsertPoint(Left, Left->begin());
+ Argument *PointerArg = &*F->arg_begin();
+ B.SetInsertPoint(Left);
+ B.CreateBr(Merge);
+ B.SetInsertPoint(Right);
+ B.CreateBr(Merge);
+
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAUpdater Updater(&MSSA);
+ // Add the store
+ B.SetInsertPoint(Entry, Entry->begin());
+ StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
+ MemoryAccess *EntryStoreAccess = Updater.createMemoryAccessInBB(
+ EntryStore, nullptr, Entry, MemorySSA::Beginning);
+ Updater.insertDef(cast<MemoryDef>(EntryStoreAccess));
+
+ // Add the load
+ B.SetInsertPoint(Merge, Merge->begin());
+ LoadInst *FirstLoad = B.CreateLoad(PointerArg);
+
+ // MemoryPHI should not already exist.
+ MemoryPhi *MP = MSSA.getMemoryAccess(Merge);
+ EXPECT_EQ(MP, nullptr);
+
+ // Create the load memory access
+ MemoryUse *FirstLoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
+ FirstLoad, nullptr, Merge, MemorySSA::Beginning));
+ Updater.insertUse(FirstLoadAccess);
+ // Should just have a load using the entry access, because it should discover
+ // the phi is trivial
+ EXPECT_EQ(FirstLoadAccess->getDefiningAccess(), EntryStoreAccess);
+
+ // Create a store on the left
+ // Add the store
+ B.SetInsertPoint(Left, Left->begin());
+ StoreInst *LeftStore = B.CreateStore(B.getInt8(16), PointerArg);
+ MemoryAccess *LeftStoreAccess = Updater.createMemoryAccessInBB(
+ LeftStore, nullptr, Left, MemorySSA::Beginning);
+ Updater.insertDef(cast<MemoryDef>(LeftStoreAccess), false);
+ // We don't touch existing loads, so we need to create a new one to get a phi
+ // Add the second load
+ B.SetInsertPoint(Merge, Merge->begin());
+ LoadInst *SecondLoad = B.CreateLoad(PointerArg);
+
+ // MemoryPHI should not already exist.
+ MP = MSSA.getMemoryAccess(Merge);
+ EXPECT_EQ(MP, nullptr);
+
+ // Create the load memory access
+ MemoryUse *SecondLoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
+ SecondLoad, nullptr, Merge, MemorySSA::Beginning));
+ Updater.insertUse(SecondLoadAccess);
+ // Now the load should be a phi of the entry store and the left store
+ MemoryPhi *MergePhi =
+ dyn_cast<MemoryPhi>(SecondLoadAccess->getDefiningAccess());
+ EXPECT_NE(MergePhi, nullptr);
+ EXPECT_EQ(MergePhi->getIncomingValue(0), EntryStoreAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(1), LeftStoreAccess);
+ // Now create a store below the existing one in the entry
+ B.SetInsertPoint(Entry, --Entry->end());
+ StoreInst *SecondEntryStore = B.CreateStore(B.getInt8(16), PointerArg);
+ MemoryAccess *SecondEntryStoreAccess = Updater.createMemoryAccessInBB(
+ SecondEntryStore, nullptr, Entry, MemorySSA::End);
+ // Insert it twice just to test renaming
+ Updater.insertDef(cast<MemoryDef>(SecondEntryStoreAccess), false);
+ EXPECT_NE(FirstLoadAccess->getDefiningAccess(), MergePhi);
+ Updater.insertDef(cast<MemoryDef>(SecondEntryStoreAccess), true);
+ EXPECT_EQ(FirstLoadAccess->getDefiningAccess(), MergePhi);
+ // and make sure the phi below it got updated, despite being blocks away
+ MergePhi = dyn_cast<MemoryPhi>(SecondLoadAccess->getDefiningAccess());
+ EXPECT_NE(MergePhi, nullptr);
+ EXPECT_EQ(MergePhi->getIncomingValue(0), SecondEntryStoreAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(1), LeftStoreAccess);
+ MSSA.verifyMemorySSA();
+}
+
+TEST_F(MemorySSATest, CreateALoadUpdater) {
+ // We create a diamond, then build memoryssa with no memory accesses, and
+ // incrementally update it by inserting a store in one of the branches, and a
+ // load in the merge point
+ F = Function::Create(
+ FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ BasicBlock *Entry(BasicBlock::Create(C, "", F));
+ BasicBlock *Left(BasicBlock::Create(C, "", F));
+ BasicBlock *Right(BasicBlock::Create(C, "", F));
+ BasicBlock *Merge(BasicBlock::Create(C, "", F));
+ B.SetInsertPoint(Entry);
+ B.CreateCondBr(B.getTrue(), Left, Right);
+ B.SetInsertPoint(Left, Left->begin());
+ Argument *PointerArg = &*F->arg_begin();
+ B.SetInsertPoint(Left);
+ B.CreateBr(Merge);
+ B.SetInsertPoint(Right);
+ B.CreateBr(Merge);
+
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAUpdater Updater(&MSSA);
+ B.SetInsertPoint(Left, Left->begin());
+ // Add the store
+ StoreInst *SI = B.CreateStore(B.getInt8(16), PointerArg);
+ MemoryAccess *StoreAccess =
+ Updater.createMemoryAccessInBB(SI, nullptr, Left, MemorySSA::Beginning);
+ Updater.insertDef(cast<MemoryDef>(StoreAccess));
+
+ // Add the load
+ B.SetInsertPoint(Merge, Merge->begin());
+ LoadInst *LoadInst = B.CreateLoad(PointerArg);
+
+ // MemoryPHI should not already exist.
+ MemoryPhi *MP = MSSA.getMemoryAccess(Merge);
+ EXPECT_EQ(MP, nullptr);
+
+ // Create the load memory acccess
+ MemoryUse *LoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
+ LoadInst, nullptr, Merge, MemorySSA::Beginning));
+ Updater.insertUse(LoadAccess);
+ MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
+ EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
+ MSSA.verifyMemorySSA();
+}
+
+TEST_F(MemorySSATest, MoveAStore) {
+ // We create a diamond where there is a in the entry, a store on one side, and
+ // a load at the end. After building MemorySSA, we test updating by moving
+ // the store from the side block to the entry block. This destroys the old
+ // access.
+ F = Function::Create(
+ FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ BasicBlock *Entry(BasicBlock::Create(C, "", F));
+ BasicBlock *Left(BasicBlock::Create(C, "", F));
+ BasicBlock *Right(BasicBlock::Create(C, "", F));
+ BasicBlock *Merge(BasicBlock::Create(C, "", F));
+ B.SetInsertPoint(Entry);
+ Argument *PointerArg = &*F->arg_begin();
+ StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
+ B.CreateCondBr(B.getTrue(), Left, Right);
+ B.SetInsertPoint(Left);
+ StoreInst *SideStore = B.CreateStore(B.getInt8(16), PointerArg);
+ BranchInst::Create(Merge, Left);
+ BranchInst::Create(Merge, Right);
+ B.SetInsertPoint(Merge);
+ B.CreateLoad(PointerArg);
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAUpdater Updater(&MSSA);
+ // Move the store
+ SideStore->moveBefore(Entry->getTerminator());
+ MemoryAccess *EntryStoreAccess = MSSA.getMemoryAccess(EntryStore);
+ MemoryAccess *SideStoreAccess = MSSA.getMemoryAccess(SideStore);
+ MemoryAccess *NewStoreAccess = Updater.createMemoryAccessAfter(
+ SideStore, EntryStoreAccess, EntryStoreAccess);
+ EntryStoreAccess->replaceAllUsesWith(NewStoreAccess);
+ Updater.removeMemoryAccess(SideStoreAccess);
+ MSSA.verifyMemorySSA();
+}
+
+TEST_F(MemorySSATest, MoveAStoreUpdater) {
+ // We create a diamond where there is a in the entry, a store on one side, and
+ // a load at the end. After building MemorySSA, we test updating by moving
+ // the store from the side block to the entry block. This destroys the old
+ // access.
+ F = Function::Create(
+ FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ BasicBlock *Entry(BasicBlock::Create(C, "", F));
+ BasicBlock *Left(BasicBlock::Create(C, "", F));
+ BasicBlock *Right(BasicBlock::Create(C, "", F));
+ BasicBlock *Merge(BasicBlock::Create(C, "", F));
+ B.SetInsertPoint(Entry);
+ Argument *PointerArg = &*F->arg_begin();
+ StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
+ B.CreateCondBr(B.getTrue(), Left, Right);
+ B.SetInsertPoint(Left);
+ auto *SideStore = B.CreateStore(B.getInt8(16), PointerArg);
+ BranchInst::Create(Merge, Left);
+ BranchInst::Create(Merge, Right);
+ B.SetInsertPoint(Merge);
+ auto *MergeLoad = B.CreateLoad(PointerArg);
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAUpdater Updater(&MSSA);
+
+ // Move the store
+ SideStore->moveBefore(Entry->getTerminator());
+ auto *EntryStoreAccess = MSSA.getMemoryAccess(EntryStore);
+ auto *SideStoreAccess = MSSA.getMemoryAccess(SideStore);
+ auto *NewStoreAccess = Updater.createMemoryAccessAfter(
+ SideStore, EntryStoreAccess, EntryStoreAccess);
+ // Before, the load will point to a phi of the EntryStore and SideStore.
+ auto *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(MergeLoad));
+ EXPECT_TRUE(isa<MemoryPhi>(LoadAccess->getDefiningAccess()));
+ MemoryPhi *MergePhi = cast<MemoryPhi>(LoadAccess->getDefiningAccess());
+ EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(0), SideStoreAccess);
+ Updater.removeMemoryAccess(SideStoreAccess);
+ Updater.insertDef(cast<MemoryDef>(NewStoreAccess));
+ // After it's a phi of the new side store access.
+ EXPECT_EQ(MergePhi->getIncomingValue(0), NewStoreAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(1), NewStoreAccess);
+ MSSA.verifyMemorySSA();
+}
+
+TEST_F(MemorySSATest, MoveAStoreUpdaterMove) {
+ // We create a diamond where there is a in the entry, a store on one side, and
+ // a load at the end. After building MemorySSA, we test updating by moving
+ // the store from the side block to the entry block. This does not destroy
+ // the old access.
+ F = Function::Create(
+ FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ BasicBlock *Entry(BasicBlock::Create(C, "", F));
+ BasicBlock *Left(BasicBlock::Create(C, "", F));
+ BasicBlock *Right(BasicBlock::Create(C, "", F));
+ BasicBlock *Merge(BasicBlock::Create(C, "", F));
+ B.SetInsertPoint(Entry);
+ Argument *PointerArg = &*F->arg_begin();
+ StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
+ B.CreateCondBr(B.getTrue(), Left, Right);
+ B.SetInsertPoint(Left);
+ auto *SideStore = B.CreateStore(B.getInt8(16), PointerArg);
+ BranchInst::Create(Merge, Left);
+ BranchInst::Create(Merge, Right);
+ B.SetInsertPoint(Merge);
+ auto *MergeLoad = B.CreateLoad(PointerArg);
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAUpdater Updater(&MSSA);
+
+ // Move the store
+ auto *EntryStoreAccess = MSSA.getMemoryAccess(EntryStore);
+ auto *SideStoreAccess = MSSA.getMemoryAccess(SideStore);
+ // Before, the load will point to a phi of the EntryStore and SideStore.
+ auto *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(MergeLoad));
+ EXPECT_TRUE(isa<MemoryPhi>(LoadAccess->getDefiningAccess()));
+ MemoryPhi *MergePhi = cast<MemoryPhi>(LoadAccess->getDefiningAccess());
+ EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(0), SideStoreAccess);
+ SideStore->moveBefore(*EntryStore->getParent(), ++EntryStore->getIterator());
+ Updater.moveAfter(SideStoreAccess, EntryStoreAccess);
+ // After, it's a phi of the side store.
+ EXPECT_EQ(MergePhi->getIncomingValue(0), SideStoreAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(1), SideStoreAccess);
+
+ MSSA.verifyMemorySSA();
+}
+
+TEST_F(MemorySSATest, MoveAStoreAllAround) {
+ // We create a diamond where there is a in the entry, a store on one side, and
+ // a load at the end. After building MemorySSA, we test updating by moving
+ // the store from the side block to the entry block, then to the other side
+ // block, then to before the load. This does not destroy the old access.
+ F = Function::Create(
+ FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ BasicBlock *Entry(BasicBlock::Create(C, "", F));
+ BasicBlock *Left(BasicBlock::Create(C, "", F));
+ BasicBlock *Right(BasicBlock::Create(C, "", F));
+ BasicBlock *Merge(BasicBlock::Create(C, "", F));
+ B.SetInsertPoint(Entry);
+ Argument *PointerArg = &*F->arg_begin();
+ StoreInst *EntryStore = B.CreateStore(B.getInt8(16), PointerArg);
+ B.CreateCondBr(B.getTrue(), Left, Right);
+ B.SetInsertPoint(Left);
+ auto *SideStore = B.CreateStore(B.getInt8(16), PointerArg);
+ BranchInst::Create(Merge, Left);
+ BranchInst::Create(Merge, Right);
+ B.SetInsertPoint(Merge);
+ auto *MergeLoad = B.CreateLoad(PointerArg);
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAUpdater Updater(&MSSA);
+
+ // Move the store
+ auto *EntryStoreAccess = MSSA.getMemoryAccess(EntryStore);
+ auto *SideStoreAccess = MSSA.getMemoryAccess(SideStore);
+ // Before, the load will point to a phi of the EntryStore and SideStore.
+ auto *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(MergeLoad));
+ EXPECT_TRUE(isa<MemoryPhi>(LoadAccess->getDefiningAccess()));
+ MemoryPhi *MergePhi = cast<MemoryPhi>(LoadAccess->getDefiningAccess());
+ EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(0), SideStoreAccess);
+ // Move the store before the entry store
+ SideStore->moveBefore(*EntryStore->getParent(), EntryStore->getIterator());
+ Updater.moveBefore(SideStoreAccess, EntryStoreAccess);
+ // After, it's a phi of the entry store.
+ EXPECT_EQ(MergePhi->getIncomingValue(0), EntryStoreAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
+ MSSA.verifyMemorySSA();
+ // Now move the store to the right branch
+ SideStore->moveBefore(*Right, Right->begin());
+ Updater.moveToPlace(SideStoreAccess, Right, MemorySSA::Beginning);
+ MSSA.verifyMemorySSA();
+ EXPECT_EQ(MergePhi->getIncomingValue(0), EntryStoreAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(1), SideStoreAccess);
+ // Now move it before the load
+ SideStore->moveBefore(MergeLoad);
+ Updater.moveBefore(SideStoreAccess, LoadAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(0), EntryStoreAccess);
+ EXPECT_EQ(MergePhi->getIncomingValue(1), EntryStoreAccess);
+ MSSA.verifyMemorySSA();
+}
+
+TEST_F(MemorySSATest, RemoveAPhi) {
+ // We create a diamond where there is a store on one side, and then a load
+ // after the merge point. This enables us to test a bunch of different
+ // removal cases.
+ F = Function::Create(
+ FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ BasicBlock *Entry(BasicBlock::Create(C, "", F));
+ BasicBlock *Left(BasicBlock::Create(C, "", F));
+ BasicBlock *Right(BasicBlock::Create(C, "", F));
+ BasicBlock *Merge(BasicBlock::Create(C, "", F));
+ B.SetInsertPoint(Entry);
+ B.CreateCondBr(B.getTrue(), Left, Right);
+ B.SetInsertPoint(Left);
+ Argument *PointerArg = &*F->arg_begin();
+ StoreInst *StoreInst = B.CreateStore(B.getInt8(16), PointerArg);
+ BranchInst::Create(Merge, Left);
+ BranchInst::Create(Merge, Right);
+ B.SetInsertPoint(Merge);
+ LoadInst *LoadInst = B.CreateLoad(PointerArg);
+
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAUpdater Updater(&MSSA);
+
+ // Before, the load will be a use of a phi<store, liveonentry>.
+ MemoryUse *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(LoadInst));
+ MemoryDef *StoreAccess = cast<MemoryDef>(MSSA.getMemoryAccess(StoreInst));
+ MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
+ EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
+ // Kill the store
+ Updater.removeMemoryAccess(StoreAccess);
+ MemoryPhi *MP = cast<MemoryPhi>(DefiningAccess);
+ // Verify the phi ended up as liveonentry, liveonentry
+ for (auto &Op : MP->incoming_values())
+ EXPECT_TRUE(MSSA.isLiveOnEntryDef(cast<MemoryAccess>(Op.get())));
+ // Replace the phi uses with the live on entry def
+ MP->replaceAllUsesWith(MSSA.getLiveOnEntryDef());
+ // Verify the load is now defined by liveOnEntryDef
+ EXPECT_TRUE(MSSA.isLiveOnEntryDef(LoadAccess->getDefiningAccess()));
+ // Remove the PHI
+ Updater.removeMemoryAccess(MP);
+ MSSA.verifyMemorySSA();
+}
+
+TEST_F(MemorySSATest, RemoveMemoryAccess) {
+ // We create a diamond where there is a store on one side, and then a load
+ // after the merge point. This enables us to test a bunch of different
+ // removal cases.
+ F = Function::Create(
+ FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ BasicBlock *Entry(BasicBlock::Create(C, "", F));
+ BasicBlock *Left(BasicBlock::Create(C, "", F));
+ BasicBlock *Right(BasicBlock::Create(C, "", F));
+ BasicBlock *Merge(BasicBlock::Create(C, "", F));
+ B.SetInsertPoint(Entry);
+ B.CreateCondBr(B.getTrue(), Left, Right);
+ B.SetInsertPoint(Left);
+ Argument *PointerArg = &*F->arg_begin();
+ StoreInst *StoreInst = B.CreateStore(B.getInt8(16), PointerArg);
+ BranchInst::Create(Merge, Left);
+ BranchInst::Create(Merge, Right);
+ B.SetInsertPoint(Merge);
+ LoadInst *LoadInst = B.CreateLoad(PointerArg);
+
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAWalker *Walker = Analyses->Walker;
+ MemorySSAUpdater Updater(&MSSA);
+
+ // Before, the load will be a use of a phi<store, liveonentry>. It should be
+ // the same after.
+ MemoryUse *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(LoadInst));
+ MemoryDef *StoreAccess = cast<MemoryDef>(MSSA.getMemoryAccess(StoreInst));
+ MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
+ EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
+ // The load is currently clobbered by one of the phi arguments, so the walker
+ // should determine the clobbering access as the phi.
+ EXPECT_EQ(DefiningAccess, Walker->getClobberingMemoryAccess(LoadInst));
+ Updater.removeMemoryAccess(StoreAccess);
+ MSSA.verifyMemorySSA();
+ // After the removeaccess, let's see if we got the right accesses
+ // The load should still point to the phi ...
+ EXPECT_EQ(DefiningAccess, LoadAccess->getDefiningAccess());
+ // but we should now get live on entry for the clobbering definition of the
+ // load, since it will walk past the phi node since every argument is the
+ // same.
+ // XXX: This currently requires either removing the phi or resetting optimized
+ // on the load
+
+ EXPECT_FALSE(
+ MSSA.isLiveOnEntryDef(Walker->getClobberingMemoryAccess(LoadInst)));
+ // If we reset optimized, we get live on entry.
+ LoadAccess->resetOptimized();
+ EXPECT_TRUE(
+ MSSA.isLiveOnEntryDef(Walker->getClobberingMemoryAccess(LoadInst)));
+ // The phi should now be a two entry phi with two live on entry defs.
+ for (const auto &Op : DefiningAccess->operands()) {
+ MemoryAccess *Operand = cast<MemoryAccess>(&*Op);
+ EXPECT_TRUE(MSSA.isLiveOnEntryDef(Operand));
+ }
+
+ // Now we try to remove the single valued phi
+ Updater.removeMemoryAccess(DefiningAccess);
+ MSSA.verifyMemorySSA();
+ // Now the load should be a load of live on entry.
+ EXPECT_TRUE(MSSA.isLiveOnEntryDef(LoadAccess->getDefiningAccess()));
+}
+
+// We had a bug with caching where the walker would report MemoryDef#3's clobber
+// (below) was MemoryDef#1.
+//
+// define void @F(i8*) {
+// %A = alloca i8, i8 1
+// ; 1 = MemoryDef(liveOnEntry)
+// store i8 0, i8* %A
+// ; 2 = MemoryDef(1)
+// store i8 1, i8* %A
+// ; 3 = MemoryDef(2)
+// store i8 2, i8* %A
+// }
+TEST_F(MemorySSATest, TestTripleStore) {
+ F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ B.SetInsertPoint(BasicBlock::Create(C, "", F));
+ Type *Int8 = Type::getInt8Ty(C);
+ Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
+ StoreInst *S1 = B.CreateStore(ConstantInt::get(Int8, 0), Alloca);
+ StoreInst *S2 = B.CreateStore(ConstantInt::get(Int8, 1), Alloca);
+ StoreInst *S3 = B.CreateStore(ConstantInt::get(Int8, 2), Alloca);
+
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAWalker *Walker = Analyses->Walker;
+
+ unsigned I = 0;
+ for (StoreInst *V : {S1, S2, S3}) {
+ // Everything should be clobbered by its defining access
+ MemoryAccess *DefiningAccess = MSSA.getMemoryAccess(V)->getDefiningAccess();
+ MemoryAccess *WalkerClobber = Walker->getClobberingMemoryAccess(V);
+ EXPECT_EQ(DefiningAccess, WalkerClobber)
+ << "Store " << I << " doesn't have the correct clobbering access";
+ // EXPECT_EQ expands such that if we increment I above, it won't get
+ // incremented except when we try to print the error message.
+ ++I;
+ }
+}
+
+// ...And fixing the above bug made it obvious that, when walking, MemorySSA's
+// walker was caching the initial node it walked. This was fine (albeit
+// mostly redundant) unless the initial node being walked is a clobber for the
+// query. In that case, we'd cache that the node clobbered itself.
+TEST_F(MemorySSATest, TestStoreAndLoad) {
+ F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ B.SetInsertPoint(BasicBlock::Create(C, "", F));
+ Type *Int8 = Type::getInt8Ty(C);
+ Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
+ Instruction *SI = B.CreateStore(ConstantInt::get(Int8, 0), Alloca);
+ Instruction *LI = B.CreateLoad(Alloca);
+
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAWalker *Walker = Analyses->Walker;
+
+ MemoryAccess *LoadClobber = Walker->getClobberingMemoryAccess(LI);
+ EXPECT_EQ(LoadClobber, MSSA.getMemoryAccess(SI));
+ EXPECT_TRUE(MSSA.isLiveOnEntryDef(Walker->getClobberingMemoryAccess(SI)));
+}
+
+// Another bug (related to the above two fixes): It was noted that, given the
+// following code:
+// ; 1 = MemoryDef(liveOnEntry)
+// store i8 0, i8* %1
+//
+// ...A query to getClobberingMemoryAccess(MemoryAccess*, MemoryLocation) would
+// hand back the store (correctly). A later call to
+// getClobberingMemoryAccess(const Instruction*) would also hand back the store
+// (incorrectly; it should return liveOnEntry).
+//
+// This test checks that repeated calls to either function returns what they're
+// meant to.
+TEST_F(MemorySSATest, TestStoreDoubleQuery) {
+ F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ B.SetInsertPoint(BasicBlock::Create(C, "", F));
+ Type *Int8 = Type::getInt8Ty(C);
+ Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
+ StoreInst *SI = B.CreateStore(ConstantInt::get(Int8, 0), Alloca);
+
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAWalker *Walker = Analyses->Walker;
+
+ MemoryAccess *StoreAccess = MSSA.getMemoryAccess(SI);
+ MemoryLocation StoreLoc = MemoryLocation::get(SI);
+ MemoryAccess *Clobber =
+ Walker->getClobberingMemoryAccess(StoreAccess, StoreLoc);
+ MemoryAccess *LiveOnEntry = Walker->getClobberingMemoryAccess(SI);
+
+ EXPECT_EQ(Clobber, StoreAccess);
+ EXPECT_TRUE(MSSA.isLiveOnEntryDef(LiveOnEntry));
+
+ // Try again (with entries in the cache already) for good measure...
+ Clobber = Walker->getClobberingMemoryAccess(StoreAccess, StoreLoc);
+ LiveOnEntry = Walker->getClobberingMemoryAccess(SI);
+ EXPECT_EQ(Clobber, StoreAccess);
+ EXPECT_TRUE(MSSA.isLiveOnEntryDef(LiveOnEntry));
+}
+
+// Bug: During phi optimization, the walker wouldn't cache to the proper result
+// in the farthest-walked BB.
+//
+// Specifically, it would assume that whatever we walked to was a clobber.
+// "Whatever we walked to" isn't a clobber if we hit a cache entry.
+//
+// ...So, we need a test case that looks like:
+// A
+// / \
+// B |
+// \ /
+// C
+//
+// Where, when we try to optimize a thing in 'C', a blocker is found in 'B'.
+// The walk must determine that the blocker exists by using cache entries *while
+// walking* 'B'.
+TEST_F(MemorySSATest, PartialWalkerCacheWithPhis) {
+ F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ B.SetInsertPoint(BasicBlock::Create(C, "A", F));
+ Type *Int8 = Type::getInt8Ty(C);
+ Constant *One = ConstantInt::get(Int8, 1);
+ Constant *Zero = ConstantInt::get(Int8, 0);
+ Value *AllocA = B.CreateAlloca(Int8, One, "a");
+ Value *AllocB = B.CreateAlloca(Int8, One, "b");
+ BasicBlock *IfThen = BasicBlock::Create(C, "B", F);
+ BasicBlock *IfEnd = BasicBlock::Create(C, "C", F);
+
+ B.CreateCondBr(UndefValue::get(Type::getInt1Ty(C)), IfThen, IfEnd);
+
+ B.SetInsertPoint(IfThen);
+ Instruction *FirstStore = B.CreateStore(Zero, AllocA);
+ B.CreateStore(Zero, AllocB);
+ Instruction *ALoad0 = B.CreateLoad(AllocA, "");
+ Instruction *BStore = B.CreateStore(Zero, AllocB);
+ // Due to use optimization/etc. we make a store to A, which is removed after
+ // we build MSSA. This helps keep the test case simple-ish.
+ Instruction *KillStore = B.CreateStore(Zero, AllocA);
+ Instruction *ALoad = B.CreateLoad(AllocA, "");
+ B.CreateBr(IfEnd);
+
+ B.SetInsertPoint(IfEnd);
+ Instruction *BelowPhi = B.CreateStore(Zero, AllocA);
+
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAWalker *Walker = Analyses->Walker;
+ MemorySSAUpdater Updater(&MSSA);
+
+ // Kill `KillStore`; it exists solely so that the load after it won't be
+ // optimized to FirstStore.
+ Updater.removeMemoryAccess(MSSA.getMemoryAccess(KillStore));
+ KillStore->eraseFromParent();
+ auto *ALoadMA = cast<MemoryUse>(MSSA.getMemoryAccess(ALoad));
+ EXPECT_EQ(ALoadMA->getDefiningAccess(), MSSA.getMemoryAccess(BStore));
+
+ // Populate the cache for the store to AllocB directly after FirstStore. It
+ // should point to something in block B (so something in D can't be optimized
+ // to it).
+ MemoryAccess *Load0Clobber = Walker->getClobberingMemoryAccess(ALoad0);
+ EXPECT_EQ(MSSA.getMemoryAccess(FirstStore), Load0Clobber);
+
+ // If the bug exists, this will introduce a bad cache entry for %a on BStore.
+ // It will point to the store to %b after FirstStore. This only happens during
+ // phi optimization.
+ MemoryAccess *BottomClobber = Walker->getClobberingMemoryAccess(BelowPhi);
+ MemoryAccess *Phi = MSSA.getMemoryAccess(IfEnd);
+ EXPECT_EQ(BottomClobber, Phi);
+
+ // This query will first check the cache for {%a, BStore}. It should point to
+ // FirstStore, not to the store after FirstStore.
+ MemoryAccess *UseClobber = Walker->getClobberingMemoryAccess(ALoad);
+ EXPECT_EQ(UseClobber, MSSA.getMemoryAccess(FirstStore));
+}
+
+// Test that our walker properly handles loads with the invariant group
+// attribute. It's a bit hacky, since we add the invariant attribute *after*
+// building MSSA. Otherwise, the use optimizer will optimize it for us, which
+// isn't what we want.
+// FIXME: It may be easier/cleaner to just add an 'optimize uses?' flag to MSSA.
+TEST_F(MemorySSATest, WalkerInvariantLoadOpt) {
+ F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ B.SetInsertPoint(BasicBlock::Create(C, "", F));
+ Type *Int8 = Type::getInt8Ty(C);
+ Constant *One = ConstantInt::get(Int8, 1);
+ Value *AllocA = B.CreateAlloca(Int8, One, "");
+
+ Instruction *Store = B.CreateStore(One, AllocA);
+ Instruction *Load = B.CreateLoad(AllocA);
+
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAWalker *Walker = Analyses->Walker;
+
+ auto *LoadMA = cast<MemoryUse>(MSSA.getMemoryAccess(Load));
+ auto *StoreMA = cast<MemoryDef>(MSSA.getMemoryAccess(Store));
+ EXPECT_EQ(LoadMA->getDefiningAccess(), StoreMA);
+
+ // ...At the time of writing, no cache should exist for LoadMA. Be a bit
+ // flexible to future changes.
+ Walker->invalidateInfo(LoadMA);
+ Load->setMetadata(LLVMContext::MD_invariant_load, MDNode::get(C, {}));
+
+ MemoryAccess *LoadClobber = Walker->getClobberingMemoryAccess(LoadMA);
+ EXPECT_EQ(LoadClobber, MSSA.getLiveOnEntryDef());
+}
+
+// Test loads get reoptimized properly by the walker.
+TEST_F(MemorySSATest, WalkerReopt) {
+ F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ B.SetInsertPoint(BasicBlock::Create(C, "", F));
+ Type *Int8 = Type::getInt8Ty(C);
+ Value *AllocaA = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
+ Instruction *SIA = B.CreateStore(ConstantInt::get(Int8, 0), AllocaA);
+ Value *AllocaB = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "B");
+ Instruction *SIB = B.CreateStore(ConstantInt::get(Int8, 0), AllocaB);
+ Instruction *LIA = B.CreateLoad(AllocaA);
+
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAWalker *Walker = Analyses->Walker;
+ MemorySSAUpdater Updater(&MSSA);
+
+ MemoryAccess *LoadClobber = Walker->getClobberingMemoryAccess(LIA);
+ MemoryUse *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(LIA));
+ EXPECT_EQ(LoadClobber, MSSA.getMemoryAccess(SIA));
+ EXPECT_TRUE(MSSA.isLiveOnEntryDef(Walker->getClobberingMemoryAccess(SIA)));
+ Updater.removeMemoryAccess(LoadAccess);
+
+ // Create the load memory access pointing to an unoptimized place.
+ MemoryUse *NewLoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
+ LIA, MSSA.getMemoryAccess(SIB), LIA->getParent(), MemorySSA::End));
+ // This should it cause it to be optimized
+ EXPECT_EQ(Walker->getClobberingMemoryAccess(NewLoadAccess), LoadClobber);
+ EXPECT_EQ(NewLoadAccess->getDefiningAccess(), LoadClobber);
+}
+
+// Test out MemorySSAUpdater::moveBefore
+TEST_F(MemorySSATest, MoveAboveMemoryDef) {
+ F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+ B.SetInsertPoint(BasicBlock::Create(C, "", F));
+
+ Type *Int8 = Type::getInt8Ty(C);
+ Value *A = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
+ Value *B_ = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "B");
+ Value *C = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "C");
+
+ StoreInst *StoreA0 = B.CreateStore(ConstantInt::get(Int8, 0), A);
+ StoreInst *StoreB = B.CreateStore(ConstantInt::get(Int8, 0), B_);
+ LoadInst *LoadB = B.CreateLoad(B_);
+ StoreInst *StoreA1 = B.CreateStore(ConstantInt::get(Int8, 4), A);
+ StoreInst *StoreC = B.CreateStore(ConstantInt::get(Int8, 4), C);
+ StoreInst *StoreA2 = B.CreateStore(ConstantInt::get(Int8, 4), A);
+ LoadInst *LoadC = B.CreateLoad(C);
+
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAWalker &Walker = *Analyses->Walker;
+
+ MemorySSAUpdater Updater(&MSSA);
+ StoreC->moveBefore(StoreB);
+ Updater.moveBefore(cast<MemoryDef>(MSSA.getMemoryAccess(StoreC)),
+ cast<MemoryDef>(MSSA.getMemoryAccess(StoreB)));
+
+ MSSA.verifyMemorySSA();
+
+ EXPECT_EQ(MSSA.getMemoryAccess(StoreB)->getDefiningAccess(),
+ MSSA.getMemoryAccess(StoreC));
+ EXPECT_EQ(MSSA.getMemoryAccess(StoreC)->getDefiningAccess(),
+ MSSA.getMemoryAccess(StoreA0));
+ EXPECT_EQ(MSSA.getMemoryAccess(StoreA2)->getDefiningAccess(),
+ MSSA.getMemoryAccess(StoreA1));
+ EXPECT_EQ(Walker.getClobberingMemoryAccess(LoadB),
+ MSSA.getMemoryAccess(StoreB));
+ EXPECT_EQ(Walker.getClobberingMemoryAccess(LoadC),
+ MSSA.getMemoryAccess(StoreC));
+
+ // exercise block numbering
+ EXPECT_TRUE(MSSA.locallyDominates(MSSA.getMemoryAccess(StoreC),
+ MSSA.getMemoryAccess(StoreB)));
+ EXPECT_TRUE(MSSA.locallyDominates(MSSA.getMemoryAccess(StoreA1),
+ MSSA.getMemoryAccess(StoreA2)));
+}
+
+TEST_F(MemorySSATest, Irreducible) {
+ // Create the equivalent of
+ // x = something
+ // if (...)
+ // goto second_loop_entry
+ // while (...) {
+ // second_loop_entry:
+ // }
+ // use(x)
+
+ SmallVector<PHINode *, 8> Inserted;
+ IRBuilder<> B(C);
+ F = Function::Create(
+ FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
+ GlobalValue::ExternalLinkage, "F", &M);
+
+ // Make blocks
+ BasicBlock *IfBB = BasicBlock::Create(C, "if", F);
+ BasicBlock *LoopStartBB = BasicBlock::Create(C, "loopstart", F);
+ BasicBlock *LoopMainBB = BasicBlock::Create(C, "loopmain", F);
+ BasicBlock *AfterLoopBB = BasicBlock::Create(C, "afterloop", F);
+ B.SetInsertPoint(IfBB);
+ B.CreateCondBr(B.getTrue(), LoopMainBB, LoopStartBB);
+ B.SetInsertPoint(LoopStartBB);
+ B.CreateBr(LoopMainBB);
+ B.SetInsertPoint(LoopMainBB);
+ B.CreateCondBr(B.getTrue(), LoopStartBB, AfterLoopBB);
+ B.SetInsertPoint(AfterLoopBB);
+ Argument *FirstArg = &*F->arg_begin();
+ setupAnalyses();
+ MemorySSA &MSSA = *Analyses->MSSA;
+ MemorySSAUpdater Updater(&MSSA);
+ // Create the load memory acccess
+ LoadInst *LoadInst = B.CreateLoad(FirstArg);
+ MemoryUse *LoadAccess = cast<MemoryUse>(Updater.createMemoryAccessInBB(
+ LoadInst, nullptr, AfterLoopBB, MemorySSA::Beginning));
+ Updater.insertUse(LoadAccess);
+ MSSA.verifyMemorySSA();
+}
OpenPOWER on IntegriCloud