diff options
Diffstat (limited to 'llvm/test/Transforms/Inline/cgscc-cycle.ll')
-rw-r--r-- | llvm/test/Transforms/Inline/cgscc-cycle.ll | 232 |
1 files changed, 0 insertions, 232 deletions
diff --git a/llvm/test/Transforms/Inline/cgscc-cycle.ll b/llvm/test/Transforms/Inline/cgscc-cycle.ll deleted file mode 100644 index bc3bdc99fff..00000000000 --- a/llvm/test/Transforms/Inline/cgscc-cycle.ll +++ /dev/null @@ -1,232 +0,0 @@ -; This test contains extremely tricky call graph structures for the inliner to -; handle correctly. They form cycles where the inliner introduces code that is -; immediately or can eventually be transformed back into the original code. And -; each step changes the call graph and so will trigger iteration. This requires -; some out-of-band way to prevent infinitely re-inlining and re-transforming the -; code. -; -; RUN: opt < %s -passes='cgscc(inline,function(sroa,instcombine))' -inline-threshold=50 -S | FileCheck %s - - -; The `test1_*` collection of functions form a directly cycling pattern. - -define void @test1_a(i8** %ptr) { -; CHECK-LABEL: define void @test1_a( -entry: - call void @test1_b(i8* bitcast (void (i8*, i1, i32)* @test1_b to i8*), i1 false, i32 0) -; Inlining and simplifying this call will reliably produce the exact same call, -; over and over again. However, each inlining increments the count, and so we -; expect this test case to stop after one round of inlining with a final -; argument of '1'. -; CHECK-NOT: call -; CHECK: call void @test1_b(i8* bitcast (void (i8*, i1, i32)* @test1_b to i8*), i1 false, i32 1) -; CHECK-NOT: call - - ret void -} - -define void @test1_b(i8* %arg, i1 %flag, i32 %inline_count) { -; CHECK-LABEL: define void @test1_b( -entry: - %a = alloca i8* - store i8* %arg, i8** %a -; This alloca and store should remain through any optimization. -; CHECK: %[[A:.*]] = alloca -; CHECK: store i8* %arg, i8** %[[A]] - - br i1 %flag, label %bb1, label %bb2 - -bb1: - call void @test1_a(i8** %a) noinline - br label %bb2 - -bb2: - %cast = bitcast i8** %a to void (i8*, i1, i32)** - %p = load void (i8*, i1, i32)*, void (i8*, i1, i32)** %cast - %inline_count_inc = add i32 %inline_count, 1 - call void %p(i8* %arg, i1 %flag, i32 %inline_count_inc) -; And we should continue to load and call indirectly through optimization. -; CHECK: %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i1, i32)** -; CHECK: %[[P:.*]] = load void (i8*, i1, i32)*, void (i8*, i1, i32)** %[[CAST]] -; CHECK: call void %[[P]]( - - ret void -} - -define void @test2_a(i8** %ptr) { -; CHECK-LABEL: define void @test2_a( -entry: - call void @test2_b(i8* bitcast (void (i8*, i8*, i1, i32)* @test2_b to i8*), i8* bitcast (void (i8*, i8*, i1, i32)* @test2_c to i8*), i1 false, i32 0) -; Inlining and simplifying this call will reliably produce the exact same call, -; but only after doing two rounds if inlining, first from @test2_b then -; @test2_c. We check the exact number of inlining rounds before we cut off to -; break the cycle by inspecting the last paramater that gets incremented with -; each inlined function body. -; CHECK-NOT: call -; CHECK: call void @test2_b(i8* bitcast (void (i8*, i8*, i1, i32)* @test2_b to i8*), i8* bitcast (void (i8*, i8*, i1, i32)* @test2_c to i8*), i1 false, i32 2) -; CHECK-NOT: call - ret void -} - -define void @test2_b(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count) { -; CHECK-LABEL: define void @test2_b( -entry: - %a = alloca i8* - store i8* %arg2, i8** %a -; This alloca and store should remain through any optimization. -; CHECK: %[[A:.*]] = alloca -; CHECK: store i8* %arg2, i8** %[[A]] - - br i1 %flag, label %bb1, label %bb2 - -bb1: - call void @test2_a(i8** %a) noinline - br label %bb2 - -bb2: - %p = load i8*, i8** %a - %cast = bitcast i8* %p to void (i8*, i8*, i1, i32)* - %inline_count_inc = add i32 %inline_count, 1 - call void %cast(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count_inc) -; And we should continue to load and call indirectly through optimization. -; CHECK: %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i8*, i1, i32)** -; CHECK: %[[P:.*]] = load void (i8*, i8*, i1, i32)*, void (i8*, i8*, i1, i32)** %[[CAST]] -; CHECK: call void %[[P]]( - - ret void -} - -define void @test2_c(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count) { -; CHECK-LABEL: define void @test2_c( -entry: - %a = alloca i8* - store i8* %arg1, i8** %a -; This alloca and store should remain through any optimization. -; CHECK: %[[A:.*]] = alloca -; CHECK: store i8* %arg1, i8** %[[A]] - - br i1 %flag, label %bb1, label %bb2 - -bb1: - call void @test2_a(i8** %a) noinline - br label %bb2 - -bb2: - %p = load i8*, i8** %a - %cast = bitcast i8* %p to void (i8*, i8*, i1, i32)* - %inline_count_inc = add i32 %inline_count, 1 - call void %cast(i8* %arg1, i8* %arg2, i1 %flag, i32 %inline_count_inc) -; And we should continue to load and call indirectly through optimization. -; CHECK: %[[CAST:.*]] = bitcast i8** %[[A]] to void (i8*, i8*, i1, i32)** -; CHECK: %[[P:.*]] = load void (i8*, i8*, i1, i32)*, void (i8*, i8*, i1, i32)** %[[CAST]] -; CHECK: call void %[[P]]( - - ret void -} - -; Another infinite inlining case. The initial callgraph is like following: -; -; test3_a <---> test3_b -; | ^ -; v | -; test3_c <---> test3_d -; -; For all the call edges in the call graph, only test3_c and test3_d can be -; inlined into test3_a, and no other call edge can be inlined. -; -; After test3_c is inlined into test3_a, the original call edge test3_a->test3_c -; will be removed, a new call edge will be added and the call graph becomes: -; -; test3_a <---> test3_b -; \ ^ -; v / -; test3_c <---> test3_d -; But test3_a, test3_b, test3_c and test3_d still belong to the same SCC. -; -; Then after test3_a->test3_d is inlined, when test3_a->test3_d is converted to -; a ref edge, the original SCC will be split into two: {test3_c, test3_d} and -; {test3_a, test3_b}, immediately after the newly added ref edge -; test3_a->test3_c will be converted to a call edge, and the two SCCs will be -; merged into the original one again. During this cycle, the original SCC will -; be added into UR.CWorklist again and this creates an infinite loop. - -@a = global i64 0 -@b = global i64 0 - -define void @test3_c(i32 %i) { -entry: - %cmp = icmp eq i32 %i, 5 - br i1 %cmp, label %if.end, label %if.then - -if.then: ; preds = %entry - %call = tail call i64 @random() - %t0 = load i64, i64* @a - %add = add nsw i64 %t0, %call - store i64 %add, i64* @a - br label %if.end - -if.end: ; preds = %entry, %if.then - tail call void @test3_d(i32 %i) - %t6 = load i64, i64* @a - %add85 = add nsw i64 %t6, 1 - store i64 %add85, i64* @a - ret void -} - -declare i64 @random() - -define void @test3_d(i32 %i) { -entry: - %cmp = icmp eq i32 %i, 5 - br i1 %cmp, label %if.end, label %if.then - -if.then: ; preds = %entry - %call = tail call i64 @random() - %t0 = load i64, i64* @a - %add = add nsw i64 %t0, %call - store i64 %add, i64* @a - br label %if.end - -if.end: ; preds = %entry, %if.then - tail call void @test3_c(i32 %i) - tail call void @test3_b() - %t6 = load i64, i64* @a - %add79 = add nsw i64 %t6, 3 - store i64 %add79, i64* @a - ret void -} - -; Function Attrs: noinline -define void @test3_b() #0 { -entry: - tail call void @test3_a() - %t0 = load i64, i64* @a - %add = add nsw i64 %t0, 2 - store i64 %add, i64* @a - ret void -} - -; Check test3_c is inlined into test3_a once and only once. -; CHECK-LABEL: @test3_a( -; CHECK: tail call void @test3_b() -; CHECK-NEXT: tail call void @test3_d(i32 5) -; CHECK-NEXT: %[[LD1:.*]] = load i64, i64* @a -; CHECK-NEXT: %[[ADD1:.*]] = add nsw i64 %[[LD1]], 1 -; CHECK-NEXT: store i64 %[[ADD1]], i64* @a -; CHECK-NEXT: %[[LD2:.*]] = load i64, i64* @b -; CHECK-NEXT: %[[ADD2:.*]] = add nsw i64 %[[LD2]], 5 -; CHECK-NEXT: store i64 %[[ADD2]], i64* @b -; CHECK-NEXT: ret void - -; Function Attrs: noinline -define void @test3_a() #0 { -entry: - tail call void @test3_b() - tail call void @test3_c(i32 5) - %t0 = load i64, i64* @b - %add = add nsw i64 %t0, 5 - store i64 %add, i64* @b - ret void -} - -attributes #0 = { noinline } |