diff options
Diffstat (limited to 'llvm/tools/llvm-exegesis/lib/Uops.cpp')
| -rw-r--r-- | llvm/tools/llvm-exegesis/lib/Uops.cpp | 248 |
1 files changed, 248 insertions, 0 deletions
diff --git a/llvm/tools/llvm-exegesis/lib/Uops.cpp b/llvm/tools/llvm-exegesis/lib/Uops.cpp new file mode 100644 index 00000000000..bcfc5572a1f --- /dev/null +++ b/llvm/tools/llvm-exegesis/lib/Uops.cpp @@ -0,0 +1,248 @@ +//===-- Uops.cpp ------------------------------------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "Uops.h" +#include "BenchmarkResult.h" +#include "InstructionSnippetGenerator.h" +#include "PerfHelper.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCSchedule.h" +#include "llvm/Support/Error.h" +#include <algorithm> +#include <random> +#include <unordered_map> +#include <unordered_set> + +namespace exegesis { + +// FIXME: Handle memory (see PR36906) +static bool isInvalidOperand(const llvm::MCOperandInfo &OpInfo) { + switch (OpInfo.OperandType) { + default: + return true; + case llvm::MCOI::OPERAND_IMMEDIATE: + case llvm::MCOI::OPERAND_REGISTER: + return false; + } +} + +static llvm::Error makeError(llvm::Twine Msg) { + return llvm::make_error<llvm::StringError>(Msg, + llvm::inconvertibleErrorCode()); +} + +// FIXME: Read the counter names from the ProcResourceUnits when PR36984 is +// fixed. +static const std::string *getEventNameFromProcResName(const char *ProcResName) { + static const std::unordered_map<std::string, std::string> Entries = { + {"SBPort0", "UOPS_DISPATCHED_PORT:PORT_0"}, + {"SBPort1", "UOPS_DISPATCHED_PORT:PORT_1"}, + {"SBPort4", "UOPS_DISPATCHED_PORT:PORT_4"}, + {"SBPort5", "UOPS_DISPATCHED_PORT:PORT_5"}, + {"HWPort0", "UOPS_DISPATCHED_PORT:PORT_0"}, + {"HWPort1", "UOPS_DISPATCHED_PORT:PORT_1"}, + {"HWPort2", "UOPS_DISPATCHED_PORT:PORT_2"}, + {"HWPort3", "UOPS_DISPATCHED_PORT:PORT_3"}, + {"HWPort4", "UOPS_DISPATCHED_PORT:PORT_4"}, + {"HWPort5", "UOPS_DISPATCHED_PORT:PORT_5"}, + {"HWPort6", "UOPS_DISPATCHED_PORT:PORT_6"}, + {"HWPort7", "UOPS_DISPATCHED_PORT:PORT_7"}, + {"SKLPort0", "UOPS_DISPATCHED_PORT:PORT_0"}, + {"SKLPort1", "UOPS_DISPATCHED_PORT:PORT_1"}, + {"SKLPort2", "UOPS_DISPATCHED_PORT:PORT_2"}, + {"SKLPort3", "UOPS_DISPATCHED_PORT:PORT_3"}, + {"SKLPort4", "UOPS_DISPATCHED_PORT:PORT_4"}, + {"SKLPort5", "UOPS_DISPATCHED_PORT:PORT_5"}, + {"SKLPort6", "UOPS_DISPATCHED_PORT:PORT_6"}, + {"SKXPort7", "UOPS_DISPATCHED_PORT:PORT_7"}, + {"SKXPort0", "UOPS_DISPATCHED_PORT:PORT_0"}, + {"SKXPort1", "UOPS_DISPATCHED_PORT:PORT_1"}, + {"SKXPort2", "UOPS_DISPATCHED_PORT:PORT_2"}, + {"SKXPort3", "UOPS_DISPATCHED_PORT:PORT_3"}, + {"SKXPort4", "UOPS_DISPATCHED_PORT:PORT_4"}, + {"SKXPort5", "UOPS_DISPATCHED_PORT:PORT_5"}, + {"SKXPort6", "UOPS_DISPATCHED_PORT:PORT_6"}, + {"SKXPort7", "UOPS_DISPATCHED_PORT:PORT_7"}, + }; + const auto It = Entries.find(ProcResName); + return It == Entries.end() ? nullptr : &It->second; +} + +static std::vector<llvm::MCInst> generateIndependentAssignments( + const LLVMState &State, const llvm::MCInstrDesc &InstrDesc, + llvm::SmallVector<Variable, 8> Vars, int MaxAssignments) { + std::unordered_set<llvm::MCPhysReg> IsUsedByAnyVar; + for (const Variable &Var : Vars) { + if (Var.IsUse) { + IsUsedByAnyVar.insert(Var.PossibleRegisters.begin(), + Var.PossibleRegisters.end()); + } + } + + std::vector<llvm::MCInst> Pattern; + for (int A = 0; A < MaxAssignments; ++A) { + // FIXME: This is a bit pessimistic. We should get away with an + // assignment that ensures that the set of assigned registers for uses and + // the set of assigned registers for defs do not intersect (registers + // for uses (resp defs) do not have to be all distinct). + const std::vector<llvm::MCPhysReg> Regs = getExclusiveAssignment(Vars); + if (Regs.empty()) + break; + // Remove all assigned registers defs that are used by at least one other + // variable from the list of possible variable registers. This ensures that + // we never create a RAW hazard that would lead to serialization. + for (size_t I = 0, E = Vars.size(); I < E; ++I) { + llvm::MCPhysReg Reg = Regs[I]; + if (Vars[I].IsDef && IsUsedByAnyVar.count(Reg)) { + Vars[I].PossibleRegisters.remove(Reg); + } + } + // Create an MCInst and check assembly. + llvm::MCInst Inst = generateMCInst(InstrDesc, Vars, Regs); + if (!State.canAssemble(Inst)) + continue; + Pattern.push_back(std::move(Inst)); + } + return Pattern; +} + +UopsBenchmarkRunner::~UopsBenchmarkRunner() = default; + +const char *UopsBenchmarkRunner::getDisplayName() const { return "uops"; } + +llvm::Expected<std::vector<llvm::MCInst>> UopsBenchmarkRunner::createCode( + const LLVMState &State, const unsigned OpcodeIndex, + const unsigned NumRepetitions, const JitFunctionContext &Context) const { + const auto &InstrInfo = State.getInstrInfo(); + const auto &RegInfo = State.getRegInfo(); + const llvm::MCInstrDesc &InstrDesc = InstrInfo.get(OpcodeIndex); + for (const llvm::MCOperandInfo &OpInfo : InstrDesc.operands()) { + if (isInvalidOperand(OpInfo)) + return makeError("Only registers and immediates are supported"); + } + + // FIXME: Load constants into registers (e.g. with fld1) to not break + // instructions like x87. + + // Ideally we would like the only limitation on executing uops to be the issue + // ports. Maximizing port pressure increases the likelihood that the load is + // distributed evenly across possible ports. + + // To achieve that, one approach is to generate instructions that do not have + // data dependencies between them. + // + // For some instructions, this is trivial: + // mov rax, qword ptr [rsi] + // mov rax, qword ptr [rsi] + // mov rax, qword ptr [rsi] + // mov rax, qword ptr [rsi] + // For the above snippet, haswell just renames rax four times and executes the + // four instructions two at a time on P23 and P0126. + // + // For some instructions, we just need to make sure that the source is + // different from the destination. For example, IDIV8r reads from GPR and + // writes to AX. We just need to ensure that the variable is assigned a + // register which is different from AX: + // idiv bx + // idiv bx + // idiv bx + // idiv bx + // The above snippet will be able to fully saturate the ports, while the same + // with ax would issue one uop every `latency(IDIV8r)` cycles. + // + // Some instructions make this harder because they both read and write from + // the same register: + // inc rax + // inc rax + // inc rax + // inc rax + // This has a data dependency from each instruction to the next, limit the + // number of instructions that can be issued in parallel. + // It turns out that this is not a big issue on recent Intel CPUs because they + // have heuristics to balance port pressure. In the snippet above, subsequent + // instructions will end up evenly distributed on {P0,P1,P5,P6}, but some CPUs + // might end up executing them all on P0 (just because they can), or try + // avoiding P5 because it's usually under high pressure from vector + // instructions. + // This issue is even more important for high-latency instructions because + // they increase the idle time of the CPU, e.g. : + // imul rax, rbx + // imul rax, rbx + // imul rax, rbx + // imul rax, rbx + // + // To avoid that, we do the renaming statically by generating as many + // independent exclusive assignments as possible (until all possible registers + // are exhausted) e.g.: + // imul rax, rbx + // imul rcx, rbx + // imul rdx, rbx + // imul r8, rbx + // + // Some instruction even make the above static renaming impossible because + // they implicitly read and write from the same operand, e.g. ADC16rr reads + // and writes from EFLAGS. + // In that case we just use a greedy register assignment and hope for the + // best. + + const auto Vars = getVariables(RegInfo, InstrDesc, Context.getReservedRegs()); + + // Generate as many independent exclusive assignments as possible. + constexpr const int MaxStaticRenames = 20; + std::vector<llvm::MCInst> Pattern = + generateIndependentAssignments(State, InstrDesc, Vars, MaxStaticRenames); + if (Pattern.empty()) { + // We don't even have a single exclusive assignment, fallback to a greedy + // assignment. + // FIXME: Tell the user about this decision to help debugging. + const std::vector<llvm::MCPhysReg> Regs = getGreedyAssignment(Vars); + if (!Vars.empty() && Regs.empty()) + return makeError("No feasible greedy assignment"); + llvm::MCInst Inst = generateMCInst(InstrDesc, Vars, Regs); + if (!State.canAssemble(Inst)) + return makeError("Cannot assemble greedy assignment"); + Pattern.push_back(std::move(Inst)); + } + + // Generate repetitions of the pattern until benchmark_iterations is reached. + std::vector<llvm::MCInst> Result; + Result.reserve(NumRepetitions); + for (unsigned I = 0; I < NumRepetitions; ++I) + Result.push_back(Pattern[I % Pattern.size()]); + return Result; +} + +std::vector<BenchmarkMeasure> +UopsBenchmarkRunner::runMeasurements(const LLVMState &State, + const JitFunction &Function, + const unsigned NumRepetitions) const { + const auto &SchedModel = State.getSubtargetInfo().getSchedModel(); + + std::vector<BenchmarkMeasure> Result; + for (unsigned ProcResIdx = 1; + ProcResIdx < SchedModel.getNumProcResourceKinds(); ++ProcResIdx) { + const llvm::MCProcResourceDesc &ProcRes = + *SchedModel.getProcResource(ProcResIdx); + const std::string *const EventName = + getEventNameFromProcResName(ProcRes.Name); + if (!EventName) + continue; + pfm::Counter Counter{pfm::PerfEvent(*EventName)}; + Counter.start(); + Function(); + Counter.stop(); + Result.push_back({llvm::itostr(ProcResIdx), + static_cast<double>(Counter.read()) / NumRepetitions, + ProcRes.Name}); + } + return Result; +} + +} // namespace exegesis |

