diff options
Diffstat (limited to 'llvm/test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll')
-rw-r--r-- | llvm/test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll | 292 |
1 files changed, 292 insertions, 0 deletions
diff --git a/llvm/test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll b/llvm/test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll new file mode 100644 index 00000000000..34d06ef12ea --- /dev/null +++ b/llvm/test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll @@ -0,0 +1,292 @@ +; RUN: opt -basicaa -loop-accesses -analyze < %s | FileCheck %s -check-prefix=LAA +; RUN: opt -loop-vectorize -force-vector-interleave=1 -force-vector-width=4 -S < %s | FileCheck %s -check-prefix=LV + +target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128" + +; For this loop: +; unsigned index = 0; +; for (int i = 0; i < n; i++) { +; A[2 * index] = A[2 * index] + B[i]; +; index++; +; } +; +; SCEV is unable to prove that A[2 * i] does not overflow. +; +; Analyzing the IR does not help us because the GEPs are not +; affine AddRecExprs. However, we can turn them into AddRecExprs +; using SCEV Predicates. +; +; Once we have an affine expression we need to add an additional NUSW +; to check that the pointers don't wrap since the GEPs are not +; inbound. + +; LAA-LABEL: f1 +; LAA: Memory dependences are safe{{$}} +; LAA: SCEV assumptions: +; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nusw> +; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw> + +; The expression for %mul_ext as analyzed by SCEV is +; (zext i32 {0,+,2}<%for.body> to i64) +; We have added the nusw flag to turn this expression into the SCEV expression: +; i64 {0,+,2}<%for.body> + +; LV-LABEL: f1 +; LV-LABEL: vector.scevcheck +; LV: [[PredCheck0:%[^ ]*]] = icmp ne i128 +; LV: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] +; LV: [[PredCheck1:%[^ ]*]] = icmp ne i128 +; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] +; LV: br i1 [[FinalCheck]], label %scalar.ph, label %vector.ph +define void @f1(i16* noalias %a, + i16* noalias %b, i64 %N) { +entry: + br label %for.body + +for.body: ; preds = %for.body, %entry + %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] + %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ] + + %mul = mul i32 %ind1, 2 + %mul_ext = zext i32 %mul to i64 + + %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext + %loadA = load i16, i16* %arrayidxA, align 2 + + %arrayidxB = getelementptr i16, i16* %b, i64 %ind + %loadB = load i16, i16* %arrayidxB, align 2 + + %add = mul i16 %loadA, %loadB + + store i16 %add, i16* %arrayidxA, align 2 + + %inc = add nuw nsw i64 %ind, 1 + %inc1 = add i32 %ind1, 1 + + %exitcond = icmp eq i64 %inc, %N + br i1 %exitcond, label %for.end, label %for.body + +for.end: ; preds = %for.body + ret void +} + +; For this loop: +; unsigned index = n; +; for (int i = 0; i < n; i++) { +; A[2 * index] = A[2 * index] + B[i]; +; index--; +; } +; +; the SCEV expression for 2 * index is not an AddRecExpr +; (and implictly not affine). However, we are able to make assumptions +; that will turn the expression into an affine one and continue the +; analysis. +; +; Once we have an affine expression we need to add an additional NUSW +; to check that the pointers don't wrap since the GEPs are not +; inbounds. +; +; This loop has a negative stride for A, and the nusw flag is required in +; order to properly extend the increment from i32 -4 to i64 -4. + +; LAA-LABEL: f2 +; LAA: Memory dependences are safe{{$}} +; LAA: SCEV assumptions: +; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nusw> +; LAA-NEXT: {((2 * (zext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> Added Flags: <nusw> + +; The expression for %mul_ext as analyzed by SCEV is +; (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64) +; We have added the nusw flag to turn this expression into the following SCEV: +; i64 {zext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body> + +; LV-LABEL: f2 +; LV-LABEL: vector.scevcheck +; LV: [[PredCheck0:%[^ ]*]] = icmp ne i128 +; LV: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] +; LV: [[PredCheck1:%[^ ]*]] = icmp ne i128 +; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] +; LV: br i1 [[FinalCheck]], label %scalar.ph, label %vector.ph +define void @f2(i16* noalias %a, + i16* noalias %b, i64 %N) { +entry: + %TruncN = trunc i64 %N to i32 + br label %for.body + +for.body: ; preds = %for.body, %entry + %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] + %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] + + %mul = mul i32 %ind1, 2 + %mul_ext = zext i32 %mul to i64 + + %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext + %loadA = load i16, i16* %arrayidxA, align 2 + + %arrayidxB = getelementptr i16, i16* %b, i64 %ind + %loadB = load i16, i16* %arrayidxB, align 2 + + %add = mul i16 %loadA, %loadB + + store i16 %add, i16* %arrayidxA, align 2 + + %inc = add nuw nsw i64 %ind, 1 + %dec = sub i32 %ind1, 1 + + %exitcond = icmp eq i64 %inc, %N + br i1 %exitcond, label %for.end, label %for.body + +for.end: ; preds = %for.body + ret void +} + +; We replicate the tests above, but this time sign extend 2 * index instead +; of zero extending it. + +; LAA-LABEL: f3 +; LAA: Memory dependences are safe{{$}} +; LAA: SCEV assumptions: +; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nssw> +; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw> + +; The expression for %mul_ext as analyzed by SCEV is +; i64 (sext i32 {0,+,2}<%for.body> to i64) +; We have added the nssw flag to turn this expression into the following SCEV: +; i64 {0,+,2}<%for.body> + +; LV-LABEL: f3 +; LV-LABEL: vector.scevcheck +; LV: [[PredCheck0:%[^ ]*]] = icmp ne i128 +; LV: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] +; LV: [[PredCheck1:%[^ ]*]] = icmp ne i128 +; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] +; LV: br i1 [[FinalCheck]], label %scalar.ph, label %vector.ph +define void @f3(i16* noalias %a, + i16* noalias %b, i64 %N) { +entry: + br label %for.body + +for.body: ; preds = %for.body, %entry + %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] + %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ] + + %mul = mul i32 %ind1, 2 + %mul_ext = sext i32 %mul to i64 + + %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext + %loadA = load i16, i16* %arrayidxA, align 2 + + %arrayidxB = getelementptr i16, i16* %b, i64 %ind + %loadB = load i16, i16* %arrayidxB, align 2 + + %add = mul i16 %loadA, %loadB + + store i16 %add, i16* %arrayidxA, align 2 + + %inc = add nuw nsw i64 %ind, 1 + %inc1 = add i32 %ind1, 1 + + %exitcond = icmp eq i64 %inc, %N + br i1 %exitcond, label %for.end, label %for.body + +for.end: ; preds = %for.body + ret void +} + +; LAA-LABEL: f4 +; LAA: Memory dependences are safe{{$}} +; LAA: SCEV assumptions: +; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw> +; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> Added Flags: <nusw> + +; The expression for %mul_ext as analyzed by SCEV is +; i64 (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64) +; We have added the nssw flag to turn this expression into the following SCEV: +; i64 {sext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body> + +; LV-LABEL: f4 +; LV-LABEL: vector.scevcheck +; LV: [[PredCheck0:%[^ ]*]] = icmp ne i128 +; LV: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] +; LV: [[PredCheck1:%[^ ]*]] = icmp ne i128 +; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] +; LV: br i1 [[FinalCheck]], label %scalar.ph, label %vector.ph +define void @f4(i16* noalias %a, + i16* noalias %b, i64 %N) { +entry: + %TruncN = trunc i64 %N to i32 + br label %for.body + +for.body: ; preds = %for.body, %entry + %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] + %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] + + %mul = mul i32 %ind1, 2 + %mul_ext = sext i32 %mul to i64 + + %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext + %loadA = load i16, i16* %arrayidxA, align 2 + + %arrayidxB = getelementptr i16, i16* %b, i64 %ind + %loadB = load i16, i16* %arrayidxB, align 2 + + %add = mul i16 %loadA, %loadB + + store i16 %add, i16* %arrayidxA, align 2 + + %inc = add nuw nsw i64 %ind, 1 + %dec = sub i32 %ind1, 1 + + %exitcond = icmp eq i64 %inc, %N + br i1 %exitcond, label %for.end, label %for.body + +for.end: ; preds = %for.body + ret void +} + +; The following function is similar to the one above, but has the GEP +; to pointer %A inbounds. The index %mul doesn't have the nsw flag. +; This means that the SCEV expression for %mul can wrap and we need +; a SCEV predicate to continue analysis. +; +; We can still analyze this by adding the required no wrap SCEV predicates. + +; LAA-LABEL: f5 +; LAA: Memory dependences are safe{{$}} +; LAA: SCEV assumptions: +; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw> +; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> Added Flags: <nusw> + +; LV-LABEL: f5 +; LV-LABEL: vector.scevcheck +define void @f5(i16* noalias %a, + i16* noalias %b, i64 %N) { +entry: + %TruncN = trunc i64 %N to i32 + br label %for.body + +for.body: ; preds = %for.body, %entry + %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] + %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] + + %mul = mul i32 %ind1, 2 + + %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul + %loadA = load i16, i16* %arrayidxA, align 2 + + %arrayidxB = getelementptr inbounds i16, i16* %b, i64 %ind + %loadB = load i16, i16* %arrayidxB, align 2 + + %add = mul i16 %loadA, %loadB + + store i16 %add, i16* %arrayidxA, align 2 + + %inc = add nuw nsw i64 %ind, 1 + %dec = sub i32 %ind1, 1 + + %exitcond = icmp eq i64 %inc, %N + br i1 %exitcond, label %for.end, label %for.body + +for.end: ; preds = %for.body + ret void +} |