summaryrefslogtreecommitdiffstats
path: root/llvm/tools/dsymutil/DwarfLinkerForBinary.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/tools/dsymutil/DwarfLinkerForBinary.cpp')
-rw-r--r--llvm/tools/dsymutil/DwarfLinkerForBinary.cpp3054
1 files changed, 3054 insertions, 0 deletions
diff --git a/llvm/tools/dsymutil/DwarfLinkerForBinary.cpp b/llvm/tools/dsymutil/DwarfLinkerForBinary.cpp
new file mode 100644
index 00000000000..b42fc1a1d50
--- /dev/null
+++ b/llvm/tools/dsymutil/DwarfLinkerForBinary.cpp
@@ -0,0 +1,3054 @@
+//===- tools/dsymutil/DwarfLinkerForBinary.cpp ----------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "DwarfLinkerForBinary.h"
+#include "BinaryHolder.h"
+#include "DebugMap.h"
+#include "DwarfStreamer.h"
+#include "MachOUtils.h"
+#include "dsymutil.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseMapInfo.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/IntervalMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/BinaryFormat/Dwarf.h"
+#include "llvm/BinaryFormat/MachO.h"
+#include "llvm/CodeGen/AccelTable.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/DIE.h"
+#include "llvm/CodeGen/NonRelocatableStringpool.h"
+#include "llvm/Config/config.h"
+#include "llvm/DWARFLinker/DWARFLinkerDeclContext.h"
+#include "llvm/DebugInfo/DIContext.h"
+#include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
+#include "llvm/DebugInfo/DWARF/DWARFContext.h"
+#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
+#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
+#include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
+#include "llvm/DebugInfo/DWARF/DWARFDie.h"
+#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
+#include "llvm/DebugInfo/DWARF/DWARFSection.h"
+#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
+#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCDwarf.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCObjectFileInfo.h"
+#include "llvm/MC/MCObjectWriter.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCTargetOptions.h"
+#include "llvm/Object/MachO.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Object/SymbolicFile.h"
+#include "llvm/Remarks/RemarkFormat.h"
+#include "llvm/Remarks/RemarkLinker.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/DJB.h"
+#include "llvm/Support/DataExtractor.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ErrorOr.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/ThreadPool.h"
+#include "llvm/Support/ToolOutputFile.h"
+#include "llvm/Support/WithColor.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include <algorithm>
+#include <cassert>
+#include <cinttypes>
+#include <climits>
+#include <cstdint>
+#include <cstdlib>
+#include <cstring>
+#include <limits>
+#include <map>
+#include <memory>
+#include <string>
+#include <system_error>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+namespace llvm {
+namespace dsymutil {
+
+/// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
+/// CompileUnit object instead.
+static CompileUnit *getUnitForOffset(const UnitListTy &Units, uint64_t Offset) {
+ auto CU = std::upper_bound(
+ Units.begin(), Units.end(), Offset,
+ [](uint64_t LHS, const std::unique_ptr<CompileUnit> &RHS) {
+ return LHS < RHS->getOrigUnit().getNextUnitOffset();
+ });
+ return CU != Units.end() ? CU->get() : nullptr;
+}
+
+/// Resolve the DIE attribute reference that has been extracted in \p RefValue.
+/// The resulting DIE might be in another CompileUnit which is stored into \p
+/// ReferencedCU. \returns null if resolving fails for any reason.
+static DWARFDie resolveDIEReference(const DwarfLinkerForBinary &Linker,
+ const DebugMapObject &DMO,
+ const UnitListTy &Units,
+ const DWARFFormValue &RefValue,
+ const DWARFDie &DIE, CompileUnit *&RefCU) {
+ assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
+ uint64_t RefOffset = *RefValue.getAsReference();
+ if ((RefCU = getUnitForOffset(Units, RefOffset)))
+ if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) {
+ // In a file with broken references, an attribute might point to a NULL
+ // DIE.
+ if (!RefDie.isNULL())
+ return RefDie;
+ }
+
+ Linker.reportWarning("could not find referenced DIE", DMO, &DIE);
+ return DWARFDie();
+}
+
+/// \returns whether the passed \a Attr type might contain a DIE reference
+/// suitable for ODR uniquing.
+static bool isODRAttribute(uint16_t Attr) {
+ switch (Attr) {
+ default:
+ return false;
+ case dwarf::DW_AT_type:
+ case dwarf::DW_AT_containing_type:
+ case dwarf::DW_AT_specification:
+ case dwarf::DW_AT_abstract_origin:
+ case dwarf::DW_AT_import:
+ return true;
+ }
+ llvm_unreachable("Improper attribute.");
+}
+
+static bool isTypeTag(uint16_t Tag) {
+ switch (Tag) {
+ case dwarf::DW_TAG_array_type:
+ case dwarf::DW_TAG_class_type:
+ case dwarf::DW_TAG_enumeration_type:
+ case dwarf::DW_TAG_pointer_type:
+ case dwarf::DW_TAG_reference_type:
+ case dwarf::DW_TAG_string_type:
+ case dwarf::DW_TAG_structure_type:
+ case dwarf::DW_TAG_subroutine_type:
+ case dwarf::DW_TAG_typedef:
+ case dwarf::DW_TAG_union_type:
+ case dwarf::DW_TAG_ptr_to_member_type:
+ case dwarf::DW_TAG_set_type:
+ case dwarf::DW_TAG_subrange_type:
+ case dwarf::DW_TAG_base_type:
+ case dwarf::DW_TAG_const_type:
+ case dwarf::DW_TAG_constant:
+ case dwarf::DW_TAG_file_type:
+ case dwarf::DW_TAG_namelist:
+ case dwarf::DW_TAG_packed_type:
+ case dwarf::DW_TAG_volatile_type:
+ case dwarf::DW_TAG_restrict_type:
+ case dwarf::DW_TAG_atomic_type:
+ case dwarf::DW_TAG_interface_type:
+ case dwarf::DW_TAG_unspecified_type:
+ case dwarf::DW_TAG_shared_type:
+ return true;
+ default:
+ break;
+ }
+ return false;
+}
+
+static Error remarksErrorHandler(const DebugMapObject &DMO,
+ DwarfLinkerForBinary &Linker,
+ std::unique_ptr<FileError> FE) {
+ bool IsArchive = DMO.getObjectFilename().endswith(")");
+ // Don't report errors for missing remark files from static
+ // archives.
+ if (!IsArchive)
+ return Error(std::move(FE));
+
+ std::string Message = FE->message();
+ Error E = FE->takeError();
+ Error NewE = handleErrors(std::move(E), [&](std::unique_ptr<ECError> EC) {
+ if (EC->convertToErrorCode() != std::errc::no_such_file_or_directory)
+ return Error(std::move(EC));
+
+ Linker.reportWarning(Message, DMO);
+ return Error(Error::success());
+ });
+
+ if (!NewE)
+ return Error::success();
+
+ return createFileError(FE->getFileName(), std::move(NewE));
+}
+
+bool DwarfLinkerForBinary::DIECloner::getDIENames(const DWARFDie &Die,
+ AttributesInfo &Info,
+ OffsetsStringPool &StringPool,
+ bool StripTemplate) {
+ // This function will be called on DIEs having low_pcs and
+ // ranges. As getting the name might be more expansive, filter out
+ // blocks directly.
+ if (Die.getTag() == dwarf::DW_TAG_lexical_block)
+ return false;
+
+ // FIXME: a bit wasteful as the first getName might return the
+ // short name.
+ if (!Info.MangledName)
+ if (const char *MangledName = Die.getName(DINameKind::LinkageName))
+ Info.MangledName = StringPool.getEntry(MangledName);
+
+ if (!Info.Name)
+ if (const char *Name = Die.getName(DINameKind::ShortName))
+ Info.Name = StringPool.getEntry(Name);
+
+ if (StripTemplate && Info.Name && Info.MangledName != Info.Name) {
+ // FIXME: dsymutil compatibility. This is wrong for operator<
+ auto Split = Info.Name.getString().split('<');
+ if (!Split.second.empty())
+ Info.NameWithoutTemplate = StringPool.getEntry(Split.first);
+ }
+
+ return Info.Name || Info.MangledName;
+}
+
+/// Report a warning to the user, optionally including information about a
+/// specific \p DIE related to the warning.
+void DwarfLinkerForBinary::reportWarning(const Twine &Warning,
+ const DebugMapObject &DMO,
+ const DWARFDie *DIE) const {
+ StringRef Context = DMO.getObjectFilename();
+ warn(Warning, Context);
+
+ if (!Options.Verbose || !DIE)
+ return;
+
+ DIDumpOptions DumpOpts;
+ DumpOpts.ChildRecurseDepth = 0;
+ DumpOpts.Verbose = Options.Verbose;
+
+ WithColor::note() << " in DIE:\n";
+ DIE->dump(errs(), 6 /* Indent */, DumpOpts);
+}
+
+bool DwarfLinkerForBinary::createStreamer(const Triple &TheTriple,
+ raw_fd_ostream &OutFile) {
+ if (Options.NoOutput)
+ return true;
+
+ Streamer = std::make_unique<DwarfStreamer>(OutFile, Options);
+ return Streamer->init(TheTriple);
+}
+
+/// Resolve the relative path to a build artifact referenced by DWARF by
+/// applying DW_AT_comp_dir.
+static void resolveRelativeObjectPath(SmallVectorImpl<char> &Buf, DWARFDie CU) {
+ sys::path::append(Buf, dwarf::toString(CU.find(dwarf::DW_AT_comp_dir), ""));
+}
+
+/// Collect references to parseable Swift interfaces in imported
+/// DW_TAG_module blocks.
+static void analyzeImportedModule(
+ const DWARFDie &DIE, CompileUnit &CU,
+ std::map<std::string, std::string> &ParseableSwiftInterfaces,
+ std::function<void(const Twine &, const DWARFDie &)> ReportWarning) {
+ if (CU.getLanguage() != dwarf::DW_LANG_Swift)
+ return;
+
+ StringRef Path = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_include_path));
+ if (!Path.endswith(".swiftinterface"))
+ return;
+ if (Optional<DWARFFormValue> Val = DIE.find(dwarf::DW_AT_name))
+ if (Optional<const char *> Name = Val->getAsCString()) {
+ auto &Entry = ParseableSwiftInterfaces[*Name];
+ // The prepend path is applied later when copying.
+ DWARFDie CUDie = CU.getOrigUnit().getUnitDIE();
+ SmallString<128> ResolvedPath;
+ if (sys::path::is_relative(Path))
+ resolveRelativeObjectPath(ResolvedPath, CUDie);
+ sys::path::append(ResolvedPath, Path);
+ if (!Entry.empty() && Entry != ResolvedPath)
+ ReportWarning(
+ Twine("Conflicting parseable interfaces for Swift Module ") +
+ *Name + ": " + Entry + " and " + Path,
+ DIE);
+ Entry = ResolvedPath.str();
+ }
+}
+
+/// Recursive helper to build the global DeclContext information and
+/// gather the child->parent relationships in the original compile unit.
+///
+/// \return true when this DIE and all of its children are only
+/// forward declarations to types defined in external clang modules
+/// (i.e., forward declarations that are children of a DW_TAG_module).
+static bool analyzeContextInfo(
+ const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU,
+ DeclContext *CurrentDeclContext, UniquingStringPool &StringPool,
+ DeclContextTree &Contexts, uint64_t ModulesEndOffset,
+ std::map<std::string, std::string> &ParseableSwiftInterfaces,
+ std::function<void(const Twine &, const DWARFDie &)> ReportWarning,
+ bool InImportedModule = false) {
+ unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE);
+ CompileUnit::DIEInfo &Info = CU.getInfo(MyIdx);
+
+ // Clang imposes an ODR on modules(!) regardless of the language:
+ // "The module-id should consist of only a single identifier,
+ // which provides the name of the module being defined. Each
+ // module shall have a single definition."
+ //
+ // This does not extend to the types inside the modules:
+ // "[I]n C, this implies that if two structs are defined in
+ // different submodules with the same name, those two types are
+ // distinct types (but may be compatible types if their
+ // definitions match)."
+ //
+ // We treat non-C++ modules like namespaces for this reason.
+ if (DIE.getTag() == dwarf::DW_TAG_module && ParentIdx == 0 &&
+ dwarf::toString(DIE.find(dwarf::DW_AT_name), "") !=
+ CU.getClangModuleName()) {
+ InImportedModule = true;
+ analyzeImportedModule(DIE, CU, ParseableSwiftInterfaces, ReportWarning);
+ }
+
+ Info.ParentIdx = ParentIdx;
+ bool InClangModule = CU.isClangModule() || InImportedModule;
+ if (CU.hasODR() || InClangModule) {
+ if (CurrentDeclContext) {
+ auto PtrInvalidPair = Contexts.getChildDeclContext(
+ *CurrentDeclContext, DIE, CU, StringPool, InClangModule);
+ CurrentDeclContext = PtrInvalidPair.getPointer();
+ Info.Ctxt =
+ PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
+ if (Info.Ctxt)
+ Info.Ctxt->setDefinedInClangModule(InClangModule);
+ } else
+ Info.Ctxt = CurrentDeclContext = nullptr;
+ }
+
+ Info.Prune = InImportedModule;
+ if (DIE.hasChildren())
+ for (auto Child : DIE.children())
+ Info.Prune &= analyzeContextInfo(Child, MyIdx, CU, CurrentDeclContext,
+ StringPool, Contexts, ModulesEndOffset,
+ ParseableSwiftInterfaces, ReportWarning,
+ InImportedModule);
+
+ // Prune this DIE if it is either a forward declaration inside a
+ // DW_TAG_module or a DW_TAG_module that contains nothing but
+ // forward declarations.
+ Info.Prune &= (DIE.getTag() == dwarf::DW_TAG_module) ||
+ (isTypeTag(DIE.getTag()) &&
+ dwarf::toUnsigned(DIE.find(dwarf::DW_AT_declaration), 0));
+
+ // Only prune forward declarations inside a DW_TAG_module for which a
+ // definition exists elsewhere.
+ if (ModulesEndOffset == 0)
+ Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
+ else
+ Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 &&
+ Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset;
+
+ return Info.Prune;
+} // namespace dsymutil
+
+static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
+ switch (Tag) {
+ default:
+ return false;
+ case dwarf::DW_TAG_class_type:
+ case dwarf::DW_TAG_common_block:
+ case dwarf::DW_TAG_lexical_block:
+ case dwarf::DW_TAG_structure_type:
+ case dwarf::DW_TAG_subprogram:
+ case dwarf::DW_TAG_subroutine_type:
+ case dwarf::DW_TAG_union_type:
+ return true;
+ }
+ llvm_unreachable("Invalid Tag");
+}
+
+void DwarfLinkerForBinary::startDebugObject(LinkContext &Context) {}
+
+void DwarfLinkerForBinary::endDebugObject(LinkContext &Context) {
+ Context.Clear();
+
+ for (auto I = DIEBlocks.begin(), E = DIEBlocks.end(); I != E; ++I)
+ (*I)->~DIEBlock();
+ for (auto I = DIELocs.begin(), E = DIELocs.end(); I != E; ++I)
+ (*I)->~DIELoc();
+
+ DIEBlocks.clear();
+ DIELocs.clear();
+ DIEAlloc.Reset();
+}
+
+static bool isMachOPairedReloc(uint64_t RelocType, uint64_t Arch) {
+ switch (Arch) {
+ case Triple::x86:
+ return RelocType == MachO::GENERIC_RELOC_SECTDIFF ||
+ RelocType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF;
+ case Triple::x86_64:
+ return RelocType == MachO::X86_64_RELOC_SUBTRACTOR;
+ case Triple::arm:
+ case Triple::thumb:
+ return RelocType == MachO::ARM_RELOC_SECTDIFF ||
+ RelocType == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
+ RelocType == MachO::ARM_RELOC_HALF ||
+ RelocType == MachO::ARM_RELOC_HALF_SECTDIFF;
+ case Triple::aarch64:
+ return RelocType == MachO::ARM64_RELOC_SUBTRACTOR;
+ default:
+ return false;
+ }
+}
+
+/// Iterate over the relocations of the given \p Section and
+/// store the ones that correspond to debug map entries into the
+/// ValidRelocs array.
+void DwarfLinkerForBinary::RelocationManager::findValidRelocsMachO(
+ const object::SectionRef &Section, const object::MachOObjectFile &Obj,
+ const DebugMapObject &DMO) {
+ Expected<StringRef> ContentsOrErr = Section.getContents();
+ if (!ContentsOrErr) {
+ consumeError(ContentsOrErr.takeError());
+ Linker.reportWarning("error reading section", DMO);
+ return;
+ }
+ DataExtractor Data(*ContentsOrErr, Obj.isLittleEndian(), 0);
+ bool SkipNext = false;
+
+ for (const object::RelocationRef &Reloc : Section.relocations()) {
+ if (SkipNext) {
+ SkipNext = false;
+ continue;
+ }
+
+ object::DataRefImpl RelocDataRef = Reloc.getRawDataRefImpl();
+ MachO::any_relocation_info MachOReloc = Obj.getRelocation(RelocDataRef);
+
+ if (isMachOPairedReloc(Obj.getAnyRelocationType(MachOReloc),
+ Obj.getArch())) {
+ SkipNext = true;
+ Linker.reportWarning("unsupported relocation in debug_info section.",
+ DMO);
+ continue;
+ }
+
+ unsigned RelocSize = 1 << Obj.getAnyRelocationLength(MachOReloc);
+ uint64_t Offset64 = Reloc.getOffset();
+ if ((RelocSize != 4 && RelocSize != 8)) {
+ Linker.reportWarning("unsupported relocation in debug_info section.",
+ DMO);
+ continue;
+ }
+ uint64_t OffsetCopy = Offset64;
+ // Mach-o uses REL relocations, the addend is at the relocation offset.
+ uint64_t Addend = Data.getUnsigned(&OffsetCopy, RelocSize);
+ uint64_t SymAddress;
+ int64_t SymOffset;
+
+ if (Obj.isRelocationScattered(MachOReloc)) {
+ // The address of the base symbol for scattered relocations is
+ // stored in the reloc itself. The actual addend will store the
+ // base address plus the offset.
+ SymAddress = Obj.getScatteredRelocationValue(MachOReloc);
+ SymOffset = int64_t(Addend) - SymAddress;
+ } else {
+ SymAddress = Addend;
+ SymOffset = 0;
+ }
+
+ auto Sym = Reloc.getSymbol();
+ if (Sym != Obj.symbol_end()) {
+ Expected<StringRef> SymbolName = Sym->getName();
+ if (!SymbolName) {
+ consumeError(SymbolName.takeError());
+ Linker.reportWarning("error getting relocation symbol name.", DMO);
+ continue;
+ }
+ if (const auto *Mapping = DMO.lookupSymbol(*SymbolName))
+ ValidRelocs.emplace_back(Offset64, RelocSize, Addend, Mapping);
+ } else if (const auto *Mapping = DMO.lookupObjectAddress(SymAddress)) {
+ // Do not store the addend. The addend was the address of the symbol in
+ // the object file, the address in the binary that is stored in the debug
+ // map doesn't need to be offset.
+ ValidRelocs.emplace_back(Offset64, RelocSize, SymOffset, Mapping);
+ }
+ }
+}
+
+/// Dispatch the valid relocation finding logic to the
+/// appropriate handler depending on the object file format.
+bool DwarfLinkerForBinary::RelocationManager::findValidRelocs(
+ const object::SectionRef &Section, const object::ObjectFile &Obj,
+ const DebugMapObject &DMO) {
+ // Dispatch to the right handler depending on the file type.
+ if (auto *MachOObj = dyn_cast<object::MachOObjectFile>(&Obj))
+ findValidRelocsMachO(Section, *MachOObj, DMO);
+ else
+ Linker.reportWarning(
+ Twine("unsupported object file type: ") + Obj.getFileName(), DMO);
+
+ if (ValidRelocs.empty())
+ return false;
+
+ // Sort the relocations by offset. We will walk the DIEs linearly in
+ // the file, this allows us to just keep an index in the relocation
+ // array that we advance during our walk, rather than resorting to
+ // some associative container. See DwarfLinker::NextValidReloc.
+ llvm::sort(ValidRelocs);
+ return true;
+}
+
+/// Look for relocations in the debug_info section that match
+/// entries in the debug map. These relocations will drive the Dwarf
+/// link by indicating which DIEs refer to symbols present in the
+/// linked binary.
+/// \returns whether there are any valid relocations in the debug info.
+bool DwarfLinkerForBinary::RelocationManager::findValidRelocsInDebugInfo(
+ const object::ObjectFile &Obj, const DebugMapObject &DMO) {
+ // Find the debug_info section.
+ for (const object::SectionRef &Section : Obj.sections()) {
+ StringRef SectionName;
+ if (Expected<StringRef> NameOrErr = Section.getName())
+ SectionName = *NameOrErr;
+ else
+ consumeError(NameOrErr.takeError());
+
+ SectionName = SectionName.substr(SectionName.find_first_not_of("._"));
+ if (SectionName != "debug_info")
+ continue;
+ return findValidRelocs(Section, Obj, DMO);
+ }
+ return false;
+}
+
+/// Checks that there is a relocation against an actual debug
+/// map entry between \p StartOffset and \p NextOffset.
+///
+/// This function must be called with offsets in strictly ascending
+/// order because it never looks back at relocations it already 'went past'.
+/// \returns true and sets Info.InDebugMap if it is the case.
+bool DwarfLinkerForBinary::RelocationManager::hasValidRelocationAt(
+ uint64_t StartOffset, uint64_t EndOffset, CompileUnit::DIEInfo &Info) {
+ assert(NextValidReloc == 0 ||
+ StartOffset > ValidRelocs[NextValidReloc - 1].Offset);
+ if (NextValidReloc >= ValidRelocs.size())
+ return false;
+
+ uint64_t RelocOffset = ValidRelocs[NextValidReloc].Offset;
+
+ // We might need to skip some relocs that we didn't consider. For
+ // example the high_pc of a discarded DIE might contain a reloc that
+ // is in the list because it actually corresponds to the start of a
+ // function that is in the debug map.
+ while (RelocOffset < StartOffset && NextValidReloc < ValidRelocs.size() - 1)
+ RelocOffset = ValidRelocs[++NextValidReloc].Offset;
+
+ if (RelocOffset < StartOffset || RelocOffset >= EndOffset)
+ return false;
+
+ const auto &ValidReloc = ValidRelocs[NextValidReloc++];
+ const auto &Mapping = ValidReloc.Mapping->getValue();
+ const uint64_t BinaryAddress = Mapping.BinaryAddress;
+ const uint64_t ObjectAddress = Mapping.ObjectAddress
+ ? uint64_t(*Mapping.ObjectAddress)
+ : std::numeric_limits<uint64_t>::max();
+ if (Linker.Options.Verbose)
+ outs() << "Found valid debug map entry: " << ValidReloc.Mapping->getKey()
+ << "\t"
+ << format("0x%016" PRIx64 " => 0x%016" PRIx64 "\n", ObjectAddress,
+ BinaryAddress);
+
+ Info.AddrAdjust = BinaryAddress + ValidReloc.Addend;
+ if (Mapping.ObjectAddress)
+ Info.AddrAdjust -= ObjectAddress;
+ Info.InDebugMap = true;
+ return true;
+}
+
+/// Get the starting and ending (exclusive) offset for the
+/// attribute with index \p Idx descibed by \p Abbrev. \p Offset is
+/// supposed to point to the position of the first attribute described
+/// by \p Abbrev.
+/// \return [StartOffset, EndOffset) as a pair.
+static std::pair<uint64_t, uint64_t>
+getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx,
+ uint64_t Offset, const DWARFUnit &Unit) {
+ DataExtractor Data = Unit.getDebugInfoExtractor();
+
+ for (unsigned i = 0; i < Idx; ++i)
+ DWARFFormValue::skipValue(Abbrev->getFormByIndex(i), Data, &Offset,
+ Unit.getFormParams());
+
+ uint64_t End = Offset;
+ DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End,
+ Unit.getFormParams());
+
+ return std::make_pair(Offset, End);
+}
+
+/// Check if a variable describing DIE should be kept.
+/// \returns updated TraversalFlags.
+unsigned DwarfLinkerForBinary::shouldKeepVariableDIE(
+ RelocationManager &RelocMgr, const DWARFDie &DIE, CompileUnit &Unit,
+ CompileUnit::DIEInfo &MyInfo, unsigned Flags) {
+ const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
+
+ // Global variables with constant value can always be kept.
+ if (!(Flags & TF_InFunctionScope) &&
+ Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) {
+ MyInfo.InDebugMap = true;
+ return Flags | TF_Keep;
+ }
+
+ Optional<uint32_t> LocationIdx =
+ Abbrev->findAttributeIndex(dwarf::DW_AT_location);
+ if (!LocationIdx)
+ return Flags;
+
+ uint64_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
+ const DWARFUnit &OrigUnit = Unit.getOrigUnit();
+ uint64_t LocationOffset, LocationEndOffset;
+ std::tie(LocationOffset, LocationEndOffset) =
+ getAttributeOffsets(Abbrev, *LocationIdx, Offset, OrigUnit);
+
+ // See if there is a relocation to a valid debug map entry inside
+ // this variable's location. The order is important here. We want to
+ // always check if the variable has a valid relocation, so that the
+ // DIEInfo is filled. However, we don't want a static variable in a
+ // function to force us to keep the enclosing function.
+ if (!RelocMgr.hasValidRelocationAt(LocationOffset, LocationEndOffset,
+ MyInfo) ||
+ (Flags & TF_InFunctionScope))
+ return Flags;
+
+ if (Options.Verbose) {
+ outs() << "Keeping variable DIE:";
+ DIDumpOptions DumpOpts;
+ DumpOpts.ChildRecurseDepth = 0;
+ DumpOpts.Verbose = Options.Verbose;
+ DIE.dump(outs(), 8 /* Indent */, DumpOpts);
+ }
+
+ return Flags | TF_Keep;
+}
+
+/// Check if a function describing DIE should be kept.
+/// \returns updated TraversalFlags.
+unsigned DwarfLinkerForBinary::shouldKeepSubprogramDIE(
+ RelocationManager &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
+ const DebugMapObject &DMO, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
+ unsigned Flags) {
+ const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
+
+ Flags |= TF_InFunctionScope;
+
+ Optional<uint32_t> LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc);
+ if (!LowPcIdx)
+ return Flags;
+
+ uint64_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
+ DWARFUnit &OrigUnit = Unit.getOrigUnit();
+ uint64_t LowPcOffset, LowPcEndOffset;
+ std::tie(LowPcOffset, LowPcEndOffset) =
+ getAttributeOffsets(Abbrev, *LowPcIdx, Offset, OrigUnit);
+
+ auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc));
+ assert(LowPc.hasValue() && "low_pc attribute is not an address.");
+ if (!LowPc ||
+ !RelocMgr.hasValidRelocationAt(LowPcOffset, LowPcEndOffset, MyInfo))
+ return Flags;
+
+ if (Options.Verbose) {
+ outs() << "Keeping subprogram DIE:";
+ DIDumpOptions DumpOpts;
+ DumpOpts.ChildRecurseDepth = 0;
+ DumpOpts.Verbose = Options.Verbose;
+ DIE.dump(outs(), 8 /* Indent */, DumpOpts);
+ }
+
+ if (DIE.getTag() == dwarf::DW_TAG_label) {
+ if (Unit.hasLabelAt(*LowPc))
+ return Flags;
+ // FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels
+ // that don't fall into the CU's aranges. This is wrong IMO. Debug info
+ // generation bugs aside, this is really wrong in the case of labels, where
+ // a label marking the end of a function will have a PC == CU's high_pc.
+ if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc))
+ .getValueOr(UINT64_MAX) <= LowPc)
+ return Flags;
+ Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust);
+ return Flags | TF_Keep;
+ }
+
+ Flags |= TF_Keep;
+
+ Optional<uint64_t> HighPc = DIE.getHighPC(*LowPc);
+ if (!HighPc) {
+ reportWarning("Function without high_pc. Range will be discarded.\n", DMO,
+ &DIE);
+ return Flags;
+ }
+
+ // Replace the debug map range with a more accurate one.
+ Ranges[*LowPc] = ObjFileAddressRange(*HighPc, MyInfo.AddrAdjust);
+ Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust);
+ return Flags;
+}
+
+/// Check if a DIE should be kept.
+/// \returns updated TraversalFlags.
+unsigned DwarfLinkerForBinary::shouldKeepDIE(
+ RelocationManager &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
+ const DebugMapObject &DMO, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
+ unsigned Flags) {
+ switch (DIE.getTag()) {
+ case dwarf::DW_TAG_constant:
+ case dwarf::DW_TAG_variable:
+ return shouldKeepVariableDIE(RelocMgr, DIE, Unit, MyInfo, Flags);
+ case dwarf::DW_TAG_subprogram:
+ case dwarf::DW_TAG_label:
+ return shouldKeepSubprogramDIE(RelocMgr, Ranges, DIE, DMO, Unit, MyInfo,
+ Flags);
+ case dwarf::DW_TAG_base_type:
+ // DWARF Expressions may reference basic types, but scanning them
+ // is expensive. Basic types are tiny, so just keep all of them.
+ case dwarf::DW_TAG_imported_module:
+ case dwarf::DW_TAG_imported_declaration:
+ case dwarf::DW_TAG_imported_unit:
+ // We always want to keep these.
+ return Flags | TF_Keep;
+ default:
+ break;
+ }
+
+ return Flags;
+}
+
+namespace {
+/// The distinct types of work performed by the work loop.
+enum class WorklistItemType {
+ /// Given a DIE, look for DIEs to be kept.
+ LookForDIEsToKeep,
+ /// Given a DIE, look for children of this DIE to be kept.
+ LookForChildDIEsToKeep,
+ /// Given a DIE, look for DIEs referencing this DIE to be kept.
+ LookForRefDIEsToKeep,
+ /// Given a DIE, look for parent DIEs to be kept.
+ LookForParentDIEsToKeep,
+ /// Given a DIE, update its incompleteness based on whether its children are
+ /// incomplete.
+ UpdateChildIncompleteness,
+ /// Given a DIE, update its incompleteness based on whether the DIEs it
+ /// references are incomplete.
+ UpdateRefIncompleteness,
+};
+
+/// This class represents an item in the work list. The type defines what kind
+/// of work needs to be performed when processing the current item. The flags
+/// and info fields are optional based on the type.
+struct WorklistItem {
+ WorklistItemType Type;
+ DWARFDie Die;
+ CompileUnit &CU;
+ unsigned Flags;
+ unsigned AncestorIdx = 0;
+ CompileUnit::DIEInfo *OtherInfo = nullptr;
+
+ WorklistItem(DWARFDie Die, CompileUnit &CU, unsigned Flags,
+ WorklistItemType T = WorklistItemType::LookForDIEsToKeep)
+ : Type(T), Die(Die), CU(CU), Flags(Flags){};
+
+ WorklistItem(DWARFDie Die, CompileUnit &CU, WorklistItemType T,
+ CompileUnit::DIEInfo *OtherInfo = nullptr)
+ : Type(T), Die(Die), CU(CU), OtherInfo(OtherInfo){};
+
+ WorklistItem(unsigned AncestorIdx, CompileUnit &CU, unsigned Flags)
+ : Type(WorklistItemType::LookForParentDIEsToKeep), CU(CU), Flags(Flags),
+ AncestorIdx(AncestorIdx){};
+};
+} // namespace
+
+/// Helper that updates the completeness of the current DIE based on the
+/// completeness of one of its children. It depends on the incompleteness of
+/// the children already being computed.
+static void updateChildIncompleteness(const DWARFDie &Die, CompileUnit &CU,
+ CompileUnit::DIEInfo &ChildInfo) {
+ switch (Die.getTag()) {
+ case dwarf::DW_TAG_structure_type:
+ case dwarf::DW_TAG_class_type:
+ break;
+ default:
+ return;
+ }
+
+ unsigned Idx = CU.getOrigUnit().getDIEIndex(Die);
+ CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
+
+ if (ChildInfo.Incomplete || ChildInfo.Prune)
+ MyInfo.Incomplete = true;
+}
+
+/// Helper that updates the completeness of the current DIE based on the
+/// completeness of the DIEs it references. It depends on the incompleteness of
+/// the referenced DIE already being computed.
+static void updateRefIncompleteness(const DWARFDie &Die, CompileUnit &CU,
+ CompileUnit::DIEInfo &RefInfo) {
+ switch (Die.getTag()) {
+ case dwarf::DW_TAG_typedef:
+ case dwarf::DW_TAG_member:
+ case dwarf::DW_TAG_reference_type:
+ case dwarf::DW_TAG_ptr_to_member_type:
+ case dwarf::DW_TAG_pointer_type:
+ break;
+ default:
+ return;
+ }
+
+ unsigned Idx = CU.getOrigUnit().getDIEIndex(Die);
+ CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
+
+ if (MyInfo.Incomplete)
+ return;
+
+ if (RefInfo.Incomplete)
+ MyInfo.Incomplete = true;
+}
+
+/// Look at the children of the given DIE and decide whether they should be
+/// kept.
+static void lookForChildDIEsToKeep(const DWARFDie &Die, CompileUnit &CU,
+ unsigned Flags,
+ SmallVectorImpl<WorklistItem> &Worklist) {
+ // The TF_ParentWalk flag tells us that we are currently walking up the
+ // parent chain of a required DIE, and we don't want to mark all the children
+ // of the parents as kept (consider for example a DW_TAG_namespace node in
+ // the parent chain). There are however a set of DIE types for which we want
+ // to ignore that directive and still walk their children.
+ if (dieNeedsChildrenToBeMeaningful(Die.getTag()))
+ Flags &= ~DwarfLinkerForBinary::TF_ParentWalk;
+
+ // We're finished if this DIE has no children or we're walking the parent
+ // chain.
+ if (!Die.hasChildren() || (Flags & DwarfLinkerForBinary::TF_ParentWalk))
+ return;
+
+ // Add children in reverse order to the worklist to effectively process them
+ // in order.
+ for (auto Child : reverse(Die.children())) {
+ // Add a worklist item before every child to calculate incompleteness right
+ // after the current child is processed.
+ unsigned Idx = CU.getOrigUnit().getDIEIndex(Child);
+ CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Idx);
+ Worklist.emplace_back(Die, CU, WorklistItemType::UpdateChildIncompleteness,
+ &ChildInfo);
+ Worklist.emplace_back(Child, CU, Flags);
+ }
+}
+
+/// Look at DIEs referenced by the given DIE and decide whether they should be
+/// kept. All DIEs referenced though attributes should be kept.
+static void lookForRefDIEsToKeep(const DWARFDie &Die, CompileUnit &CU,
+ unsigned Flags, DwarfLinkerForBinary &Linker,
+ const UnitListTy &Units,
+ const DebugMapObject &DMO,
+ SmallVectorImpl<WorklistItem> &Worklist) {
+ bool UseOdr = (Flags & DwarfLinkerForBinary::TF_DependencyWalk)
+ ? (Flags & DwarfLinkerForBinary::TF_ODR)
+ : CU.hasODR();
+ DWARFUnit &Unit = CU.getOrigUnit();
+ DWARFDataExtractor Data = Unit.getDebugInfoExtractor();
+ const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
+ uint64_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());
+
+ SmallVector<std::pair<DWARFDie, CompileUnit &>, 4> ReferencedDIEs;
+ for (const auto &AttrSpec : Abbrev->attributes()) {
+ DWARFFormValue Val(AttrSpec.Form);
+ if (!Val.isFormClass(DWARFFormValue::FC_Reference) ||
+ AttrSpec.Attr == dwarf::DW_AT_sibling) {
+ DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
+ Unit.getFormParams());
+ continue;
+ }
+
+ Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit);
+ CompileUnit *ReferencedCU;
+ if (auto RefDie =
+ resolveDIEReference(Linker, DMO, Units, Val, Die, ReferencedCU)) {
+ uint32_t RefIdx = ReferencedCU->getOrigUnit().getDIEIndex(RefDie);
+ CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefIdx);
+ bool IsModuleRef = Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() &&
+ Info.Ctxt->isDefinedInClangModule();
+ // If the referenced DIE has a DeclContext that has already been
+ // emitted, then do not keep the one in this CU. We'll link to
+ // the canonical DIE in cloneDieReferenceAttribute.
+ //
+ // FIXME: compatibility with dsymutil-classic. UseODR shouldn't
+ // be necessary and could be advantageously replaced by
+ // ReferencedCU->hasODR() && CU.hasODR().
+ //
+ // FIXME: compatibility with dsymutil-classic. There is no
+ // reason not to unique ref_addr references.
+ if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && (UseOdr || IsModuleRef) &&
+ Info.Ctxt &&
+ Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt &&
+ Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr))
+ continue;
+
+ // Keep a module forward declaration if there is no definition.
+ if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
+ Info.Ctxt->getCanonicalDIEOffset()))
+ Info.Prune = false;
+ ReferencedDIEs.emplace_back(RefDie, *ReferencedCU);
+ }
+ }
+
+ unsigned ODRFlag = UseOdr ? DwarfLinkerForBinary::TF_ODR : 0;
+
+ // Add referenced DIEs in reverse order to the worklist to effectively
+ // process them in order.
+ for (auto &P : reverse(ReferencedDIEs)) {
+ // Add a worklist item before every child to calculate incompleteness right
+ // after the current child is processed.
+ uint32_t RefIdx = P.second.getOrigUnit().getDIEIndex(P.first);
+ CompileUnit::DIEInfo &Info = P.second.getInfo(RefIdx);
+ Worklist.emplace_back(Die, CU, WorklistItemType::UpdateRefIncompleteness,
+ &Info);
+ Worklist.emplace_back(P.first, P.second,
+ DwarfLinkerForBinary::TF_Keep |
+ DwarfLinkerForBinary::TF_DependencyWalk |
+ ODRFlag);
+ }
+}
+
+/// Look at the parent of the given DIE and decide whether they should be kept.
+static void lookForParentDIEsToKeep(unsigned AncestorIdx, CompileUnit &CU,
+ unsigned Flags,
+ SmallVectorImpl<WorklistItem> &Worklist) {
+ // Stop if we encounter an ancestor that's already marked as kept.
+ if (CU.getInfo(AncestorIdx).Keep)
+ return;
+
+ DWARFUnit &Unit = CU.getOrigUnit();
+ DWARFDie ParentDIE = Unit.getDIEAtIndex(AncestorIdx);
+ Worklist.emplace_back(CU.getInfo(AncestorIdx).ParentIdx, CU, Flags);
+ Worklist.emplace_back(ParentDIE, CU, Flags);
+}
+
+/// Recursively walk the \p DIE tree and look for DIEs to keep. Store that
+/// information in \p CU's DIEInfo.
+///
+/// This function is the entry point of the DIE selection algorithm. It is
+/// expected to walk the DIE tree in file order and (though the mediation of
+/// its helper) call hasValidRelocation() on each DIE that might be a 'root
+/// DIE' (See DwarfLinker class comment).
+///
+/// While walking the dependencies of root DIEs, this function is also called,
+/// but during these dependency walks the file order is not respected. The
+/// TF_DependencyWalk flag tells us which kind of traversal we are currently
+/// doing.
+///
+/// The recursive algorithm is implemented iteratively as a work list because
+/// very deep recursion could exhaust the stack for large projects. The work
+/// list acts as a scheduler for different types of work that need to be
+/// performed.
+///
+/// The recursive nature of the algorithm is simulated by running the "main"
+/// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs
+/// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or
+/// fixing up a computed property (UpdateChildIncompleteness,
+/// UpdateRefIncompleteness).
+///
+/// The return value indicates whether the DIE is incomplete.
+void DwarfLinkerForBinary::lookForDIEsToKeep(RelocationManager &RelocMgr,
+ RangesTy &Ranges,
+ const UnitListTy &Units,
+ const DWARFDie &Die,
+ const DebugMapObject &DMO,
+ CompileUnit &Cu, unsigned Flags) {
+ // LIFO work list.
+ SmallVector<WorklistItem, 4> Worklist;
+ Worklist.emplace_back(Die, Cu, Flags);
+
+ while (!Worklist.empty()) {
+ WorklistItem Current = Worklist.back();
+ Worklist.pop_back();
+
+ // Look at the worklist type to decide what kind of work to perform.
+ switch (Current.Type) {
+ case WorklistItemType::UpdateChildIncompleteness:
+ updateChildIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
+ continue;
+ case WorklistItemType::UpdateRefIncompleteness:
+ updateRefIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
+ continue;
+ case WorklistItemType::LookForChildDIEsToKeep:
+ lookForChildDIEsToKeep(Current.Die, Current.CU, Current.Flags, Worklist);
+ continue;
+ case WorklistItemType::LookForRefDIEsToKeep:
+ lookForRefDIEsToKeep(Current.Die, Current.CU, Current.Flags, *this, Units,
+ DMO, Worklist);
+ continue;
+ case WorklistItemType::LookForParentDIEsToKeep:
+ lookForParentDIEsToKeep(Current.AncestorIdx, Current.CU, Current.Flags,
+ Worklist);
+ continue;
+ case WorklistItemType::LookForDIEsToKeep:
+ break;
+ }
+
+ unsigned Idx = Current.CU.getOrigUnit().getDIEIndex(Current.Die);
+ CompileUnit::DIEInfo &MyInfo = Current.CU.getInfo(Idx);
+
+ if (MyInfo.Prune)
+ continue;
+
+ // If the Keep flag is set, we are marking a required DIE's dependencies.
+ // If our target is already marked as kept, we're all set.
+ bool AlreadyKept = MyInfo.Keep;
+ if ((Current.Flags & TF_DependencyWalk) && AlreadyKept)
+ continue;
+
+ // We must not call shouldKeepDIE while called from keepDIEAndDependencies,
+ // because it would screw up the relocation finding logic.
+ if (!(Current.Flags & TF_DependencyWalk))
+ Current.Flags = shouldKeepDIE(RelocMgr, Ranges, Current.Die, DMO,
+ Current.CU, MyInfo, Current.Flags);
+
+ // Finish by looking for child DIEs. Because of the LIFO worklist we need
+ // to schedule that work before any subsequent items are added to the
+ // worklist.
+ Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
+ WorklistItemType::LookForChildDIEsToKeep);
+
+ if (AlreadyKept || !(Current.Flags & TF_Keep))
+ continue;
+
+ // If it is a newly kept DIE mark it as well as all its dependencies as
+ // kept.
+ MyInfo.Keep = true;
+
+ // We're looking for incomplete types.
+ MyInfo.Incomplete =
+ Current.Die.getTag() != dwarf::DW_TAG_subprogram &&
+ Current.Die.getTag() != dwarf::DW_TAG_member &&
+ dwarf::toUnsigned(Current.Die.find(dwarf::DW_AT_declaration), 0);
+
+ // After looking at the parent chain, look for referenced DIEs. Because of
+ // the LIFO worklist we need to schedule that work before any subsequent
+ // items are added to the worklist.
+ Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
+ WorklistItemType::LookForRefDIEsToKeep);
+
+ bool UseOdr = (Current.Flags & TF_DependencyWalk) ? (Current.Flags & TF_ODR)
+ : Current.CU.hasODR();
+ unsigned ODRFlag = UseOdr ? TF_ODR : 0;
+ unsigned ParFlags = TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag;
+
+ // Now schedule the parent walk.
+ Worklist.emplace_back(MyInfo.ParentIdx, Current.CU, ParFlags);
+ }
+}
+
+/// Assign an abbreviation number to \p Abbrev.
+///
+/// Our DIEs get freed after every DebugMapObject has been processed,
+/// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
+/// the instances hold by the DIEs. When we encounter an abbreviation
+/// that we don't know, we create a permanent copy of it.
+void DwarfLinkerForBinary::assignAbbrev(DIEAbbrev &Abbrev) {
+ // Check the set for priors.
+ FoldingSetNodeID ID;
+ Abbrev.Profile(ID);
+ void *InsertToken;
+ DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
+
+ // If it's newly added.
+ if (InSet) {
+ // Assign existing abbreviation number.
+ Abbrev.setNumber(InSet->getNumber());
+ } else {
+ // Add to abbreviation list.
+ Abbreviations.push_back(
+ std::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
+ for (const auto &Attr : Abbrev.getData())
+ Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
+ AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
+ // Assign the unique abbreviation number.
+ Abbrev.setNumber(Abbreviations.size());
+ Abbreviations.back()->setNumber(Abbreviations.size());
+ }
+}
+
+unsigned DwarfLinkerForBinary::DIECloner::cloneStringAttribute(
+ DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
+ const DWARFUnit &U, OffsetsStringPool &StringPool, AttributesInfo &Info) {
+ // Switch everything to out of line strings.
+ const char *String = *Val.getAsCString();
+ auto StringEntry = StringPool.getEntry(String);
+
+ // Update attributes info.
+ if (AttrSpec.Attr == dwarf::DW_AT_name)
+ Info.Name = StringEntry;
+ else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name ||
+ AttrSpec.Attr == dwarf::DW_AT_linkage_name)
+ Info.MangledName = StringEntry;
+
+ Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
+ DIEInteger(StringEntry.getOffset()));
+
+ return 4;
+}
+
+unsigned DwarfLinkerForBinary::DIECloner::cloneDieReferenceAttribute(
+ DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec,
+ unsigned AttrSize, const DWARFFormValue &Val, const DebugMapObject &DMO,
+ CompileUnit &Unit) {
+ const DWARFUnit &U = Unit.getOrigUnit();
+ uint64_t Ref = *Val.getAsReference();
+ DIE *NewRefDie = nullptr;
+ CompileUnit *RefUnit = nullptr;
+ DeclContext *Ctxt = nullptr;
+
+ DWARFDie RefDie =
+ resolveDIEReference(Linker, DMO, CompileUnits, Val, InputDIE, RefUnit);
+
+ // If the referenced DIE is not found, drop the attribute.
+ if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling)
+ return 0;
+
+ unsigned Idx = RefUnit->getOrigUnit().getDIEIndex(RefDie);
+ CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(Idx);
+
+ // If we already have emitted an equivalent DeclContext, just point
+ // at it.
+ if (isODRAttribute(AttrSpec.Attr)) {
+ Ctxt = RefInfo.Ctxt;
+ if (Ctxt && Ctxt->getCanonicalDIEOffset()) {
+ DIEInteger Attr(Ctxt->getCanonicalDIEOffset());
+ Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
+ dwarf::DW_FORM_ref_addr, Attr);
+ return U.getRefAddrByteSize();
+ }
+ }
+
+ if (!RefInfo.Clone) {
+ assert(Ref > InputDIE.getOffset());
+ // We haven't cloned this DIE yet. Just create an empty one and
+ // store it. It'll get really cloned when we process it.
+ RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag()));
+ }
+ NewRefDie = RefInfo.Clone;
+
+ if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
+ (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
+ // We cannot currently rely on a DIEEntry to emit ref_addr
+ // references, because the implementation calls back to DwarfDebug
+ // to find the unit offset. (We don't have a DwarfDebug)
+ // FIXME: we should be able to design DIEEntry reliance on
+ // DwarfDebug away.
+ uint64_t Attr;
+ if (Ref < InputDIE.getOffset()) {
+ // We must have already cloned that DIE.
+ uint32_t NewRefOffset =
+ RefUnit->getStartOffset() + NewRefDie->getOffset();
+ Attr = NewRefOffset;
+ Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
+ dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
+ } else {
+ // A forward reference. Note and fixup later.
+ Attr = 0xBADDEF;
+ Unit.noteForwardReference(
+ NewRefDie, RefUnit, Ctxt,
+ Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
+ dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
+ }
+ return U.getRefAddrByteSize();
+ }
+
+ Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
+ dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
+ return AttrSize;
+}
+
+void DwarfLinkerForBinary::DIECloner::cloneExpression(
+ DataExtractor &Data, DWARFExpression Expression, const DebugMapObject &DMO,
+ CompileUnit &Unit, SmallVectorImpl<uint8_t> &OutputBuffer) {
+ using Encoding = DWARFExpression::Operation::Encoding;
+
+ uint64_t OpOffset = 0;
+ for (auto &Op : Expression) {
+ auto Description = Op.getDescription();
+ // DW_OP_const_type is variable-length and has 3
+ // operands. DWARFExpression thus far only supports 2.
+ auto Op0 = Description.Op[0];
+ auto Op1 = Description.Op[1];
+ if ((Op0 == Encoding::BaseTypeRef && Op1 != Encoding::SizeNA) ||
+ (Op1 == Encoding::BaseTypeRef && Op0 != Encoding::Size1))
+ Linker.reportWarning("Unsupported DW_OP encoding.", DMO);
+
+ if ((Op0 == Encoding::BaseTypeRef && Op1 == Encoding::SizeNA) ||
+ (Op1 == Encoding::BaseTypeRef && Op0 == Encoding::Size1)) {
+ // This code assumes that the other non-typeref operand fits into 1 byte.
+ assert(OpOffset < Op.getEndOffset());
+ uint32_t ULEBsize = Op.getEndOffset() - OpOffset - 1;
+ assert(ULEBsize <= 16);
+
+ // Copy over the operation.
+ OutputBuffer.push_back(Op.getCode());
+ uint64_t RefOffset;
+ if (Op1 == Encoding::SizeNA) {
+ RefOffset = Op.getRawOperand(0);
+ } else {
+ OutputBuffer.push_back(Op.getRawOperand(0));
+ RefOffset = Op.getRawOperand(1);
+ }
+ auto RefDie = Unit.getOrigUnit().getDIEForOffset(RefOffset);
+ uint32_t RefIdx = Unit.getOrigUnit().getDIEIndex(RefDie);
+ CompileUnit::DIEInfo &Info = Unit.getInfo(RefIdx);
+ uint32_t Offset = 0;
+ if (DIE *Clone = Info.Clone)
+ Offset = Clone->getOffset();
+ else
+ Linker.reportWarning("base type ref doesn't point to DW_TAG_base_type.",
+ DMO);
+ uint8_t ULEB[16];
+ unsigned RealSize = encodeULEB128(Offset, ULEB, ULEBsize);
+ if (RealSize > ULEBsize) {
+ // Emit the generic type as a fallback.
+ RealSize = encodeULEB128(0, ULEB, ULEBsize);
+ Linker.reportWarning("base type ref doesn't fit.", DMO);
+ }
+ assert(RealSize == ULEBsize && "padding failed");
+ ArrayRef<uint8_t> ULEBbytes(ULEB, ULEBsize);
+ OutputBuffer.append(ULEBbytes.begin(), ULEBbytes.end());
+ } else {
+ // Copy over everything else unmodified.
+ StringRef Bytes = Data.getData().slice(OpOffset, Op.getEndOffset());
+ OutputBuffer.append(Bytes.begin(), Bytes.end());
+ }
+ OpOffset = Op.getEndOffset();
+ }
+}
+
+unsigned DwarfLinkerForBinary::DIECloner::cloneBlockAttribute(
+ DIE &Die, const DebugMapObject &DMO, CompileUnit &Unit,
+ AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize,
+ bool IsLittleEndian) {
+ DIEValueList *Attr;
+ DIEValue Value;
+ DIELoc *Loc = nullptr;
+ DIEBlock *Block = nullptr;
+ if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
+ Loc = new (DIEAlloc) DIELoc;
+ Linker.DIELocs.push_back(Loc);
+ } else {
+ Block = new (DIEAlloc) DIEBlock;
+ Linker.DIEBlocks.push_back(Block);
+ }
+ Attr = Loc ? static_cast<DIEValueList *>(Loc)
+ : static_cast<DIEValueList *>(Block);
+
+ if (Loc)
+ Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
+ dwarf::Form(AttrSpec.Form), Loc);
+ else
+ Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
+ dwarf::Form(AttrSpec.Form), Block);
+
+ // If the block is a DWARF Expression, clone it into the temporary
+ // buffer using cloneExpression(), otherwise copy the data directly.
+ SmallVector<uint8_t, 32> Buffer;
+ ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
+ if (DWARFAttribute::mayHaveLocationDescription(AttrSpec.Attr) &&
+ (Val.isFormClass(DWARFFormValue::FC_Block) ||
+ Val.isFormClass(DWARFFormValue::FC_Exprloc))) {
+ DWARFUnit &OrigUnit = Unit.getOrigUnit();
+ DataExtractor Data(StringRef((const char *)Bytes.data(), Bytes.size()),
+ IsLittleEndian, OrigUnit.getAddressByteSize());
+ DWARFExpression Expr(Data, OrigUnit.getVersion(),
+ OrigUnit.getAddressByteSize());
+ cloneExpression(Data, Expr, DMO, Unit, Buffer);
+ Bytes = Buffer;
+ }
+ for (auto Byte : Bytes)
+ Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
+ dwarf::DW_FORM_data1, DIEInteger(Byte));
+
+ // FIXME: If DIEBlock and DIELoc just reuses the Size field of
+ // the DIE class, this if could be replaced by
+ // Attr->setSize(Bytes.size()).
+ if (Linker.Streamer) {
+ auto *AsmPrinter = &Linker.Streamer->getAsmPrinter();
+ if (Loc)
+ Loc->ComputeSize(AsmPrinter);
+ else
+ Block->ComputeSize(AsmPrinter);
+ }
+ Die.addValue(DIEAlloc, Value);
+ return AttrSize;
+}
+
+unsigned DwarfLinkerForBinary::DIECloner::cloneAddressAttribute(
+ DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
+ const CompileUnit &Unit, AttributesInfo &Info) {
+ uint64_t Addr = *Val.getAsAddress();
+
+ if (LLVM_UNLIKELY(Linker.Options.Update)) {
+ if (AttrSpec.Attr == dwarf::DW_AT_low_pc)
+ Info.HasLowPc = true;
+ Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
+ dwarf::Form(AttrSpec.Form), DIEInteger(Addr));
+ return Unit.getOrigUnit().getAddressByteSize();
+ }
+
+ if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
+ if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
+ Die.getTag() == dwarf::DW_TAG_lexical_block)
+ // The low_pc of a block or inline subroutine might get
+ // relocated because it happens to match the low_pc of the
+ // enclosing subprogram. To prevent issues with that, always use
+ // the low_pc from the input DIE if relocations have been applied.
+ Addr = (Info.OrigLowPc != std::numeric_limits<uint64_t>::max()
+ ? Info.OrigLowPc
+ : Addr) +
+ Info.PCOffset;
+ else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
+ Addr = Unit.getLowPc();
+ if (Addr == std::numeric_limits<uint64_t>::max())
+ return 0;
+ }
+ Info.HasLowPc = true;
+ } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
+ if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
+ if (uint64_t HighPc = Unit.getHighPc())
+ Addr = HighPc;
+ else
+ return 0;
+ } else
+ // If we have a high_pc recorded for the input DIE, use
+ // it. Otherwise (when no relocations where applied) just use the
+ // one we just decoded.
+ Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
+ }
+
+ Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
+ static_cast<dwarf::Form>(AttrSpec.Form), DIEInteger(Addr));
+ return Unit.getOrigUnit().getAddressByteSize();
+}
+
+unsigned DwarfLinkerForBinary::DIECloner::cloneScalarAttribute(
+ DIE &Die, const DWARFDie &InputDIE, const DebugMapObject &DMO,
+ CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val,
+ unsigned AttrSize, AttributesInfo &Info) {
+ uint64_t Value;
+
+ if (LLVM_UNLIKELY(Linker.Options.Update)) {
+ if (auto OptionalValue = Val.getAsUnsignedConstant())
+ Value = *OptionalValue;
+ else if (auto OptionalValue = Val.getAsSignedConstant())
+ Value = *OptionalValue;
+ else if (auto OptionalValue = Val.getAsSectionOffset())
+ Value = *OptionalValue;
+ else {
+ Linker.reportWarning(
+ "Unsupported scalar attribute form. Dropping attribute.", DMO,
+ &InputDIE);
+ return 0;
+ }
+ if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
+ Info.IsDeclaration = true;
+ Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
+ dwarf::Form(AttrSpec.Form), DIEInteger(Value));
+ return AttrSize;
+ }
+
+ if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
+ Die.getTag() == dwarf::DW_TAG_compile_unit) {
+ if (Unit.getLowPc() == -1ULL)
+ return 0;
+ // Dwarf >= 4 high_pc is an size, not an address.
+ Value = Unit.getHighPc() - Unit.getLowPc();
+ } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
+ Value = *Val.getAsSectionOffset();
+ else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
+ Value = *Val.getAsSignedConstant();
+ else if (auto OptionalValue = Val.getAsUnsignedConstant())
+ Value = *OptionalValue;
+ else {
+ Linker.reportWarning(
+ "Unsupported scalar attribute form. Dropping attribute.", DMO,
+ &InputDIE);
+ return 0;
+ }
+ PatchLocation Patch =
+ Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
+ dwarf::Form(AttrSpec.Form), DIEInteger(Value));
+ if (AttrSpec.Attr == dwarf::DW_AT_ranges) {
+ Unit.noteRangeAttribute(Die, Patch);
+ Info.HasRanges = true;
+ }
+
+ // A more generic way to check for location attributes would be
+ // nice, but it's very unlikely that any other attribute needs a
+ // location list.
+ // FIXME: use DWARFAttribute::mayHaveLocationDescription().
+ else if (AttrSpec.Attr == dwarf::DW_AT_location ||
+ AttrSpec.Attr == dwarf::DW_AT_frame_base)
+ Unit.noteLocationAttribute(Patch, Info.PCOffset);
+ else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
+ Info.IsDeclaration = true;
+
+ return AttrSize;
+}
+
+/// Clone \p InputDIE's attribute described by \p AttrSpec with
+/// value \p Val, and add it to \p Die.
+/// \returns the size of the cloned attribute.
+unsigned DwarfLinkerForBinary::DIECloner::cloneAttribute(
+ DIE &Die, const DWARFDie &InputDIE, const DebugMapObject &DMO,
+ CompileUnit &Unit, OffsetsStringPool &StringPool, const DWARFFormValue &Val,
+ const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info,
+ bool IsLittleEndian) {
+ const DWARFUnit &U = Unit.getOrigUnit();
+
+ switch (AttrSpec.Form) {
+ case dwarf::DW_FORM_strp:
+ case dwarf::DW_FORM_string:
+ return cloneStringAttribute(Die, AttrSpec, Val, U, StringPool, Info);
+ case dwarf::DW_FORM_ref_addr:
+ case dwarf::DW_FORM_ref1:
+ case dwarf::DW_FORM_ref2:
+ case dwarf::DW_FORM_ref4:
+ case dwarf::DW_FORM_ref8:
+ return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
+ DMO, Unit);
+ case dwarf::DW_FORM_block:
+ case dwarf::DW_FORM_block1:
+ case dwarf::DW_FORM_block2:
+ case dwarf::DW_FORM_block4:
+ case dwarf::DW_FORM_exprloc:
+ return cloneBlockAttribute(Die, DMO, Unit, AttrSpec, Val, AttrSize,
+ IsLittleEndian);
+ case dwarf::DW_FORM_addr:
+ return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
+ case dwarf::DW_FORM_data1:
+ case dwarf::DW_FORM_data2:
+ case dwarf::DW_FORM_data4:
+ case dwarf::DW_FORM_data8:
+ case dwarf::DW_FORM_udata:
+ case dwarf::DW_FORM_sdata:
+ case dwarf::DW_FORM_sec_offset:
+ case dwarf::DW_FORM_flag:
+ case dwarf::DW_FORM_flag_present:
+ return cloneScalarAttribute(Die, InputDIE, DMO, Unit, AttrSpec, Val,
+ AttrSize, Info);
+ default:
+ Linker.reportWarning(
+ "Unsupported attribute form in cloneAttribute. Dropping.", DMO,
+ &InputDIE);
+ }
+
+ return 0;
+}
+
+/// Apply the valid relocations found by findValidRelocs() to
+/// the buffer \p Data, taking into account that Data is at \p BaseOffset
+/// in the debug_info section.
+///
+/// Like for findValidRelocs(), this function must be called with
+/// monotonic \p BaseOffset values.
+///
+/// \returns whether any reloc has been applied.
+bool DwarfLinkerForBinary::RelocationManager::applyValidRelocs(
+ MutableArrayRef<char> Data, uint64_t BaseOffset, bool IsLittleEndian) {
+ assert((NextValidReloc == 0 ||
+ BaseOffset > ValidRelocs[NextValidReloc - 1].Offset) &&
+ "BaseOffset should only be increasing.");
+ if (NextValidReloc >= ValidRelocs.size())
+ return false;
+
+ // Skip relocs that haven't been applied.
+ while (NextValidReloc < ValidRelocs.size() &&
+ ValidRelocs[NextValidReloc].Offset < BaseOffset)
+ ++NextValidReloc;
+
+ bool Applied = false;
+ uint64_t EndOffset = BaseOffset + Data.size();
+ while (NextValidReloc < ValidRelocs.size() &&
+ ValidRelocs[NextValidReloc].Offset >= BaseOffset &&
+ ValidRelocs[NextValidReloc].Offset < EndOffset) {
+ const auto &ValidReloc = ValidRelocs[NextValidReloc++];
+ assert(ValidReloc.Offset - BaseOffset < Data.size());
+ assert(ValidReloc.Offset - BaseOffset + ValidReloc.Size <= Data.size());
+ char Buf[8];
+ uint64_t Value = ValidReloc.Mapping->getValue().BinaryAddress;
+ Value += ValidReloc.Addend;
+ for (unsigned i = 0; i != ValidReloc.Size; ++i) {
+ unsigned Index = IsLittleEndian ? i : (ValidReloc.Size - i - 1);
+ Buf[i] = uint8_t(Value >> (Index * 8));
+ }
+ assert(ValidReloc.Size <= sizeof(Buf));
+ memcpy(&Data[ValidReloc.Offset - BaseOffset], Buf, ValidReloc.Size);
+ Applied = true;
+ }
+
+ return Applied;
+}
+
+static bool isObjCSelector(StringRef Name) {
+ return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') &&
+ (Name[1] == '[');
+}
+
+void DwarfLinkerForBinary::DIECloner::addObjCAccelerator(
+ CompileUnit &Unit, const DIE *Die, DwarfStringPoolEntryRef Name,
+ OffsetsStringPool &StringPool, bool SkipPubSection) {
+ assert(isObjCSelector(Name.getString()) && "not an objc selector");
+ // Objective C method or class function.
+ // "- [Class(Category) selector :withArg ...]"
+ StringRef ClassNameStart(Name.getString().drop_front(2));
+ size_t FirstSpace = ClassNameStart.find(' ');
+ if (FirstSpace == StringRef::npos)
+ return;
+
+ StringRef SelectorStart(ClassNameStart.data() + FirstSpace + 1);
+ if (!SelectorStart.size())
+ return;
+
+ StringRef Selector(SelectorStart.data(), SelectorStart.size() - 1);
+ Unit.addNameAccelerator(Die, StringPool.getEntry(Selector), SkipPubSection);
+
+ // Add an entry for the class name that points to this
+ // method/class function.
+ StringRef ClassName(ClassNameStart.data(), FirstSpace);
+ Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassName), SkipPubSection);
+
+ if (ClassName[ClassName.size() - 1] == ')') {
+ size_t OpenParens = ClassName.find('(');
+ if (OpenParens != StringRef::npos) {
+ StringRef ClassNameNoCategory(ClassName.data(), OpenParens);
+ Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassNameNoCategory),
+ SkipPubSection);
+
+ std::string MethodNameNoCategory(Name.getString().data(), OpenParens + 2);
+ // FIXME: The missing space here may be a bug, but
+ // dsymutil-classic also does it this way.
+ MethodNameNoCategory.append(SelectorStart);
+ Unit.addNameAccelerator(Die, StringPool.getEntry(MethodNameNoCategory),
+ SkipPubSection);
+ }
+ }
+}
+
+static bool
+shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
+ uint16_t Tag, bool InDebugMap, bool SkipPC,
+ bool InFunctionScope) {
+ switch (AttrSpec.Attr) {
+ default:
+ return false;
+ case dwarf::DW_AT_low_pc:
+ case dwarf::DW_AT_high_pc:
+ case dwarf::DW_AT_ranges:
+ return SkipPC;
+ case dwarf::DW_AT_location:
+ case dwarf::DW_AT_frame_base:
+ // FIXME: for some reason dsymutil-classic keeps the location attributes
+ // when they are of block type (i.e. not location lists). This is totally
+ // wrong for globals where we will keep a wrong address. It is mostly
+ // harmless for locals, but there is no point in keeping these anyway when
+ // the function wasn't linked.
+ return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable &&
+ !InDebugMap)) &&
+ !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block);
+ }
+}
+
+DIE *DwarfLinkerForBinary::DIECloner::cloneDIE(
+ const DWARFDie &InputDIE, const DebugMapObject &DMO, CompileUnit &Unit,
+ OffsetsStringPool &StringPool, int64_t PCOffset, uint32_t OutOffset,
+ unsigned Flags, bool IsLittleEndian, DIE *Die) {
+ DWARFUnit &U = Unit.getOrigUnit();
+ unsigned Idx = U.getDIEIndex(InputDIE);
+ CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
+
+ // Should the DIE appear in the output?
+ if (!Unit.getInfo(Idx).Keep)
+ return nullptr;
+
+ uint64_t Offset = InputDIE.getOffset();
+ assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE");
+ if (!Die) {
+ // The DIE might have been already created by a forward reference
+ // (see cloneDieReferenceAttribute()).
+ if (!Info.Clone)
+ Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
+ Die = Info.Clone;
+ }
+
+ assert(Die->getTag() == InputDIE.getTag());
+ Die->setOffset(OutOffset);
+ if ((Unit.hasODR() || Unit.isClangModule()) && !Info.Incomplete &&
+ Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt &&
+ Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt &&
+ !Info.Ctxt->getCanonicalDIEOffset()) {
+ // We are about to emit a DIE that is the root of its own valid
+ // DeclContext tree. Make the current offset the canonical offset
+ // for this context.
+ Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
+ }
+
+ // Extract and clone every attribute.
+ DWARFDataExtractor Data = U.getDebugInfoExtractor();
+ // Point to the next DIE (generally there is always at least a NULL
+ // entry after the current one). If this is a lone
+ // DW_TAG_compile_unit without any children, point to the next unit.
+ uint64_t NextOffset = (Idx + 1 < U.getNumDIEs())
+ ? U.getDIEAtIndex(Idx + 1).getOffset()
+ : U.getNextUnitOffset();
+ AttributesInfo AttrInfo;
+
+ // We could copy the data only if we need to apply a relocation to it. After
+ // testing, it seems there is no performance downside to doing the copy
+ // unconditionally, and it makes the code simpler.
+ SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
+ Data =
+ DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
+ // Modify the copy with relocated addresses.
+ if (RelocMgr.areRelocationsResolved() &&
+ RelocMgr.applyValidRelocs(DIECopy, Offset, Data.isLittleEndian())) {
+ // If we applied relocations, we store the value of high_pc that was
+ // potentially stored in the input DIE. If high_pc is an address
+ // (Dwarf version == 2), then it might have been relocated to a
+ // totally unrelated value (because the end address in the object
+ // file might be start address of another function which got moved
+ // independently by the linker). The computation of the actual
+ // high_pc value is done in cloneAddressAttribute().
+ AttrInfo.OrigHighPc =
+ dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0);
+ // Also store the low_pc. It might get relocated in an
+ // inline_subprogram that happens at the beginning of its
+ // inlining function.
+ AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc),
+ std::numeric_limits<uint64_t>::max());
+ }
+
+ // Reset the Offset to 0 as we will be working on the local copy of
+ // the data.
+ Offset = 0;
+
+ const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
+ Offset += getULEB128Size(Abbrev->getCode());
+
+ // We are entering a subprogram. Get and propagate the PCOffset.
+ if (Die->getTag() == dwarf::DW_TAG_subprogram)
+ PCOffset = Info.AddrAdjust;
+ AttrInfo.PCOffset = PCOffset;
+
+ if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
+ Flags |= TF_InFunctionScope;
+ if (!Info.InDebugMap && LLVM_LIKELY(!Options.Update))
+ Flags |= TF_SkipPC;
+ }
+
+ bool Copied = false;
+ for (const auto &AttrSpec : Abbrev->attributes()) {
+ if (LLVM_LIKELY(!Options.Update) &&
+ shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap,
+ Flags & TF_SkipPC, Flags & TF_InFunctionScope)) {
+ DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
+ U.getFormParams());
+ // FIXME: dsymutil-classic keeps the old abbreviation around
+ // even if it's not used. We can remove this (and the copyAbbrev
+ // helper) as soon as bit-for-bit compatibility is not a goal anymore.
+ if (!Copied) {
+ copyAbbrev(*InputDIE.getAbbreviationDeclarationPtr(), Unit.hasODR());
+ Copied = true;
+ }
+ continue;
+ }
+
+ DWARFFormValue Val(AttrSpec.Form);
+ uint64_t AttrSize = Offset;
+ Val.extractValue(Data, &Offset, U.getFormParams(), &U);
+ AttrSize = Offset - AttrSize;
+
+ OutOffset += cloneAttribute(*Die, InputDIE, DMO, Unit, StringPool, Val,
+ AttrSpec, AttrSize, AttrInfo, IsLittleEndian);
+ }
+
+ // Look for accelerator entries.
+ uint16_t Tag = InputDIE.getTag();
+ // FIXME: This is slightly wrong. An inline_subroutine without a
+ // low_pc, but with AT_ranges might be interesting to get into the
+ // accelerator tables too. For now stick with dsymutil's behavior.
+ if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) &&
+ Tag != dwarf::DW_TAG_compile_unit &&
+ getDIENames(InputDIE, AttrInfo, StringPool,
+ Tag != dwarf::DW_TAG_inlined_subroutine)) {
+ if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
+ Unit.addNameAccelerator(Die, AttrInfo.MangledName,
+ Tag == dwarf::DW_TAG_inlined_subroutine);
+ if (AttrInfo.Name) {
+ if (AttrInfo.NameWithoutTemplate)
+ Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate,
+ /* SkipPubSection */ true);
+ Unit.addNameAccelerator(Die, AttrInfo.Name,
+ Tag == dwarf::DW_TAG_inlined_subroutine);
+ }
+ if (AttrInfo.Name && isObjCSelector(AttrInfo.Name.getString()))
+ addObjCAccelerator(Unit, Die, AttrInfo.Name, StringPool,
+ /* SkipPubSection =*/true);
+
+ } else if (Tag == dwarf::DW_TAG_namespace) {
+ if (!AttrInfo.Name)
+ AttrInfo.Name = StringPool.getEntry("(anonymous namespace)");
+ Unit.addNamespaceAccelerator(Die, AttrInfo.Name);
+ } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
+ getDIENames(InputDIE, AttrInfo, StringPool) && AttrInfo.Name &&
+ AttrInfo.Name.getString()[0]) {
+ uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, DMO);
+ uint64_t RuntimeLang =
+ dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class))
+ .getValueOr(0);
+ bool ObjCClassIsImplementation =
+ (RuntimeLang == dwarf::DW_LANG_ObjC ||
+ RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) &&
+ dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type))
+ .getValueOr(0);
+ Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation,
+ Hash);
+ }
+
+ // Determine whether there are any children that we want to keep.
+ bool HasChildren = false;
+ for (auto Child : InputDIE.children()) {
+ unsigned Idx = U.getDIEIndex(Child);
+ if (Unit.getInfo(Idx).Keep) {
+ HasChildren = true;
+ break;
+ }
+ }
+
+ DIEAbbrev NewAbbrev = Die->generateAbbrev();
+ if (HasChildren)
+ NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
+ // Assign a permanent abbrev number
+ Linker.assignAbbrev(NewAbbrev);
+ Die->setAbbrevNumber(NewAbbrev.getNumber());
+
+ // Add the size of the abbreviation number to the output offset.
+ OutOffset += getULEB128Size(Die->getAbbrevNumber());
+
+ if (!HasChildren) {
+ // Update our size.
+ Die->setSize(OutOffset - Die->getOffset());
+ return Die;
+ }
+
+ // Recursively clone children.
+ for (auto Child : InputDIE.children()) {
+ if (DIE *Clone = cloneDIE(Child, DMO, Unit, StringPool, PCOffset, OutOffset,
+ Flags, IsLittleEndian)) {
+ Die->addChild(Clone);
+ OutOffset = Clone->getOffset() + Clone->getSize();
+ }
+ }
+
+ // Account for the end of children marker.
+ OutOffset += sizeof(int8_t);
+ // Update our size.
+ Die->setSize(OutOffset - Die->getOffset());
+ return Die;
+}
+
+/// Patch the input object file relevant debug_ranges entries
+/// and emit them in the output file. Update the relevant attributes
+/// to point at the new entries.
+void DwarfLinkerForBinary::patchRangesForUnit(const CompileUnit &Unit,
+ DWARFContext &OrigDwarf,
+ const DebugMapObject &DMO) const {
+ DWARFDebugRangeList RangeList;
+ const auto &FunctionRanges = Unit.getFunctionRanges();
+ unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
+ DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(),
+ OrigDwarf.getDWARFObj().getRangesSection(),
+ OrigDwarf.isLittleEndian(), AddressSize);
+ auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
+ DWARFUnit &OrigUnit = Unit.getOrigUnit();
+ auto OrigUnitDie = OrigUnit.getUnitDIE(false);
+ uint64_t OrigLowPc =
+ dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), -1ULL);
+ // Ranges addresses are based on the unit's low_pc. Compute the
+ // offset we need to apply to adapt to the new unit's low_pc.
+ int64_t UnitPcOffset = 0;
+ if (OrigLowPc != -1ULL)
+ UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
+
+ for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
+ uint64_t Offset = RangeAttribute.get();
+ RangeAttribute.set(Streamer->getRangesSectionSize());
+ if (Error E = RangeList.extract(RangeExtractor, &Offset)) {
+ llvm::consumeError(std::move(E));
+ reportWarning("invalid range list ignored.", DMO);
+ RangeList.clear();
+ }
+ const auto &Entries = RangeList.getEntries();
+ if (!Entries.empty()) {
+ const DWARFDebugRangeList::RangeListEntry &First = Entries.front();
+
+ if (CurrRange == InvalidRange ||
+ First.StartAddress + OrigLowPc < CurrRange.start() ||
+ First.StartAddress + OrigLowPc >= CurrRange.stop()) {
+ CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc);
+ if (CurrRange == InvalidRange ||
+ CurrRange.start() > First.StartAddress + OrigLowPc) {
+ reportWarning("no mapping for range.", DMO);
+ continue;
+ }
+ }
+ }
+
+ Streamer->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange, Entries,
+ AddressSize);
+ }
+}
+
+/// Generate the debug_aranges entries for \p Unit and if the
+/// unit has a DW_AT_ranges attribute, also emit the debug_ranges
+/// contribution for this attribute.
+/// FIXME: this could actually be done right in patchRangesForUnit,
+/// but for the sake of initial bit-for-bit compatibility with legacy
+/// dsymutil, we have to do it in a delayed pass.
+void DwarfLinkerForBinary::generateUnitRanges(CompileUnit &Unit) const {
+ auto Attr = Unit.getUnitRangesAttribute();
+ if (Attr)
+ Attr->set(Streamer->getRangesSectionSize());
+ Streamer->emitUnitRangesEntries(Unit, static_cast<bool>(Attr));
+}
+
+/// Insert the new line info sequence \p Seq into the current
+/// set of already linked line info \p Rows.
+static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
+ std::vector<DWARFDebugLine::Row> &Rows) {
+ if (Seq.empty())
+ return;
+
+ if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
+ Rows.insert(Rows.end(), Seq.begin(), Seq.end());
+ Seq.clear();
+ return;
+ }
+
+ object::SectionedAddress Front = Seq.front().Address;
+ auto InsertPoint = partition_point(
+ Rows, [=](const DWARFDebugLine::Row &O) { return O.Address < Front; });
+
+ // FIXME: this only removes the unneeded end_sequence if the
+ // sequences have been inserted in order. Using a global sort like
+ // described in patchLineTableForUnit() and delaying the end_sequene
+ // elimination to emitLineTableForUnit() we can get rid of all of them.
+ if (InsertPoint != Rows.end() && InsertPoint->Address == Front &&
+ InsertPoint->EndSequence) {
+ *InsertPoint = Seq.front();
+ Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
+ } else {
+ Rows.insert(InsertPoint, Seq.begin(), Seq.end());
+ }
+
+ Seq.clear();
+}
+
+static void patchStmtList(DIE &Die, DIEInteger Offset) {
+ for (auto &V : Die.values())
+ if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
+ V = DIEValue(V.getAttribute(), V.getForm(), Offset);
+ return;
+ }
+
+ llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
+}
+
+/// Extract the line table for \p Unit from \p OrigDwarf, and
+/// recreate a relocated version of these for the address ranges that
+/// are present in the binary.
+void DwarfLinkerForBinary::patchLineTableForUnit(CompileUnit &Unit,
+ DWARFContext &OrigDwarf,
+ RangesTy &Ranges,
+ const DebugMapObject &DMO) {
+ DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE();
+ auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
+ if (!StmtList)
+ return;
+
+ // Update the cloned DW_AT_stmt_list with the correct debug_line offset.
+ if (auto *OutputDIE = Unit.getOutputUnitDIE())
+ patchStmtList(*OutputDIE, DIEInteger(Streamer->getLineSectionSize()));
+
+ // Parse the original line info for the unit.
+ DWARFDebugLine::LineTable LineTable;
+ uint64_t StmtOffset = *StmtList;
+ DWARFDataExtractor LineExtractor(
+ OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(),
+ OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize());
+ if (Options.Translator)
+ return Streamer->translateLineTable(LineExtractor, StmtOffset);
+
+ Error Err = LineTable.parse(LineExtractor, &StmtOffset, OrigDwarf,
+ &Unit.getOrigUnit(), DWARFContext::dumpWarning);
+ DWARFContext::dumpWarning(std::move(Err));
+
+ // This vector is the output line table.
+ std::vector<DWARFDebugLine::Row> NewRows;
+ NewRows.reserve(LineTable.Rows.size());
+
+ // Current sequence of rows being extracted, before being inserted
+ // in NewRows.
+ std::vector<DWARFDebugLine::Row> Seq;
+ const auto &FunctionRanges = Unit.getFunctionRanges();
+ auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
+
+ // FIXME: This logic is meant to generate exactly the same output as
+ // Darwin's classic dsymutil. There is a nicer way to implement this
+ // by simply putting all the relocated line info in NewRows and simply
+ // sorting NewRows before passing it to emitLineTableForUnit. This
+ // should be correct as sequences for a function should stay
+ // together in the sorted output. There are a few corner cases that
+ // look suspicious though, and that required to implement the logic
+ // this way. Revisit that once initial validation is finished.
+
+ // Iterate over the object file line info and extract the sequences
+ // that correspond to linked functions.
+ for (auto &Row : LineTable.Rows) {
+ // Check whether we stepped out of the range. The range is
+ // half-open, but consider accept the end address of the range if
+ // it is marked as end_sequence in the input (because in that
+ // case, the relocation offset is accurate and that entry won't
+ // serve as the start of another function).
+ if (CurrRange == InvalidRange || Row.Address.Address < CurrRange.start() ||
+ Row.Address.Address > CurrRange.stop() ||
+ (Row.Address.Address == CurrRange.stop() && !Row.EndSequence)) {
+ // We just stepped out of a known range. Insert a end_sequence
+ // corresponding to the end of the range.
+ uint64_t StopAddress = CurrRange != InvalidRange
+ ? CurrRange.stop() + CurrRange.value()
+ : -1ULL;
+ CurrRange = FunctionRanges.find(Row.Address.Address);
+ bool CurrRangeValid =
+ CurrRange != InvalidRange && CurrRange.start() <= Row.Address.Address;
+ if (!CurrRangeValid) {
+ CurrRange = InvalidRange;
+ if (StopAddress != -1ULL) {
+ // Try harder by looking in the DebugMapObject function
+ // ranges map. There are corner cases where this finds a
+ // valid entry. It's unclear if this is right or wrong, but
+ // for now do as dsymutil.
+ // FIXME: Understand exactly what cases this addresses and
+ // potentially remove it along with the Ranges map.
+ auto Range = Ranges.lower_bound(Row.Address.Address);
+ if (Range != Ranges.begin() && Range != Ranges.end())
+ --Range;
+
+ if (Range != Ranges.end() && Range->first <= Row.Address.Address &&
+ Range->second.HighPC >= Row.Address.Address) {
+ StopAddress = Row.Address.Address + Range->second.Offset;
+ }
+ }
+ }
+ if (StopAddress != -1ULL && !Seq.empty()) {
+ // Insert end sequence row with the computed end address, but
+ // the same line as the previous one.
+ auto NextLine = Seq.back();
+ NextLine.Address.Address = StopAddress;
+ NextLine.EndSequence = 1;
+ NextLine.PrologueEnd = 0;
+ NextLine.BasicBlock = 0;
+ NextLine.EpilogueBegin = 0;
+ Seq.push_back(NextLine);
+ insertLineSequence(Seq, NewRows);
+ }
+
+ if (!CurrRangeValid)
+ continue;
+ }
+
+ // Ignore empty sequences.
+ if (Row.EndSequence && Seq.empty())
+ continue;
+
+ // Relocate row address and add it to the current sequence.
+ Row.Address.Address += CurrRange.value();
+ Seq.emplace_back(Row);
+
+ if (Row.EndSequence)
+ insertLineSequence(Seq, NewRows);
+ }
+
+ // Finished extracting, now emit the line tables.
+ // FIXME: LLVM hard-codes its prologue values. We just copy the
+ // prologue over and that works because we act as both producer and
+ // consumer. It would be nicer to have a real configurable line
+ // table emitter.
+ if (LineTable.Prologue.getVersion() < 2 ||
+ LineTable.Prologue.getVersion() > 5 ||
+ LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
+ LineTable.Prologue.OpcodeBase > 13)
+ reportWarning("line table parameters mismatch. Cannot emit.", DMO);
+ else {
+ uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength;
+ // DWARF v5 has an extra 2 bytes of information before the header_length
+ // field.
+ if (LineTable.Prologue.getVersion() == 5)
+ PrologueEnd += 2;
+ StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data;
+ MCDwarfLineTableParams Params;
+ Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase;
+ Params.DWARF2LineBase = LineTable.Prologue.LineBase;
+ Params.DWARF2LineRange = LineTable.Prologue.LineRange;
+ Streamer->emitLineTableForUnit(Params,
+ LineData.slice(*StmtList + 4, PrologueEnd),
+ LineTable.Prologue.MinInstLength, NewRows,
+ Unit.getOrigUnit().getAddressByteSize());
+ }
+}
+
+void DwarfLinkerForBinary::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
+ switch (Options.TheAccelTableKind) {
+ case AccelTableKind::Apple:
+ emitAppleAcceleratorEntriesForUnit(Unit);
+ break;
+ case AccelTableKind::Dwarf:
+ emitDwarfAcceleratorEntriesForUnit(Unit);
+ break;
+ case AccelTableKind::Default:
+ llvm_unreachable("The default must be updated to a concrete value.");
+ break;
+ }
+}
+
+void DwarfLinkerForBinary::emitAppleAcceleratorEntriesForUnit(
+ CompileUnit &Unit) {
+ // Add namespaces.
+ for (const auto &Namespace : Unit.getNamespaces())
+ AppleNamespaces.addName(Namespace.Name,
+ Namespace.Die->getOffset() + Unit.getStartOffset());
+
+ /// Add names.
+ if (!Options.Minimize)
+ Streamer->emitPubNamesForUnit(Unit);
+ for (const auto &Pubname : Unit.getPubnames())
+ AppleNames.addName(Pubname.Name,
+ Pubname.Die->getOffset() + Unit.getStartOffset());
+
+ /// Add types.
+ if (!Options.Minimize)
+ Streamer->emitPubTypesForUnit(Unit);
+ for (const auto &Pubtype : Unit.getPubtypes())
+ AppleTypes.addName(
+ Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(),
+ Pubtype.Die->getTag(),
+ Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation
+ : 0,
+ Pubtype.QualifiedNameHash);
+
+ /// Add ObjC names.
+ for (const auto &ObjC : Unit.getObjC())
+ AppleObjc.addName(ObjC.Name, ObjC.Die->getOffset() + Unit.getStartOffset());
+}
+
+void DwarfLinkerForBinary::emitDwarfAcceleratorEntriesForUnit(
+ CompileUnit &Unit) {
+ for (const auto &Namespace : Unit.getNamespaces())
+ DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(),
+ Namespace.Die->getTag(), Unit.getUniqueID());
+ for (const auto &Pubname : Unit.getPubnames())
+ DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(),
+ Pubname.Die->getTag(), Unit.getUniqueID());
+ for (const auto &Pubtype : Unit.getPubtypes())
+ DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(),
+ Pubtype.Die->getTag(), Unit.getUniqueID());
+}
+
+/// Read the frame info stored in the object, and emit the
+/// patched frame descriptions for the linked binary.
+///
+/// This is actually pretty easy as the data of the CIEs and FDEs can
+/// be considered as black boxes and moved as is. The only thing to do
+/// is to patch the addresses in the headers.
+void DwarfLinkerForBinary::patchFrameInfoForObject(const DebugMapObject &DMO,
+ RangesTy &Ranges,
+ DWARFContext &OrigDwarf,
+ unsigned AddrSize) {
+ StringRef FrameData = OrigDwarf.getDWARFObj().getFrameSection().Data;
+ if (FrameData.empty())
+ return;
+
+ DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
+ uint64_t InputOffset = 0;
+
+ // Store the data of the CIEs defined in this object, keyed by their
+ // offsets.
+ DenseMap<uint64_t, StringRef> LocalCIES;
+
+ while (Data.isValidOffset(InputOffset)) {
+ uint64_t EntryOffset = InputOffset;
+ uint32_t InitialLength = Data.getU32(&InputOffset);
+ if (InitialLength == 0xFFFFFFFF)
+ return reportWarning("Dwarf64 bits no supported", DMO);
+
+ uint32_t CIEId = Data.getU32(&InputOffset);
+ if (CIEId == 0xFFFFFFFF) {
+ // This is a CIE, store it.
+ StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
+ LocalCIES[EntryOffset] = CIEData;
+ // The -4 is to account for the CIEId we just read.
+ InputOffset += InitialLength - 4;
+ continue;
+ }
+
+ uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize);
+
+ // Some compilers seem to emit frame info that doesn't start at
+ // the function entry point, thus we can't just lookup the address
+ // in the debug map. Use the linker's range map to see if the FDE
+ // describes something that we can relocate.
+ auto Range = Ranges.upper_bound(Loc);
+ if (Range != Ranges.begin())
+ --Range;
+ if (Range == Ranges.end() || Range->first > Loc ||
+ Range->second.HighPC <= Loc) {
+ // The +4 is to account for the size of the InitialLength field itself.
+ InputOffset = EntryOffset + InitialLength + 4;
+ continue;
+ }
+
+ // This is an FDE, and we have a mapping.
+ // Have we already emitted a corresponding CIE?
+ StringRef CIEData = LocalCIES[CIEId];
+ if (CIEData.empty())
+ return reportWarning("Inconsistent debug_frame content. Dropping.", DMO);
+
+ // Look if we already emitted a CIE that corresponds to the
+ // referenced one (the CIE data is the key of that lookup).
+ auto IteratorInserted = EmittedCIEs.insert(
+ std::make_pair(CIEData, Streamer->getFrameSectionSize()));
+ // If there is no CIE yet for this ID, emit it.
+ if (IteratorInserted.second ||
+ // FIXME: dsymutil-classic only caches the last used CIE for
+ // reuse. Mimic that behavior for now. Just removing that
+ // second half of the condition and the LastCIEOffset variable
+ // makes the code DTRT.
+ LastCIEOffset != IteratorInserted.first->getValue()) {
+ LastCIEOffset = Streamer->getFrameSectionSize();
+ IteratorInserted.first->getValue() = LastCIEOffset;
+ Streamer->emitCIE(CIEData);
+ }
+
+ // Emit the FDE with updated address and CIE pointer.
+ // (4 + AddrSize) is the size of the CIEId + initial_location
+ // fields that will get reconstructed by emitFDE().
+ unsigned FDERemainingBytes = InitialLength - (4 + AddrSize);
+ Streamer->emitFDE(IteratorInserted.first->getValue(), AddrSize,
+ Loc + Range->second.Offset,
+ FrameData.substr(InputOffset, FDERemainingBytes));
+ InputOffset += FDERemainingBytes;
+ }
+}
+
+void DwarfLinkerForBinary::DIECloner::copyAbbrev(
+ const DWARFAbbreviationDeclaration &Abbrev, bool HasODR) {
+ DIEAbbrev Copy(dwarf::Tag(Abbrev.getTag()),
+ dwarf::Form(Abbrev.hasChildren()));
+
+ for (const auto &Attr : Abbrev.attributes()) {
+ uint16_t Form = Attr.Form;
+ if (HasODR && isODRAttribute(Attr.Attr))
+ Form = dwarf::DW_FORM_ref_addr;
+ Copy.AddAttribute(dwarf::Attribute(Attr.Attr), dwarf::Form(Form));
+ }
+
+ Linker.assignAbbrev(Copy);
+}
+
+uint32_t DwarfLinkerForBinary::DIECloner::hashFullyQualifiedName(
+ DWARFDie DIE, CompileUnit &U, const DebugMapObject &DMO,
+ int ChildRecurseDepth) {
+ const char *Name = nullptr;
+ DWARFUnit *OrigUnit = &U.getOrigUnit();
+ CompileUnit *CU = &U;
+ Optional<DWARFFormValue> Ref;
+
+ while (1) {
+ if (const char *CurrentName = DIE.getName(DINameKind::ShortName))
+ Name = CurrentName;
+
+ if (!(Ref = DIE.find(dwarf::DW_AT_specification)) &&
+ !(Ref = DIE.find(dwarf::DW_AT_abstract_origin)))
+ break;
+
+ if (!Ref->isFormClass(DWARFFormValue::FC_Reference))
+ break;
+
+ CompileUnit *RefCU;
+ if (auto RefDIE =
+ resolveDIEReference(Linker, DMO, CompileUnits, *Ref, DIE, RefCU)) {
+ CU = RefCU;
+ OrigUnit = &RefCU->getOrigUnit();
+ DIE = RefDIE;
+ }
+ }
+
+ unsigned Idx = OrigUnit->getDIEIndex(DIE);
+ if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace)
+ Name = "(anonymous namespace)";
+
+ if (CU->getInfo(Idx).ParentIdx == 0 ||
+ // FIXME: dsymutil-classic compatibility. Ignore modules.
+ CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() ==
+ dwarf::DW_TAG_module)
+ return djbHash(Name ? Name : "", djbHash(ChildRecurseDepth ? "" : "::"));
+
+ DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx);
+ return djbHash(
+ (Name ? Name : ""),
+ djbHash((Name ? "::" : ""),
+ hashFullyQualifiedName(Die, *CU, DMO, ++ChildRecurseDepth)));
+}
+
+static uint64_t getDwoId(const DWARFDie &CUDie, const DWARFUnit &Unit) {
+ auto DwoId = dwarf::toUnsigned(
+ CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id}));
+ if (DwoId)
+ return *DwoId;
+ return 0;
+}
+
+bool DwarfLinkerForBinary::registerModuleReference(
+ DWARFDie CUDie, const DWARFUnit &Unit, DebugMap &ModuleMap,
+ const DebugMapObject &DMO, RangesTy &Ranges, OffsetsStringPool &StringPool,
+ UniquingStringPool &UniquingStringPool, DeclContextTree &ODRContexts,
+ uint64_t ModulesEndOffset, unsigned &UnitID, bool IsLittleEndian,
+ unsigned Indent, bool Quiet) {
+ std::string PCMfile = dwarf::toString(
+ CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), "");
+ if (PCMfile.empty())
+ return false;
+
+ // Clang module DWARF skeleton CUs abuse this for the path to the module.
+ uint64_t DwoId = getDwoId(CUDie, Unit);
+
+ std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
+ if (Name.empty()) {
+ if (!Quiet)
+ reportWarning("Anonymous module skeleton CU for " + PCMfile, DMO);
+ return true;
+ }
+
+ if (!Quiet && Options.Verbose) {
+ outs().indent(Indent);
+ outs() << "Found clang module reference " << PCMfile;
+ }
+
+ auto Cached = ClangModules.find(PCMfile);
+ if (Cached != ClangModules.end()) {
+ // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
+ // fixed in clang, only warn about DWO_id mismatches in verbose mode.
+ // ASTFileSignatures will change randomly when a module is rebuilt.
+ if (!Quiet && Options.Verbose && (Cached->second != DwoId))
+ reportWarning(Twine("hash mismatch: this object file was built against a "
+ "different version of the module ") +
+ PCMfile,
+ DMO);
+ if (!Quiet && Options.Verbose)
+ outs() << " [cached].\n";
+ return true;
+ }
+ if (!Quiet && Options.Verbose)
+ outs() << " ...\n";
+
+ // Cyclic dependencies are disallowed by Clang, but we still
+ // shouldn't run into an infinite loop, so mark it as processed now.
+ ClangModules.insert({PCMfile, DwoId});
+
+ if (Error E = loadClangModule(CUDie, PCMfile, Name, DwoId, ModuleMap, DMO,
+ Ranges, StringPool, UniquingStringPool,
+ ODRContexts, ModulesEndOffset, UnitID,
+ IsLittleEndian, Indent + 2, Quiet)) {
+ consumeError(std::move(E));
+ return false;
+ }
+ return true;
+}
+
+ErrorOr<const object::ObjectFile &>
+DwarfLinkerForBinary::loadObject(const DebugMapObject &Obj,
+ const DebugMap &Map) {
+ auto ObjectEntry =
+ BinHolder.getObjectEntry(Obj.getObjectFilename(), Obj.getTimestamp());
+ if (!ObjectEntry) {
+ auto Err = ObjectEntry.takeError();
+ reportWarning(
+ Twine(Obj.getObjectFilename()) + ": " + toString(std::move(Err)), Obj);
+ return errorToErrorCode(std::move(Err));
+ }
+
+ auto Object = ObjectEntry->getObject(Map.getTriple());
+ if (!Object) {
+ auto Err = Object.takeError();
+ reportWarning(
+ Twine(Obj.getObjectFilename()) + ": " + toString(std::move(Err)), Obj);
+ return errorToErrorCode(std::move(Err));
+ }
+
+ return *Object;
+}
+
+Error DwarfLinkerForBinary::loadClangModule(
+ DWARFDie CUDie, StringRef Filename, StringRef ModuleName, uint64_t DwoId,
+ DebugMap &ModuleMap, const DebugMapObject &DMO, RangesTy &Ranges,
+ OffsetsStringPool &StringPool, UniquingStringPool &UniquingStringPool,
+ DeclContextTree &ODRContexts, uint64_t ModulesEndOffset, unsigned &UnitID,
+ bool IsLittleEndian, unsigned Indent, bool Quiet) {
+ /// Using a SmallString<0> because loadClangModule() is recursive.
+ SmallString<0> Path(Options.PrependPath);
+ if (sys::path::is_relative(Filename))
+ resolveRelativeObjectPath(Path, CUDie);
+ sys::path::append(Path, Filename);
+ // Don't use the cached binary holder because we have no thread-safety
+ // guarantee and the lifetime is limited.
+ auto &Obj = ModuleMap.addDebugMapObject(
+ Path, sys::TimePoint<std::chrono::seconds>(), MachO::N_OSO);
+ auto ErrOrObj = loadObject(Obj, ModuleMap);
+ if (!ErrOrObj) {
+ // Try and emit more helpful warnings by applying some heuristics.
+ StringRef ObjFile = DMO.getObjectFilename();
+ bool isClangModule = sys::path::extension(Filename).equals(".pcm");
+ bool isArchive = ObjFile.endswith(")");
+ if (isClangModule) {
+ StringRef ModuleCacheDir = sys::path::parent_path(Path);
+ if (sys::fs::exists(ModuleCacheDir)) {
+ // If the module's parent directory exists, we assume that the module
+ // cache has expired and was pruned by clang. A more adventurous
+ // dsymutil would invoke clang to rebuild the module now.
+ if (!ModuleCacheHintDisplayed) {
+ WithColor::note() << "The clang module cache may have expired since "
+ "this object file was built. Rebuilding the "
+ "object file will rebuild the module cache.\n";
+ ModuleCacheHintDisplayed = true;
+ }
+ } else if (isArchive) {
+ // If the module cache directory doesn't exist at all and the object
+ // file is inside a static library, we assume that the static library
+ // was built on a different machine. We don't want to discourage module
+ // debugging for convenience libraries within a project though.
+ if (!ArchiveHintDisplayed) {
+ WithColor::note()
+ << "Linking a static library that was built with "
+ "-gmodules, but the module cache was not found. "
+ "Redistributable static libraries should never be "
+ "built with module debugging enabled. The debug "
+ "experience will be degraded due to incomplete "
+ "debug information.\n";
+ ArchiveHintDisplayed = true;
+ }
+ }
+ }
+ return Error::success();
+ }
+
+ std::unique_ptr<CompileUnit> Unit;
+
+ // Setup access to the debug info.
+ auto DwarfContext = DWARFContext::create(*ErrOrObj);
+ RelocationManager RelocMgr(*this, *ErrOrObj, DMO);
+
+ for (const auto &CU : DwarfContext->compile_units()) {
+ updateDwarfVersion(CU->getVersion());
+ // Recursively get all modules imported by this one.
+ auto CUDie = CU->getUnitDIE(false);
+ if (!CUDie)
+ continue;
+ if (!registerModuleReference(CUDie, *CU, ModuleMap, DMO, Ranges, StringPool,
+ UniquingStringPool, ODRContexts,
+ ModulesEndOffset, UnitID, IsLittleEndian,
+ Indent, Quiet)) {
+ if (Unit) {
+ std::string Err =
+ (Filename +
+ ": Clang modules are expected to have exactly 1 compile unit.\n")
+ .str();
+ error(Err);
+ return make_error<StringError>(Err, inconvertibleErrorCode());
+ }
+ // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
+ // fixed in clang, only warn about DWO_id mismatches in verbose mode.
+ // ASTFileSignatures will change randomly when a module is rebuilt.
+ uint64_t PCMDwoId = getDwoId(CUDie, *CU);
+ if (PCMDwoId != DwoId) {
+ if (!Quiet && Options.Verbose)
+ reportWarning(
+ Twine("hash mismatch: this object file was built against a "
+ "different version of the module ") +
+ Filename,
+ DMO);
+ // Update the cache entry with the DwoId of the module loaded from disk.
+ ClangModules[Filename] = PCMDwoId;
+ }
+
+ // Add this module.
+ Unit = std::make_unique<CompileUnit>(*CU, UnitID++, !Options.NoODR,
+ ModuleName);
+ Unit->setHasInterestingContent();
+ analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(),
+ UniquingStringPool, ODRContexts, ModulesEndOffset,
+ ParseableSwiftInterfaces,
+ [&](const Twine &Warning, const DWARFDie &DIE) {
+ reportWarning(Warning, DMO, &DIE);
+ });
+ // Keep everything.
+ Unit->markEverythingAsKept();
+ }
+ }
+ if (!Unit->getOrigUnit().getUnitDIE().hasChildren())
+ return Error::success();
+ if (!Quiet && Options.Verbose) {
+ outs().indent(Indent);
+ outs() << "cloning .debug_info from " << Filename << "\n";
+ }
+
+ UnitListTy CompileUnits;
+ CompileUnits.push_back(std::move(Unit));
+ DIECloner(*this, RelocMgr, DIEAlloc, CompileUnits, Options)
+ .cloneAllCompileUnits(*DwarfContext, DMO, Ranges, StringPool,
+ IsLittleEndian);
+ return Error::success();
+}
+
+void DwarfLinkerForBinary::DIECloner::cloneAllCompileUnits(
+ DWARFContext &DwarfContext, const DebugMapObject &DMO, RangesTy &Ranges,
+ OffsetsStringPool &StringPool, bool IsLittleEndian) {
+ if (!Linker.Streamer)
+ return;
+
+ for (auto &CurrentUnit : CompileUnits) {
+ auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE();
+ CurrentUnit->setStartOffset(Linker.OutputDebugInfoSize);
+ if (!InputDIE) {
+ Linker.OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset();
+ continue;
+ }
+ if (CurrentUnit->getInfo(0).Keep) {
+ // Clone the InputDIE into your Unit DIE in our compile unit since it
+ // already has a DIE inside of it.
+ CurrentUnit->createOutputDIE();
+ cloneDIE(InputDIE, DMO, *CurrentUnit, StringPool, 0 /* PC offset */,
+ 11 /* Unit Header size */, 0, IsLittleEndian,
+ CurrentUnit->getOutputUnitDIE());
+ }
+
+ Linker.OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset();
+
+ if (Linker.Options.NoOutput)
+ continue;
+
+ // FIXME: for compatibility with the classic dsymutil, we emit
+ // an empty line table for the unit, even if the unit doesn't
+ // actually exist in the DIE tree.
+ if (LLVM_LIKELY(!Linker.Options.Update) || Linker.Options.Translator)
+ Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext, Ranges, DMO);
+
+ Linker.emitAcceleratorEntriesForUnit(*CurrentUnit);
+
+ if (LLVM_UNLIKELY(Linker.Options.Update))
+ continue;
+
+ Linker.patchRangesForUnit(*CurrentUnit, DwarfContext, DMO);
+ auto ProcessExpr = [&](StringRef Bytes, SmallVectorImpl<uint8_t> &Buffer) {
+ DWARFUnit &OrigUnit = CurrentUnit->getOrigUnit();
+ DataExtractor Data(Bytes, IsLittleEndian, OrigUnit.getAddressByteSize());
+ cloneExpression(Data,
+ DWARFExpression(Data, OrigUnit.getVersion(),
+ OrigUnit.getAddressByteSize()),
+ DMO, *CurrentUnit, Buffer);
+ };
+ Linker.Streamer->emitLocationsForUnit(*CurrentUnit, DwarfContext,
+ ProcessExpr);
+ }
+
+ if (Linker.Options.NoOutput)
+ return;
+
+ // Emit all the compile unit's debug information.
+ for (auto &CurrentUnit : CompileUnits) {
+ if (LLVM_LIKELY(!Linker.Options.Update))
+ Linker.generateUnitRanges(*CurrentUnit);
+
+ CurrentUnit->fixupForwardReferences();
+
+ if (!CurrentUnit->getOutputUnitDIE())
+ continue;
+
+ Linker.Streamer->emitCompileUnitHeader(*CurrentUnit);
+ Linker.Streamer->emitDIE(*CurrentUnit->getOutputUnitDIE());
+ }
+}
+
+void DwarfLinkerForBinary::updateAccelKind(DWARFContext &Dwarf) {
+ if (Options.TheAccelTableKind != AccelTableKind::Default)
+ return;
+
+ auto &DwarfObj = Dwarf.getDWARFObj();
+
+ if (!AtLeastOneDwarfAccelTable &&
+ (!DwarfObj.getAppleNamesSection().Data.empty() ||
+ !DwarfObj.getAppleTypesSection().Data.empty() ||
+ !DwarfObj.getAppleNamespacesSection().Data.empty() ||
+ !DwarfObj.getAppleObjCSection().Data.empty())) {
+ AtLeastOneAppleAccelTable = true;
+ }
+
+ if (!AtLeastOneDwarfAccelTable && !DwarfObj.getNamesSection().Data.empty()) {
+ AtLeastOneDwarfAccelTable = true;
+ }
+}
+
+bool DwarfLinkerForBinary::emitPaperTrailWarnings(
+ const DebugMapObject &DMO, const DebugMap &Map,
+ OffsetsStringPool &StringPool) {
+ if (DMO.getWarnings().empty() || !DMO.empty())
+ return false;
+
+ Streamer->switchToDebugInfoSection(/* Version */ 2);
+ DIE *CUDie = DIE::get(DIEAlloc, dwarf::DW_TAG_compile_unit);
+ CUDie->setOffset(11);
+ StringRef Producer = StringPool.internString("dsymutil");
+ StringRef File = StringPool.internString(DMO.getObjectFilename());
+ CUDie->addValue(DIEAlloc, dwarf::DW_AT_producer, dwarf::DW_FORM_strp,
+ DIEInteger(StringPool.getStringOffset(Producer)));
+ DIEBlock *String = new (DIEAlloc) DIEBlock();
+ DIEBlocks.push_back(String);
+ for (auto &C : File)
+ String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
+ DIEInteger(C));
+ String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
+ DIEInteger(0));
+
+ CUDie->addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_string, String);
+ for (const auto &Warning : DMO.getWarnings()) {
+ DIE &ConstDie = CUDie->addChild(DIE::get(DIEAlloc, dwarf::DW_TAG_constant));
+ ConstDie.addValue(
+ DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_strp,
+ DIEInteger(StringPool.getStringOffset("dsymutil_warning")));
+ ConstDie.addValue(DIEAlloc, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag,
+ DIEInteger(1));
+ ConstDie.addValue(DIEAlloc, dwarf::DW_AT_const_value, dwarf::DW_FORM_strp,
+ DIEInteger(StringPool.getStringOffset(Warning)));
+ }
+ unsigned Size = 4 /* FORM_strp */ + File.size() + 1 +
+ DMO.getWarnings().size() * (4 + 1 + 4) +
+ 1 /* End of children */;
+ DIEAbbrev Abbrev = CUDie->generateAbbrev();
+ assignAbbrev(Abbrev);
+ CUDie->setAbbrevNumber(Abbrev.getNumber());
+ Size += getULEB128Size(Abbrev.getNumber());
+ // Abbreviation ordering needed for classic compatibility.
+ for (auto &Child : CUDie->children()) {
+ Abbrev = Child.generateAbbrev();
+ assignAbbrev(Abbrev);
+ Child.setAbbrevNumber(Abbrev.getNumber());
+ Size += getULEB128Size(Abbrev.getNumber());
+ }
+ CUDie->setSize(Size);
+ auto &Asm = Streamer->getAsmPrinter();
+ Asm.emitInt32(11 + CUDie->getSize() - 4);
+ Asm.emitInt16(2);
+ Asm.emitInt32(0);
+ Asm.emitInt8(Map.getTriple().isArch64Bit() ? 8 : 4);
+ Streamer->emitDIE(*CUDie);
+ OutputDebugInfoSize += 11 /* Header */ + Size;
+
+ return true;
+}
+
+static Error copySwiftInterfaces(
+ const std::map<std::string, std::string> &ParseableSwiftInterfaces,
+ StringRef Architecture, const LinkOptions &Options) {
+ std::error_code EC;
+ SmallString<128> InputPath;
+ SmallString<128> Path;
+ sys::path::append(Path, *Options.ResourceDir, "Swift", Architecture);
+ if ((EC = sys::fs::create_directories(Path.str(), true,
+ sys::fs::perms::all_all)))
+ return make_error<StringError>(
+ "cannot create directory: " + toString(errorCodeToError(EC)), EC);
+ unsigned BaseLength = Path.size();
+
+ for (auto &I : ParseableSwiftInterfaces) {
+ StringRef ModuleName = I.first;
+ StringRef InterfaceFile = I.second;
+ if (!Options.PrependPath.empty()) {
+ InputPath.clear();
+ sys::path::append(InputPath, Options.PrependPath, InterfaceFile);
+ InterfaceFile = InputPath;
+ }
+ sys::path::append(Path, ModuleName);
+ Path.append(".swiftinterface");
+ if (Options.Verbose)
+ outs() << "copy parseable Swift interface " << InterfaceFile << " -> "
+ << Path.str() << '\n';
+
+ // copy_file attempts an APFS clone first, so this should be cheap.
+ if ((EC = sys::fs::copy_file(InterfaceFile, Path.str())))
+ warn(Twine("cannot copy parseable Swift interface ") + InterfaceFile +
+ ": " + toString(errorCodeToError(EC)));
+ Path.resize(BaseLength);
+ }
+ return Error::success();
+}
+
+static Error emitRemarks(const LinkOptions &Options, StringRef BinaryPath,
+ StringRef ArchName, const remarks::RemarkLinker &RL) {
+ // Make sure we don't create the directories and the file if there is nothing
+ // to serialize.
+ if (RL.empty())
+ return Error::success();
+
+ SmallString<128> InputPath;
+ SmallString<128> Path;
+ // Create the "Remarks" directory in the "Resources" directory.
+ sys::path::append(Path, *Options.ResourceDir, "Remarks");
+ if (std::error_code EC = sys::fs::create_directories(Path.str(), true,
+ sys::fs::perms::all_all))
+ return errorCodeToError(EC);
+
+ // Append the file name.
+ // For fat binaries, also append a dash and the architecture name.
+ sys::path::append(Path, sys::path::filename(BinaryPath));
+ if (Options.NumDebugMaps > 1) {
+ // More than one debug map means we have a fat binary.
+ Path += '-';
+ Path += ArchName;
+ }
+
+ std::error_code EC;
+ raw_fd_ostream OS(Options.NoOutput ? "-" : Path.str(), EC, sys::fs::OF_None);
+ if (EC)
+ return errorCodeToError(EC);
+
+ if (Error E = RL.serialize(OS, Options.RemarksFormat))
+ return E;
+
+ return Error::success();
+}
+
+bool DwarfLinkerForBinary::link(const DebugMap &Map) {
+ if (!createStreamer(Map.getTriple(), OutFile))
+ return false;
+
+ // Size of the DIEs (and headers) generated for the linked output.
+ OutputDebugInfoSize = 0;
+ // A unique ID that identifies each compile unit.
+ unsigned UnitID = 0;
+ DebugMap ModuleMap(Map.getTriple(), Map.getBinaryPath());
+
+ // First populate the data structure we need for each iteration of the
+ // parallel loop.
+ unsigned NumObjects = Map.getNumberOfObjects();
+ std::vector<LinkContext> ObjectContexts;
+ ObjectContexts.reserve(NumObjects);
+ for (const auto &Obj : Map.objects()) {
+ ObjectContexts.emplace_back(Map, *this, *Obj.get());
+ LinkContext &LC = ObjectContexts.back();
+ if (LC.ObjectFile)
+ updateAccelKind(*LC.DwarfContext);
+ }
+
+ // This Dwarf string pool which is only used for uniquing. This one should
+ // never be used for offsets as its not thread-safe or predictable.
+ UniquingStringPool UniquingStringPool(nullptr, true);
+
+ // This Dwarf string pool which is used for emission. It must be used
+ // serially as the order of calling getStringOffset matters for
+ // reproducibility.
+ OffsetsStringPool OffsetsStringPool(Options.Translator, true);
+
+ // ODR Contexts for the link.
+ DeclContextTree ODRContexts;
+
+ // If we haven't decided on an accelerator table kind yet, we base ourselves
+ // on the DWARF we have seen so far. At this point we haven't pulled in debug
+ // information from modules yet, so it is technically possible that they
+ // would affect the decision. However, as they're built with the same
+ // compiler and flags, it is safe to assume that they will follow the
+ // decision made here.
+ if (Options.TheAccelTableKind == AccelTableKind::Default) {
+ if (AtLeastOneDwarfAccelTable && !AtLeastOneAppleAccelTable)
+ Options.TheAccelTableKind = AccelTableKind::Dwarf;
+ else
+ Options.TheAccelTableKind = AccelTableKind::Apple;
+ }
+
+ for (LinkContext &LinkContext : ObjectContexts) {
+ if (Options.Verbose)
+ outs() << "DEBUG MAP OBJECT: " << LinkContext.DMO.getObjectFilename()
+ << "\n";
+
+ // N_AST objects (swiftmodule files) should get dumped directly into the
+ // appropriate DWARF section.
+ if (LinkContext.DMO.getType() == MachO::N_AST) {
+ StringRef File = LinkContext.DMO.getObjectFilename();
+ auto ErrorOrMem = MemoryBuffer::getFile(File);
+ if (!ErrorOrMem) {
+ warn("Could not open '" + File + "'\n");
+ continue;
+ }
+ sys::fs::file_status Stat;
+ if (auto Err = sys::fs::status(File, Stat)) {
+ warn(Err.message());
+ continue;
+ }
+ if (!Options.NoTimestamp) {
+ // The modification can have sub-second precision so we need to cast
+ // away the extra precision that's not present in the debug map.
+ auto ModificationTime =
+ std::chrono::time_point_cast<std::chrono::seconds>(
+ Stat.getLastModificationTime());
+ if (ModificationTime != LinkContext.DMO.getTimestamp()) {
+ // Not using the helper here as we can easily stream TimePoint<>.
+ WithColor::warning()
+ << "Timestamp mismatch for " << File << ": "
+ << Stat.getLastModificationTime() << " and "
+ << sys::TimePoint<>(LinkContext.DMO.getTimestamp()) << "\n";
+ continue;
+ }
+ }
+
+ // Copy the module into the .swift_ast section.
+ if (!Options.NoOutput)
+ Streamer->emitSwiftAST((*ErrorOrMem)->getBuffer());
+ continue;
+ }
+
+ if (emitPaperTrailWarnings(LinkContext.DMO, Map, OffsetsStringPool))
+ continue;
+
+ if (!LinkContext.ObjectFile)
+ continue;
+
+ // Look for relocations that correspond to debug map entries.
+
+ if (LLVM_LIKELY(!Options.Update) &&
+ !LinkContext.RelocMgr->hasValidRelocs()) {
+ if (Options.Verbose)
+ outs() << "No valid relocations found. Skipping.\n";
+
+ // Clear this ObjFile entry as a signal to other loops that we should not
+ // process this iteration.
+ LinkContext.ObjectFile = nullptr;
+ continue;
+ }
+
+ // Setup access to the debug info.
+ if (!LinkContext.DwarfContext)
+ continue;
+
+ startDebugObject(LinkContext);
+
+ // In a first phase, just read in the debug info and load all clang modules.
+ LinkContext.CompileUnits.reserve(
+ LinkContext.DwarfContext->getNumCompileUnits());
+
+ for (const auto &CU : LinkContext.DwarfContext->compile_units()) {
+ updateDwarfVersion(CU->getVersion());
+ auto CUDie = CU->getUnitDIE(false);
+ if (Options.Verbose) {
+ outs() << "Input compilation unit:";
+ DIDumpOptions DumpOpts;
+ DumpOpts.ChildRecurseDepth = 0;
+ DumpOpts.Verbose = Options.Verbose;
+ CUDie.dump(outs(), 0, DumpOpts);
+ }
+ if (CUDie && !LLVM_UNLIKELY(Options.Update))
+ registerModuleReference(CUDie, *CU, ModuleMap, LinkContext.DMO,
+ LinkContext.Ranges, OffsetsStringPool,
+ UniquingStringPool, ODRContexts, 0, UnitID,
+ LinkContext.DwarfContext->isLittleEndian());
+ }
+ }
+
+ // If we haven't seen any CUs, pick an arbitrary valid Dwarf version anyway.
+ if (MaxDwarfVersion == 0)
+ MaxDwarfVersion = 3;
+
+ // At this point we know how much data we have emitted. We use this value to
+ // compare canonical DIE offsets in analyzeContextInfo to see if a definition
+ // is already emitted, without being affected by canonical die offsets set
+ // later. This prevents undeterminism when analyze and clone execute
+ // concurrently, as clone set the canonical DIE offset and analyze reads it.
+ const uint64_t ModulesEndOffset = OutputDebugInfoSize;
+
+ // These variables manage the list of processed object files.
+ // The mutex and condition variable are to ensure that this is thread safe.
+ std::mutex ProcessedFilesMutex;
+ std::condition_variable ProcessedFilesConditionVariable;
+ BitVector ProcessedFiles(NumObjects, false);
+
+ // Analyzing the context info is particularly expensive so it is executed in
+ // parallel with emitting the previous compile unit.
+ auto AnalyzeLambda = [&](size_t i) {
+ auto &LinkContext = ObjectContexts[i];
+
+ if (!LinkContext.ObjectFile || !LinkContext.DwarfContext)
+ return;
+
+ for (const auto &CU : LinkContext.DwarfContext->compile_units()) {
+ updateDwarfVersion(CU->getVersion());
+ // The !registerModuleReference() condition effectively skips
+ // over fully resolved skeleton units. This second pass of
+ // registerModuleReferences doesn't do any new work, but it
+ // will collect top-level errors, which are suppressed. Module
+ // warnings were already displayed in the first iteration.
+ bool Quiet = true;
+ auto CUDie = CU->getUnitDIE(false);
+ if (!CUDie || LLVM_UNLIKELY(Options.Update) ||
+ !registerModuleReference(CUDie, *CU, ModuleMap, LinkContext.DMO,
+ LinkContext.Ranges, OffsetsStringPool,
+ UniquingStringPool, ODRContexts,
+ ModulesEndOffset, UnitID, Quiet)) {
+ LinkContext.CompileUnits.push_back(std::make_unique<CompileUnit>(
+ *CU, UnitID++, !Options.NoODR && !Options.Update, ""));
+ }
+ }
+
+ // Now build the DIE parent links that we will use during the next phase.
+ for (auto &CurrentUnit : LinkContext.CompileUnits) {
+ auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE();
+ if (!CUDie)
+ continue;
+ analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0,
+ *CurrentUnit, &ODRContexts.getRoot(),
+ UniquingStringPool, ODRContexts, ModulesEndOffset,
+ ParseableSwiftInterfaces,
+ [&](const Twine &Warning, const DWARFDie &DIE) {
+ reportWarning(Warning, LinkContext.DMO, &DIE);
+ });
+ }
+ };
+
+ // And then the remaining work in serial again.
+ // Note, although this loop runs in serial, it can run in parallel with
+ // the analyzeContextInfo loop so long as we process files with indices >=
+ // than those processed by analyzeContextInfo.
+ auto CloneLambda = [&](size_t i) {
+ auto &LinkContext = ObjectContexts[i];
+ if (!LinkContext.ObjectFile)
+ return;
+
+ // Then mark all the DIEs that need to be present in the linked output
+ // and collect some information about them.
+ // Note that this loop can not be merged with the previous one because
+ // cross-cu references require the ParentIdx to be setup for every CU in
+ // the object file before calling this.
+ if (LLVM_UNLIKELY(Options.Update)) {
+ for (auto &CurrentUnit : LinkContext.CompileUnits)
+ CurrentUnit->markEverythingAsKept();
+ Streamer->copyInvariantDebugSection(*LinkContext.ObjectFile);
+ } else {
+ for (auto &CurrentUnit : LinkContext.CompileUnits)
+ lookForDIEsToKeep(*LinkContext.RelocMgr, LinkContext.Ranges,
+ LinkContext.CompileUnits,
+ CurrentUnit->getOrigUnit().getUnitDIE(),
+ LinkContext.DMO, *CurrentUnit, 0);
+ }
+
+ // The calls to applyValidRelocs inside cloneDIE will walk the reloc
+ // array again (in the same way findValidRelocsInDebugInfo() did). We
+ // need to reset the NextValidReloc index to the beginning.
+ if (LinkContext.RelocMgr->hasValidRelocs() || LLVM_UNLIKELY(Options.Update))
+ DIECloner(*this, *LinkContext.RelocMgr, DIEAlloc,
+ LinkContext.CompileUnits, Options)
+ .cloneAllCompileUnits(*LinkContext.DwarfContext, LinkContext.DMO,
+ LinkContext.Ranges, OffsetsStringPool,
+ LinkContext.DwarfContext->isLittleEndian());
+ if (!Options.NoOutput && !LinkContext.CompileUnits.empty() &&
+ LLVM_LIKELY(!Options.Update))
+ patchFrameInfoForObject(
+ LinkContext.DMO, LinkContext.Ranges, *LinkContext.DwarfContext,
+ LinkContext.CompileUnits[0]->getOrigUnit().getAddressByteSize());
+
+ // Clean-up before starting working on the next object.
+ endDebugObject(LinkContext);
+ };
+
+ auto EmitLambda = [&]() {
+ // Emit everything that's global.
+ if (!Options.NoOutput) {
+ Streamer->emitAbbrevs(Abbreviations, MaxDwarfVersion);
+ Streamer->emitStrings(OffsetsStringPool);
+ switch (Options.TheAccelTableKind) {
+ case AccelTableKind::Apple:
+ Streamer->emitAppleNames(AppleNames);
+ Streamer->emitAppleNamespaces(AppleNamespaces);
+ Streamer->emitAppleTypes(AppleTypes);
+ Streamer->emitAppleObjc(AppleObjc);
+ break;
+ case AccelTableKind::Dwarf:
+ Streamer->emitDebugNames(DebugNames);
+ break;
+ case AccelTableKind::Default:
+ llvm_unreachable("Default should have already been resolved.");
+ break;
+ }
+ }
+ };
+
+ remarks::RemarkLinker RL;
+ if (!Options.RemarksPrependPath.empty())
+ RL.setExternalFilePrependPath(Options.RemarksPrependPath);
+ auto RemarkLinkLambda = [&](size_t i) {
+ // Link remarks from one object file.
+ auto &LinkContext = ObjectContexts[i];
+ if (const object::ObjectFile *Obj = LinkContext.ObjectFile) {
+ Error E = RL.link(*Obj);
+ if (Error NewE = handleErrors(
+ std::move(E), [&](std::unique_ptr<FileError> EC) -> Error {
+ return remarksErrorHandler(LinkContext.DMO, *this,
+ std::move(EC));
+ }))
+ return NewE;
+ }
+ return Error(Error::success());
+ };
+
+ auto AnalyzeAll = [&]() {
+ for (unsigned i = 0, e = NumObjects; i != e; ++i) {
+ AnalyzeLambda(i);
+
+ std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
+ ProcessedFiles.set(i);
+ ProcessedFilesConditionVariable.notify_one();
+ }
+ };
+
+ auto CloneAll = [&]() {
+ for (unsigned i = 0, e = NumObjects; i != e; ++i) {
+ {
+ std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
+ if (!ProcessedFiles[i]) {
+ ProcessedFilesConditionVariable.wait(
+ LockGuard, [&]() { return ProcessedFiles[i]; });
+ }
+ }
+
+ CloneLambda(i);
+ }
+ EmitLambda();
+ };
+
+ auto EmitRemarksLambda = [&]() {
+ StringRef ArchName = Map.getTriple().getArchName();
+ return emitRemarks(Options, Map.getBinaryPath(), ArchName, RL);
+ };
+
+ // Instead of making error handling a lot more complicated using futures,
+ // write to one llvm::Error instance if something went wrong.
+ // We're assuming RemarkLinkAllError is alive longer than the thread
+ // executing RemarkLinkAll.
+ auto RemarkLinkAll = [&](Error &RemarkLinkAllError) {
+ // Allow assigning to the error only within the lambda.
+ ErrorAsOutParameter EAO(&RemarkLinkAllError);
+ for (unsigned i = 0, e = NumObjects; i != e; ++i)
+ if ((RemarkLinkAllError = RemarkLinkLambda(i)))
+ return;
+
+ if ((RemarkLinkAllError = EmitRemarksLambda()))
+ return;
+ };
+
+ // To limit memory usage in the single threaded case, analyze and clone are
+ // run sequentially so the LinkContext is freed after processing each object
+ // in endDebugObject.
+ if (Options.Threads == 1) {
+ for (unsigned i = 0, e = NumObjects; i != e; ++i) {
+ AnalyzeLambda(i);
+ CloneLambda(i);
+
+ if (Error E = RemarkLinkLambda(i))
+ return error(toString(std::move(E)));
+ }
+ EmitLambda();
+
+ if (Error E = EmitRemarksLambda())
+ return error(toString(std::move(E)));
+
+ } else {
+ // This should not be constructed on the single-threaded path to avoid fatal
+ // errors from unchecked llvm::Error objects.
+ Error RemarkLinkAllError = Error::success();
+
+ ThreadPool pool(3);
+ pool.async(AnalyzeAll);
+ pool.async(CloneAll);
+ pool.async(RemarkLinkAll, std::ref(RemarkLinkAllError));
+ pool.wait();
+
+ // Report errors from RemarkLinkAll, if any.
+ if (Error E = std::move(RemarkLinkAllError))
+ return error(toString(std::move(E)));
+ }
+
+ if (Options.NoOutput)
+ return true;
+
+ if (Options.ResourceDir && !ParseableSwiftInterfaces.empty()) {
+ StringRef ArchName = Triple::getArchTypeName(Map.getTriple().getArch());
+ if (auto E =
+ copySwiftInterfaces(ParseableSwiftInterfaces, ArchName, Options))
+ return error(toString(std::move(E)));
+ }
+
+ return Streamer->finish(Map, Options.Translator);
+} // namespace dsymutil
+
+bool linkDwarf(raw_fd_ostream &OutFile, BinaryHolder &BinHolder,
+ const DebugMap &DM, LinkOptions Options) {
+ DwarfLinkerForBinary Linker(OutFile, BinHolder, std::move(Options));
+ return Linker.link(DM);
+}
+
+} // namespace dsymutil
+} // namespace llvm
OpenPOWER on IntegriCloud