summaryrefslogtreecommitdiffstats
path: root/llvm/lib
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib')
-rw-r--r--llvm/lib/LTO/LTOCodeGenerator.cpp2
-rw-r--r--llvm/lib/Target/README.txt2
-rw-r--r--llvm/lib/Target/X86/README-X86-64.txt2
-rw-r--r--llvm/lib/Transforms/IPO/ArgumentPromotion.cpp2
-rw-r--r--llvm/lib/Transforms/IPO/PassManagerBuilder.cpp19
-rw-r--r--llvm/lib/Transforms/Scalar/CMakeLists.txt1
-rw-r--r--llvm/lib/Transforms/Scalar/Scalar.cpp8
-rw-r--r--llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp2618
8 files changed, 9 insertions, 2645 deletions
diff --git a/llvm/lib/LTO/LTOCodeGenerator.cpp b/llvm/lib/LTO/LTOCodeGenerator.cpp
index 01d4d5579ab..d4becc37a1a 100644
--- a/llvm/lib/LTO/LTOCodeGenerator.cpp
+++ b/llvm/lib/LTO/LTOCodeGenerator.cpp
@@ -119,8 +119,6 @@ void LTOCodeGenerator::initializeLTOPasses() {
initializeArgPromotionPass(R);
initializeJumpThreadingPass(R);
initializeSROALegacyPassPass(R);
- initializeSROA_DTPass(R);
- initializeSROA_SSAUpPass(R);
initializePostOrderFunctionAttrsLegacyPassPass(R);
initializeReversePostOrderFunctionAttrsLegacyPassPass(R);
initializeGlobalsAAWrapperPassPass(R);
diff --git a/llvm/lib/Target/README.txt b/llvm/lib/Target/README.txt
index 7e9888cc13e..ab9a025930f 100644
--- a/llvm/lib/Target/README.txt
+++ b/llvm/lib/Target/README.txt
@@ -2081,7 +2081,7 @@ struct x testfunc() {
}
We currently compile this to:
-$ clang t.c -S -o - -O0 -emit-llvm | opt -scalarrepl -S
+$ clang t.c -S -o - -O0 -emit-llvm | opt -sroa -S
%struct.x = type { i8, [4 x i32] }
diff --git a/llvm/lib/Target/X86/README-X86-64.txt b/llvm/lib/Target/X86/README-X86-64.txt
index bcfdf0bc56b..09626e13849 100644
--- a/llvm/lib/Target/X86/README-X86-64.txt
+++ b/llvm/lib/Target/X86/README-X86-64.txt
@@ -170,7 +170,7 @@ generated for it. The primary issue with the result is that it doesn't do any
of the optimizations which are possible if we know the address of a va_list
in the current function is never taken:
1. We shouldn't spill the XMM registers because we only call va_arg with "int".
-2. It would be nice if we could scalarrepl the va_list.
+2. It would be nice if we could sroa the va_list.
3. Probably overkill, but it'd be cool if we could peel off the first five
iterations of the loop.
diff --git a/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp b/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
index a808df2af76..1599ddd2ad5 100644
--- a/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
+++ b/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
@@ -307,7 +307,7 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
}
// Safe to transform, don't even bother trying to "promote" it.
- // Passing the elements as a scalar will allow scalarrepl to hack on
+ // Passing the elements as a scalar will allow sroa to hack on
// the new alloca we introduce.
if (AllSimple) {
ByValArgsToTransform.insert(PtrArg);
diff --git a/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp b/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
index 6397915da1c..094dda8cc1f 100644
--- a/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
+++ b/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
@@ -61,10 +61,6 @@ static cl::opt<bool> ExtraVectorizerPasses(
"extra-vectorizer-passes", cl::init(false), cl::Hidden,
cl::desc("Run cleanup optimization passes after vectorization."));
-static cl::opt<bool> UseNewSROA("use-new-sroa",
- cl::init(true), cl::Hidden,
- cl::desc("Enable the new, experimental SROA pass"));
-
static cl::opt<bool>
RunLoopRerolling("reroll-loops", cl::Hidden,
cl::desc("Run the loop rerolling pass"));
@@ -201,10 +197,7 @@ void PassManagerBuilder::populateFunctionPassManager(
addInitialAliasAnalysisPasses(FPM);
FPM.add(createCFGSimplificationPass());
- if (UseNewSROA)
- FPM.add(createSROAPass());
- else
- FPM.add(createScalarReplAggregatesPass());
+ FPM.add(createSROAPass());
FPM.add(createEarlyCSEPass());
FPM.add(createLowerExpectIntrinsicPass());
}
@@ -225,10 +218,7 @@ void PassManagerBuilder::addFunctionSimplificationPasses(
legacy::PassManagerBase &MPM) {
// Start of function pass.
// Break up aggregate allocas, using SSAUpdater.
- if (UseNewSROA)
- MPM.add(createSROAPass());
- else
- MPM.add(createScalarReplAggregatesPass(-1, false));
+ MPM.add(createSROAPass());
MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
// Speculative execution if the target has divergent branches; otherwise nop.
MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
@@ -654,10 +644,7 @@ void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
PM.add(createJumpThreadingPass());
// Break up allocas
- if (UseNewSROA)
- PM.add(createSROAPass());
- else
- PM.add(createScalarReplAggregatesPass());
+ PM.add(createSROAPass());
// Run a few AA driven optimizations here and now, to cleanup the code.
PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
diff --git a/llvm/lib/Transforms/Scalar/CMakeLists.txt b/llvm/lib/Transforms/Scalar/CMakeLists.txt
index bb623576c77..ac162039037 100644
--- a/llvm/lib/Transforms/Scalar/CMakeLists.txt
+++ b/llvm/lib/Transforms/Scalar/CMakeLists.txt
@@ -45,7 +45,6 @@ add_llvm_library(LLVMScalarOpts
SCCP.cpp
SROA.cpp
Scalar.cpp
- ScalarReplAggregates.cpp
Scalarizer.cpp
SeparateConstOffsetFromGEP.cpp
SimplifyCFGPass.cpp
diff --git a/llvm/lib/Transforms/Scalar/Scalar.cpp b/llvm/lib/Transforms/Scalar/Scalar.cpp
index 98603ac0305..1f655840360 100644
--- a/llvm/lib/Transforms/Scalar/Scalar.cpp
+++ b/llvm/lib/Transforms/Scalar/Scalar.cpp
@@ -74,8 +74,6 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) {
initializeSCCPLegacyPassPass(Registry);
initializeIPSCCPLegacyPassPass(Registry);
initializeSROALegacyPassPass(Registry);
- initializeSROA_DTPass(Registry);
- initializeSROA_SSAUpPass(Registry);
initializeCFGSimplifyPassPass(Registry);
initializeStructurizeCFGPass(Registry);
initializeSinkingLegacyPassPass(Registry);
@@ -198,16 +196,16 @@ void LLVMAddSCCPPass(LLVMPassManagerRef PM) {
}
void LLVMAddScalarReplAggregatesPass(LLVMPassManagerRef PM) {
- unwrap(PM)->add(createScalarReplAggregatesPass());
+ unwrap(PM)->add(createSROAPass());
}
void LLVMAddScalarReplAggregatesPassSSA(LLVMPassManagerRef PM) {
- unwrap(PM)->add(createScalarReplAggregatesPass(-1, false));
+ unwrap(PM)->add(createSROAPass());
}
void LLVMAddScalarReplAggregatesPassWithThreshold(LLVMPassManagerRef PM,
int Threshold) {
- unwrap(PM)->add(createScalarReplAggregatesPass(Threshold));
+ unwrap(PM)->add(createSROAPass());
}
void LLVMAddSimplifyLibCallsPass(LLVMPassManagerRef PM) {
diff --git a/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
deleted file mode 100644
index 9ff149ae91d..00000000000
--- a/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
+++ /dev/null
@@ -1,2618 +0,0 @@
-//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This transformation implements the well known scalar replacement of
-// aggregates transformation. This xform breaks up alloca instructions of
-// aggregate type (structure or array) into individual alloca instructions for
-// each member (if possible). Then, if possible, it transforms the individual
-// alloca instructions into nice clean scalar SSA form.
-//
-// This combines a simple SRoA algorithm with the Mem2Reg algorithm because they
-// often interact, especially for C++ programs. As such, iterating between
-// SRoA, then Mem2Reg until we run out of things to promote works well.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/Loads.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DIBuilder.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DebugInfo.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GetElementPtrTypeIterator.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/PromoteMemToReg.h"
-#include "llvm/Transforms/Utils/SSAUpdater.h"
-using namespace llvm;
-
-#define DEBUG_TYPE "scalarrepl"
-
-STATISTIC(NumReplaced, "Number of allocas broken up");
-STATISTIC(NumPromoted, "Number of allocas promoted");
-STATISTIC(NumAdjusted, "Number of scalar allocas adjusted to allow promotion");
-STATISTIC(NumConverted, "Number of aggregates converted to scalar");
-
-namespace {
-#define SROA SROA_
- struct SROA : public FunctionPass {
- SROA(int T, bool hasDT, char &ID, int ST, int AT, int SLT)
- : FunctionPass(ID), HasDomTree(hasDT) {
- if (T == -1)
- SRThreshold = 128;
- else
- SRThreshold = T;
- if (ST == -1)
- StructMemberThreshold = 32;
- else
- StructMemberThreshold = ST;
- if (AT == -1)
- ArrayElementThreshold = 8;
- else
- ArrayElementThreshold = AT;
- if (SLT == -1)
- // Do not limit the scalar integer load size if no threshold is given.
- ScalarLoadThreshold = -1;
- else
- ScalarLoadThreshold = SLT;
- }
-
- bool runOnFunction(Function &F) override;
-
- bool performScalarRepl(Function &F);
- bool performPromotion(Function &F);
-
- private:
- bool HasDomTree;
-
- /// DeadInsts - Keep track of instructions we have made dead, so that
- /// we can remove them after we are done working.
- SmallVector<Value*, 32> DeadInsts;
-
- /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
- /// information about the uses. All these fields are initialized to false
- /// and set to true when something is learned.
- struct AllocaInfo {
- /// The alloca to promote.
- AllocaInst *AI;
-
- /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
- /// looping and avoid redundant work.
- SmallPtrSet<PHINode*, 8> CheckedPHIs;
-
- /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
- bool isUnsafe : 1;
-
- /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
- bool isMemCpySrc : 1;
-
- /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
- bool isMemCpyDst : 1;
-
- /// hasSubelementAccess - This is true if a subelement of the alloca is
- /// ever accessed, or false if the alloca is only accessed with mem
- /// intrinsics or load/store that only access the entire alloca at once.
- bool hasSubelementAccess : 1;
-
- /// hasALoadOrStore - This is true if there are any loads or stores to it.
- /// The alloca may just be accessed with memcpy, for example, which would
- /// not set this.
- bool hasALoadOrStore : 1;
-
- explicit AllocaInfo(AllocaInst *ai)
- : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
- hasSubelementAccess(false), hasALoadOrStore(false) {}
- };
-
- /// SRThreshold - The maximum alloca size to considered for SROA.
- unsigned SRThreshold;
-
- /// StructMemberThreshold - The maximum number of members a struct can
- /// contain to be considered for SROA.
- unsigned StructMemberThreshold;
-
- /// ArrayElementThreshold - The maximum number of elements an array can
- /// have to be considered for SROA.
- unsigned ArrayElementThreshold;
-
- /// ScalarLoadThreshold - The maximum size in bits of scalars to load when
- /// converting to scalar
- unsigned ScalarLoadThreshold;
-
- void MarkUnsafe(AllocaInfo &I, Instruction *User) {
- I.isUnsafe = true;
- DEBUG(dbgs() << " Transformation preventing inst: " << *User << '\n');
- }
-
- bool isSafeAllocaToScalarRepl(AllocaInst *AI);
-
- void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
- void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
- AllocaInfo &Info);
- void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
- void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
- Type *MemOpType, bool isStore, AllocaInfo &Info,
- Instruction *TheAccess, bool AllowWholeAccess);
- bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size,
- const DataLayout &DL);
- uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset, Type *&IdxTy,
- const DataLayout &DL);
-
- void DoScalarReplacement(AllocaInst *AI,
- std::vector<AllocaInst*> &WorkList);
- void DeleteDeadInstructions();
-
- void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
- SmallVectorImpl<AllocaInst *> &NewElts);
- void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
- SmallVectorImpl<AllocaInst *> &NewElts);
- void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
- SmallVectorImpl<AllocaInst *> &NewElts);
- void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
- uint64_t Offset,
- SmallVectorImpl<AllocaInst *> &NewElts);
- void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
- AllocaInst *AI,
- SmallVectorImpl<AllocaInst *> &NewElts);
- void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
- SmallVectorImpl<AllocaInst *> &NewElts);
- void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
- SmallVectorImpl<AllocaInst *> &NewElts);
- bool ShouldAttemptScalarRepl(AllocaInst *AI);
- };
-
- // SROA_DT - SROA that uses DominatorTree.
- struct SROA_DT : public SROA {
- static char ID;
- public:
- SROA_DT(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
- SROA(T, true, ID, ST, AT, SLT) {
- initializeSROA_DTPass(*PassRegistry::getPassRegistry());
- }
-
- // getAnalysisUsage - This pass does not require any passes, but we know it
- // will not alter the CFG, so say so.
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.setPreservesCFG();
- }
- };
-
- // SROA_SSAUp - SROA that uses SSAUpdater.
- struct SROA_SSAUp : public SROA {
- static char ID;
- public:
- SROA_SSAUp(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
- SROA(T, false, ID, ST, AT, SLT) {
- initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
- }
-
- // getAnalysisUsage - This pass does not require any passes, but we know it
- // will not alter the CFG, so say so.
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.setPreservesCFG();
- }
- };
-
-}
-
-char SROA_DT::ID = 0;
-char SROA_SSAUp::ID = 0;
-
-INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
- "Scalar Replacement of Aggregates (DT)", false, false)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
- "Scalar Replacement of Aggregates (DT)", false, false)
-
-INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
- "Scalar Replacement of Aggregates (SSAUp)", false, false)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
- "Scalar Replacement of Aggregates (SSAUp)", false, false)
-
-// Public interface to the ScalarReplAggregates pass
-FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
- bool UseDomTree,
- int StructMemberThreshold,
- int ArrayElementThreshold,
- int ScalarLoadThreshold) {
- if (UseDomTree)
- return new SROA_DT(Threshold, StructMemberThreshold, ArrayElementThreshold,
- ScalarLoadThreshold);
- return new SROA_SSAUp(Threshold, StructMemberThreshold,
- ArrayElementThreshold, ScalarLoadThreshold);
-}
-
-
-//===----------------------------------------------------------------------===//
-// Convert To Scalar Optimization.
-//===----------------------------------------------------------------------===//
-
-namespace {
-/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
-/// optimization, which scans the uses of an alloca and determines if it can
-/// rewrite it in terms of a single new alloca that can be mem2reg'd.
-class ConvertToScalarInfo {
- /// AllocaSize - The size of the alloca being considered in bytes.
- unsigned AllocaSize;
- const DataLayout &DL;
- unsigned ScalarLoadThreshold;
-
- /// IsNotTrivial - This is set to true if there is some access to the object
- /// which means that mem2reg can't promote it.
- bool IsNotTrivial;
-
- /// ScalarKind - Tracks the kind of alloca being considered for promotion,
- /// computed based on the uses of the alloca rather than the LLVM type system.
- enum {
- Unknown,
-
- // Accesses via GEPs that are consistent with element access of a vector
- // type. This will not be converted into a vector unless there is a later
- // access using an actual vector type.
- ImplicitVector,
-
- // Accesses via vector operations and GEPs that are consistent with the
- // layout of a vector type.
- Vector,
-
- // An integer bag-of-bits with bitwise operations for insertion and
- // extraction. Any combination of types can be converted into this kind
- // of scalar.
- Integer
- } ScalarKind;
-
- /// VectorTy - This tracks the type that we should promote the vector to if
- /// it is possible to turn it into a vector. This starts out null, and if it
- /// isn't possible to turn into a vector type, it gets set to VoidTy.
- VectorType *VectorTy;
-
- /// HadNonMemTransferAccess - True if there is at least one access to the
- /// alloca that is not a MemTransferInst. We don't want to turn structs into
- /// large integers unless there is some potential for optimization.
- bool HadNonMemTransferAccess;
-
- /// HadDynamicAccess - True if some element of this alloca was dynamic.
- /// We don't yet have support for turning a dynamic access into a large
- /// integer.
- bool HadDynamicAccess;
-
-public:
- explicit ConvertToScalarInfo(unsigned Size, const DataLayout &DL,
- unsigned SLT)
- : AllocaSize(Size), DL(DL), ScalarLoadThreshold(SLT), IsNotTrivial(false),
- ScalarKind(Unknown), VectorTy(nullptr), HadNonMemTransferAccess(false),
- HadDynamicAccess(false) { }
-
- AllocaInst *TryConvert(AllocaInst *AI);
-
-private:
- bool CanConvertToScalar(Value *V, uint64_t Offset, Value* NonConstantIdx);
- void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
- bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
- void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset,
- Value *NonConstantIdx);
-
- Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
- uint64_t Offset, Value* NonConstantIdx,
- IRBuilder<> &Builder);
- Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
- uint64_t Offset, Value* NonConstantIdx,
- IRBuilder<> &Builder);
-};
-} // end anonymous namespace.
-
-
-/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
-/// rewrite it to be a new alloca which is mem2reg'able. This returns the new
-/// alloca if possible or null if not.
-AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
- // If we can't convert this scalar, or if mem2reg can trivially do it, bail
- // out.
- if (!CanConvertToScalar(AI, 0, nullptr) || !IsNotTrivial)
- return nullptr;
-
- // If an alloca has only memset / memcpy uses, it may still have an Unknown
- // ScalarKind. Treat it as an Integer below.
- if (ScalarKind == Unknown)
- ScalarKind = Integer;
-
- if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
- ScalarKind = Integer;
-
- // If we were able to find a vector type that can handle this with
- // insert/extract elements, and if there was at least one use that had
- // a vector type, promote this to a vector. We don't want to promote
- // random stuff that doesn't use vectors (e.g. <9 x double>) because then
- // we just get a lot of insert/extracts. If at least one vector is
- // involved, then we probably really do have a union of vector/array.
- Type *NewTy;
- if (ScalarKind == Vector) {
- assert(VectorTy && "Missing type for vector scalar.");
- DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
- << *VectorTy << '\n');
- NewTy = VectorTy; // Use the vector type.
- } else {
- unsigned BitWidth = AllocaSize * 8;
-
- // Do not convert to scalar integer if the alloca size exceeds the
- // scalar load threshold.
- if (BitWidth > ScalarLoadThreshold)
- return nullptr;
-
- if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
- !HadNonMemTransferAccess && !DL.fitsInLegalInteger(BitWidth))
- return nullptr;
- // Dynamic accesses on integers aren't yet supported. They need us to shift
- // by a dynamic amount which could be difficult to work out as we might not
- // know whether to use a left or right shift.
- if (ScalarKind == Integer && HadDynamicAccess)
- return nullptr;
-
- DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
- // Create and insert the integer alloca.
- NewTy = IntegerType::get(AI->getContext(), BitWidth);
- }
- AllocaInst *NewAI =
- new AllocaInst(NewTy, nullptr, "", &AI->getParent()->front());
- ConvertUsesToScalar(AI, NewAI, 0, nullptr);
- return NewAI;
-}
-
-/// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
-/// (VectorTy) so far at the offset specified by Offset (which is specified in
-/// bytes).
-///
-/// There are two cases we handle here:
-/// 1) A union of vector types of the same size and potentially its elements.
-/// Here we turn element accesses into insert/extract element operations.
-/// This promotes a <4 x float> with a store of float to the third element
-/// into a <4 x float> that uses insert element.
-/// 2) A fully general blob of memory, which we turn into some (potentially
-/// large) integer type with extract and insert operations where the loads
-/// and stores would mutate the memory. We mark this by setting VectorTy
-/// to VoidTy.
-void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
- uint64_t Offset) {
- // If we already decided to turn this into a blob of integer memory, there is
- // nothing to be done.
- if (ScalarKind == Integer)
- return;
-
- // If this could be contributing to a vector, analyze it.
-
- // If the In type is a vector that is the same size as the alloca, see if it
- // matches the existing VecTy.
- if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
- if (MergeInVectorType(VInTy, Offset))
- return;
- } else if (In->isFloatTy() || In->isDoubleTy() ||
- (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
- isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
- // Full width accesses can be ignored, because they can always be turned
- // into bitcasts.
- unsigned EltSize = In->getPrimitiveSizeInBits()/8;
- if (EltSize == AllocaSize)
- return;
-
- // If we're accessing something that could be an element of a vector, see
- // if the implied vector agrees with what we already have and if Offset is
- // compatible with it.
- if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
- (!VectorTy || EltSize == VectorTy->getElementType()
- ->getPrimitiveSizeInBits()/8)) {
- if (!VectorTy) {
- ScalarKind = ImplicitVector;
- VectorTy = VectorType::get(In, AllocaSize/EltSize);
- }
- return;
- }
- }
-
- // Otherwise, we have a case that we can't handle with an optimized vector
- // form. We can still turn this into a large integer.
- ScalarKind = Integer;
-}
-
-/// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
-/// returning true if the type was successfully merged and false otherwise.
-bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
- uint64_t Offset) {
- if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
- // If we're storing/loading a vector of the right size, allow it as a
- // vector. If this the first vector we see, remember the type so that
- // we know the element size. If this is a subsequent access, ignore it
- // even if it is a differing type but the same size. Worst case we can
- // bitcast the resultant vectors.
- if (!VectorTy)
- VectorTy = VInTy;
- ScalarKind = Vector;
- return true;
- }
-
- return false;
-}
-
-/// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
-/// its accesses to a single vector type, return true and set VecTy to
-/// the new type. If we could convert the alloca into a single promotable
-/// integer, return true but set VecTy to VoidTy. Further, if the use is not a
-/// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
-/// is the current offset from the base of the alloca being analyzed.
-///
-/// If we see at least one access to the value that is as a vector type, set the
-/// SawVec flag.
-bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset,
- Value* NonConstantIdx) {
- for (User *U : V->users()) {
- Instruction *UI = cast<Instruction>(U);
-
- if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
- // Don't break volatile loads.
- if (!LI->isSimple())
- return false;
- // Don't touch MMX operations.
- if (LI->getType()->isX86_MMXTy())
- return false;
- HadNonMemTransferAccess = true;
- MergeInTypeForLoadOrStore(LI->getType(), Offset);
- continue;
- }
-
- if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
- // Storing the pointer, not into the value?
- if (SI->getOperand(0) == V || !SI->isSimple()) return false;
- // Don't touch MMX operations.
- if (SI->getOperand(0)->getType()->isX86_MMXTy())
- return false;
- HadNonMemTransferAccess = true;
- MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
- continue;
- }
-
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(UI)) {
- if (!onlyUsedByLifetimeMarkers(BCI))
- IsNotTrivial = true; // Can't be mem2reg'd.
- if (!CanConvertToScalar(BCI, Offset, NonConstantIdx))
- return false;
- continue;
- }
-
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UI)) {
- // If this is a GEP with a variable indices, we can't handle it.
- // Compute the offset that this GEP adds to the pointer.
- SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
- Value *GEPNonConstantIdx = nullptr;
- if (!GEP->hasAllConstantIndices()) {
- if (!isa<VectorType>(GEP->getSourceElementType()))
- return false;
- if (NonConstantIdx)
- return false;
- GEPNonConstantIdx = Indices.pop_back_val();
- if (!GEPNonConstantIdx->getType()->isIntegerTy(32))
- return false;
- HadDynamicAccess = true;
- } else
- GEPNonConstantIdx = NonConstantIdx;
- uint64_t GEPOffset = DL.getIndexedOffsetInType(GEP->getSourceElementType(),
- Indices);
- // See if all uses can be converted.
- if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx))
- return false;
- IsNotTrivial = true; // Can't be mem2reg'd.
- HadNonMemTransferAccess = true;
- continue;
- }
-
- // If this is a constant sized memset of a constant value (e.g. 0) we can
- // handle it.
- if (MemSetInst *MSI = dyn_cast<MemSetInst>(UI)) {
- // Store to dynamic index.
- if (NonConstantIdx)
- return false;
- // Store of constant value.
- if (!isa<ConstantInt>(MSI->getValue()))
- return false;
-
- // Store of constant size.
- ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
- if (!Len)
- return false;
-
- // If the size differs from the alloca, we can only convert the alloca to
- // an integer bag-of-bits.
- // FIXME: This should handle all of the cases that are currently accepted
- // as vector element insertions.
- if (Len->getZExtValue() != AllocaSize || Offset != 0)
- ScalarKind = Integer;
-
- IsNotTrivial = true; // Can't be mem2reg'd.
- HadNonMemTransferAccess = true;
- continue;
- }
-
- // If this is a memcpy or memmove into or out of the whole allocation, we
- // can handle it like a load or store of the scalar type.
- if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(UI)) {
- // Store to dynamic index.
- if (NonConstantIdx)
- return false;
- ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
- if (!Len || Len->getZExtValue() != AllocaSize || Offset != 0)
- return false;
-
- IsNotTrivial = true; // Can't be mem2reg'd.
- continue;
- }
-
- // If this is a lifetime intrinsic, we can handle it.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(UI)) {
- if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
- II->getIntrinsicID() == Intrinsic::lifetime_end) {
- continue;
- }
- }
-
- // Otherwise, we cannot handle this!
- return false;
- }
-
- return true;
-}
-
-/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
-/// directly. This happens when we are converting an "integer union" to a
-/// single integer scalar, or when we are converting a "vector union" to a
-/// vector with insert/extractelement instructions.
-///
-/// Offset is an offset from the original alloca, in bits that need to be
-/// shifted to the right. By the end of this, there should be no uses of Ptr.
-void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
- uint64_t Offset,
- Value* NonConstantIdx) {
- while (!Ptr->use_empty()) {
- Instruction *User = cast<Instruction>(Ptr->user_back());
-
- if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
- ConvertUsesToScalar(CI, NewAI, Offset, NonConstantIdx);
- CI->eraseFromParent();
- continue;
- }
-
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
- // Compute the offset that this GEP adds to the pointer.
- SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
- Value* GEPNonConstantIdx = nullptr;
- if (!GEP->hasAllConstantIndices()) {
- assert(!NonConstantIdx &&
- "Dynamic GEP reading from dynamic GEP unsupported");
- GEPNonConstantIdx = Indices.pop_back_val();
- } else
- GEPNonConstantIdx = NonConstantIdx;
- uint64_t GEPOffset = DL.getIndexedOffsetInType(GEP->getSourceElementType(),
- Indices);
- ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx);
- GEP->eraseFromParent();
- continue;
- }
-
- IRBuilder<> Builder(User);
-
- if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
- // The load is a bit extract from NewAI shifted right by Offset bits.
- Value *LoadedVal = Builder.CreateLoad(NewAI);
- Value *NewLoadVal
- = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset,
- NonConstantIdx, Builder);
- LI->replaceAllUsesWith(NewLoadVal);
- LI->eraseFromParent();
- continue;
- }
-
- if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
- assert(SI->getOperand(0) != Ptr && "Consistency error!");
- Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
- Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
- NonConstantIdx, Builder);
- Builder.CreateStore(New, NewAI);
- SI->eraseFromParent();
-
- // If the load we just inserted is now dead, then the inserted store
- // overwrote the entire thing.
- if (Old->use_empty())
- Old->eraseFromParent();
- continue;
- }
-
- // If this is a constant sized memset of a constant value (e.g. 0) we can
- // transform it into a store of the expanded constant value.
- if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
- assert(MSI->getRawDest() == Ptr && "Consistency error!");
- assert(!NonConstantIdx && "Cannot replace dynamic memset with insert");
- int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue();
- if (SNumBytes > 0 && (SNumBytes >> 32) == 0) {
- unsigned NumBytes = static_cast<unsigned>(SNumBytes);
- unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
-
- // Compute the value replicated the right number of times.
- APInt APVal(NumBytes*8, Val);
-
- // Splat the value if non-zero.
- if (Val)
- for (unsigned i = 1; i != NumBytes; ++i)
- APVal |= APVal << 8;
-
- Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
- Value *New = ConvertScalar_InsertValue(
- ConstantInt::get(User->getContext(), APVal),
- Old, Offset, nullptr, Builder);
- Builder.CreateStore(New, NewAI);
-
- // If the load we just inserted is now dead, then the memset overwrote
- // the entire thing.
- if (Old->use_empty())
- Old->eraseFromParent();
- }
- MSI->eraseFromParent();
- continue;
- }
-
- // If this is a memcpy or memmove into or out of the whole allocation, we
- // can handle it like a load or store of the scalar type.
- if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
- assert(Offset == 0 && "must be store to start of alloca");
- assert(!NonConstantIdx && "Cannot replace dynamic transfer with insert");
-
- // If the source and destination are both to the same alloca, then this is
- // a noop copy-to-self, just delete it. Otherwise, emit a load and store
- // as appropriate.
- AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, DL, 0));
-
- if (GetUnderlyingObject(MTI->getSource(), DL, 0) != OrigAI) {
- // Dest must be OrigAI, change this to be a load from the original
- // pointer (bitcasted), then a store to our new alloca.
- assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
- Value *SrcPtr = MTI->getSource();
- PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
- PointerType* AIPTy = cast<PointerType>(NewAI->getType());
- if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
- AIPTy = PointerType::get(NewAI->getAllocatedType(),
- SPTy->getAddressSpace());
- }
- SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
-
- LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
- SrcVal->setAlignment(MTI->getAlignment());
- Builder.CreateStore(SrcVal, NewAI);
- } else if (GetUnderlyingObject(MTI->getDest(), DL, 0) != OrigAI) {
- // Src must be OrigAI, change this to be a load from NewAI then a store
- // through the original dest pointer (bitcasted).
- assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
- LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
-
- PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
- PointerType* AIPTy = cast<PointerType>(NewAI->getType());
- if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
- AIPTy = PointerType::get(NewAI->getAllocatedType(),
- DPTy->getAddressSpace());
- }
- Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
-
- StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
- NewStore->setAlignment(MTI->getAlignment());
- } else {
- // Noop transfer. Src == Dst
- }
-
- MTI->eraseFromParent();
- continue;
- }
-
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
- if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
- II->getIntrinsicID() == Intrinsic::lifetime_end) {
- // There's no need to preserve these, as the resulting alloca will be
- // converted to a register anyways.
- II->eraseFromParent();
- continue;
- }
- }
-
- llvm_unreachable("Unsupported operation!");
- }
-}
-
-/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
-/// or vector value FromVal, extracting the bits from the offset specified by
-/// Offset. This returns the value, which is of type ToType.
-///
-/// This happens when we are converting an "integer union" to a single
-/// integer scalar, or when we are converting a "vector union" to a vector with
-/// insert/extractelement instructions.
-///
-/// Offset is an offset from the original alloca, in bits that need to be
-/// shifted to the right.
-Value *ConvertToScalarInfo::
-ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
- uint64_t Offset, Value* NonConstantIdx,
- IRBuilder<> &Builder) {
- // If the load is of the whole new alloca, no conversion is needed.
- Type *FromType = FromVal->getType();
- if (FromType == ToType && Offset == 0)
- return FromVal;
-
- // If the result alloca is a vector type, this is either an element
- // access or a bitcast to another vector type of the same size.
- if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
- unsigned FromTypeSize = DL.getTypeAllocSize(FromType);
- unsigned ToTypeSize = DL.getTypeAllocSize(ToType);
- if (FromTypeSize == ToTypeSize)
- return Builder.CreateBitCast(FromVal, ToType);
-
- // Otherwise it must be an element access.
- unsigned Elt = 0;
- if (Offset) {
- unsigned EltSize = DL.getTypeAllocSizeInBits(VTy->getElementType());
- Elt = Offset/EltSize;
- assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
- }
- // Return the element extracted out of it.
- Value *Idx;
- if (NonConstantIdx) {
- if (Elt)
- Idx = Builder.CreateAdd(NonConstantIdx,
- Builder.getInt32(Elt),
- "dyn.offset");
- else
- Idx = NonConstantIdx;
- } else
- Idx = Builder.getInt32(Elt);
- Value *V = Builder.CreateExtractElement(FromVal, Idx);
- if (V->getType() != ToType)
- V = Builder.CreateBitCast(V, ToType);
- return V;
- }
-
- // If ToType is a first class aggregate, extract out each of the pieces and
- // use insertvalue's to form the FCA.
- if (StructType *ST = dyn_cast<StructType>(ToType)) {
- assert(!NonConstantIdx &&
- "Dynamic indexing into struct types not supported");
- const StructLayout &Layout = *DL.getStructLayout(ST);
- Value *Res = UndefValue::get(ST);
- for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
- Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
- Offset+Layout.getElementOffsetInBits(i),
- nullptr, Builder);
- Res = Builder.CreateInsertValue(Res, Elt, i);
- }
- return Res;
- }
-
- if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
- assert(!NonConstantIdx &&
- "Dynamic indexing into array types not supported");
- uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType());
- Value *Res = UndefValue::get(AT);
- for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
- Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
- Offset+i*EltSize, nullptr,
- Builder);
- Res = Builder.CreateInsertValue(Res, Elt, i);
- }
- return Res;
- }
-
- // Otherwise, this must be a union that was converted to an integer value.
- IntegerType *NTy = cast<IntegerType>(FromVal->getType());
-
- // If this is a big-endian system and the load is narrower than the
- // full alloca type, we need to do a shift to get the right bits.
- int ShAmt = 0;
- if (DL.isBigEndian()) {
- // On big-endian machines, the lowest bit is stored at the bit offset
- // from the pointer given by getTypeStoreSizeInBits. This matters for
- // integers with a bitwidth that is not a multiple of 8.
- ShAmt = DL.getTypeStoreSizeInBits(NTy) -
- DL.getTypeStoreSizeInBits(ToType) - Offset;
- } else {
- ShAmt = Offset;
- }
-
- // Note: we support negative bitwidths (with shl) which are not defined.
- // We do this to support (f.e.) loads off the end of a structure where
- // only some bits are used.
- if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
- FromVal = Builder.CreateLShr(FromVal,
- ConstantInt::get(FromVal->getType(), ShAmt));
- else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
- FromVal = Builder.CreateShl(FromVal,
- ConstantInt::get(FromVal->getType(), -ShAmt));
-
- // Finally, unconditionally truncate the integer to the right width.
- unsigned LIBitWidth = DL.getTypeSizeInBits(ToType);
- if (LIBitWidth < NTy->getBitWidth())
- FromVal =
- Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
- LIBitWidth));
- else if (LIBitWidth > NTy->getBitWidth())
- FromVal =
- Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
- LIBitWidth));
-
- // If the result is an integer, this is a trunc or bitcast.
- if (ToType->isIntegerTy()) {
- // Should be done.
- } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
- // Just do a bitcast, we know the sizes match up.
- FromVal = Builder.CreateBitCast(FromVal, ToType);
- } else {
- // Otherwise must be a pointer.
- FromVal = Builder.CreateIntToPtr(FromVal, ToType);
- }
- assert(FromVal->getType() == ToType && "Didn't convert right?");
- return FromVal;
-}
-
-/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
-/// or vector value "Old" at the offset specified by Offset.
-///
-/// This happens when we are converting an "integer union" to a
-/// single integer scalar, or when we are converting a "vector union" to a
-/// vector with insert/extractelement instructions.
-///
-/// Offset is an offset from the original alloca, in bits that need to be
-/// shifted to the right.
-///
-/// NonConstantIdx is an index value if there was a GEP with a non-constant
-/// index value. If this is 0 then all GEPs used to find this insert address
-/// are constant.
-Value *ConvertToScalarInfo::
-ConvertScalar_InsertValue(Value *SV, Value *Old,
- uint64_t Offset, Value* NonConstantIdx,
- IRBuilder<> &Builder) {
- // Convert the stored type to the actual type, shift it left to insert
- // then 'or' into place.
- Type *AllocaType = Old->getType();
- LLVMContext &Context = Old->getContext();
-
- if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
- uint64_t VecSize = DL.getTypeAllocSizeInBits(VTy);
- uint64_t ValSize = DL.getTypeAllocSizeInBits(SV->getType());
-
- // Changing the whole vector with memset or with an access of a different
- // vector type?
- if (ValSize == VecSize)
- return Builder.CreateBitCast(SV, AllocaType);
-
- // Must be an element insertion.
- Type *EltTy = VTy->getElementType();
- if (SV->getType() != EltTy)
- SV = Builder.CreateBitCast(SV, EltTy);
- uint64_t EltSize = DL.getTypeAllocSizeInBits(EltTy);
- unsigned Elt = Offset/EltSize;
- Value *Idx;
- if (NonConstantIdx) {
- if (Elt)
- Idx = Builder.CreateAdd(NonConstantIdx,
- Builder.getInt32(Elt),
- "dyn.offset");
- else
- Idx = NonConstantIdx;
- } else
- Idx = Builder.getInt32(Elt);
- return Builder.CreateInsertElement(Old, SV, Idx);
- }
-
- // If SV is a first-class aggregate value, insert each value recursively.
- if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
- assert(!NonConstantIdx &&
- "Dynamic indexing into struct types not supported");
- const StructLayout &Layout = *DL.getStructLayout(ST);
- for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
- Value *Elt = Builder.CreateExtractValue(SV, i);
- Old = ConvertScalar_InsertValue(Elt, Old,
- Offset+Layout.getElementOffsetInBits(i),
- nullptr, Builder);
- }
- return Old;
- }
-
- if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
- assert(!NonConstantIdx &&
- "Dynamic indexing into array types not supported");
- uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType());
- for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
- Value *Elt = Builder.CreateExtractValue(SV, i);
- Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, nullptr,
- Builder);
- }
- return Old;
- }
-
- // If SV is a float, convert it to the appropriate integer type.
- // If it is a pointer, do the same.
- unsigned SrcWidth = DL.getTypeSizeInBits(SV->getType());
- unsigned DestWidth = DL.getTypeSizeInBits(AllocaType);
- unsigned SrcStoreWidth = DL.getTypeStoreSizeInBits(SV->getType());
- unsigned DestStoreWidth = DL.getTypeStoreSizeInBits(AllocaType);
- if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
- SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
- else if (SV->getType()->isPointerTy())
- SV = Builder.CreatePtrToInt(SV, DL.getIntPtrType(SV->getType()));
-
- // Zero extend or truncate the value if needed.
- if (SV->getType() != AllocaType) {
- if (SV->getType()->getPrimitiveSizeInBits() <
- AllocaType->getPrimitiveSizeInBits())
- SV = Builder.CreateZExt(SV, AllocaType);
- else {
- // Truncation may be needed if storing more than the alloca can hold
- // (undefined behavior).
- SV = Builder.CreateTrunc(SV, AllocaType);
- SrcWidth = DestWidth;
- SrcStoreWidth = DestStoreWidth;
- }
- }
-
- // If this is a big-endian system and the store is narrower than the
- // full alloca type, we need to do a shift to get the right bits.
- int ShAmt = 0;
- if (DL.isBigEndian()) {
- // On big-endian machines, the lowest bit is stored at the bit offset
- // from the pointer given by getTypeStoreSizeInBits. This matters for
- // integers with a bitwidth that is not a multiple of 8.
- ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
- } else {
- ShAmt = Offset;
- }
-
- // Note: we support negative bitwidths (with shr) which are not defined.
- // We do this to support (f.e.) stores off the end of a structure where
- // only some bits in the structure are set.
- APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
- if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
- SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
- Mask <<= ShAmt;
- } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
- SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
- Mask = Mask.lshr(-ShAmt);
- }
-
- // Mask out the bits we are about to insert from the old value, and or
- // in the new bits.
- if (SrcWidth != DestWidth) {
- assert(DestWidth > SrcWidth);
- Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
- SV = Builder.CreateOr(Old, SV, "ins");
- }
- return SV;
-}
-
-
-//===----------------------------------------------------------------------===//
-// SRoA Driver
-//===----------------------------------------------------------------------===//
-
-
-bool SROA::runOnFunction(Function &F) {
- if (skipFunction(F))
- return false;
-
- bool Changed = performPromotion(F);
-
- while (1) {
- bool LocalChange = performScalarRepl(F);
- if (!LocalChange) break; // No need to repromote if no scalarrepl
- Changed = true;
- LocalChange = performPromotion(F);
- if (!LocalChange) break; // No need to re-scalarrepl if no promotion
- }
-
- return Changed;
-}
-
-namespace {
-class AllocaPromoter : public LoadAndStorePromoter {
- AllocaInst *AI;
- DIBuilder *DIB;
- SmallVector<DbgDeclareInst *, 4> DDIs;
- SmallVector<DbgValueInst *, 4> DVIs;
-public:
- AllocaPromoter(ArrayRef<Instruction*> Insts, SSAUpdater &S,
- DIBuilder *DB)
- : LoadAndStorePromoter(Insts, S), AI(nullptr), DIB(DB) {}
-
- void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
- // Remember which alloca we're promoting (for isInstInList).
- this->AI = AI;
- if (auto *L = LocalAsMetadata::getIfExists(AI)) {
- if (auto *DINode = MetadataAsValue::getIfExists(AI->getContext(), L)) {
- for (User *U : DINode->users())
- if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
- DDIs.push_back(DDI);
- else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
- DVIs.push_back(DVI);
- }
- }
-
- LoadAndStorePromoter::run(Insts);
- AI->eraseFromParent();
- for (SmallVectorImpl<DbgDeclareInst *>::iterator I = DDIs.begin(),
- E = DDIs.end(); I != E; ++I) {
- DbgDeclareInst *DDI = *I;
- DDI->eraseFromParent();
- }
- for (SmallVectorImpl<DbgValueInst *>::iterator I = DVIs.begin(),
- E = DVIs.end(); I != E; ++I) {
- DbgValueInst *DVI = *I;
- DVI->eraseFromParent();
- }
- }
-
- bool isInstInList(Instruction *I,
- const SmallVectorImpl<Instruction*> &Insts) const override {
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return LI->getOperand(0) == AI;
- return cast<StoreInst>(I)->getPointerOperand() == AI;
- }
-
- void updateDebugInfo(Instruction *Inst) const override {
- for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
- E = DDIs.end(); I != E; ++I) {
- DbgDeclareInst *DDI = *I;
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
- ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
- else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
- ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
- }
- for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
- E = DVIs.end(); I != E; ++I) {
- DbgValueInst *DVI = *I;
- Value *Arg = nullptr;
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- // If an argument is zero extended then use argument directly. The ZExt
- // may be zapped by an optimization pass in future.
- if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
- Arg = dyn_cast<Argument>(ZExt->getOperand(0));
- if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
- Arg = dyn_cast<Argument>(SExt->getOperand(0));
- if (!Arg)
- Arg = SI->getOperand(0);
- } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- Arg = LI->getOperand(0);
- } else {
- continue;
- }
- DIB->insertDbgValueIntrinsic(Arg, 0, DVI->getVariable(),
- DVI->getExpression(), DVI->getDebugLoc(),
- Inst);
- }
- }
-};
-} // end anon namespace
-
-/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
-/// subsequently loaded can be rewritten to load both input pointers and then
-/// select between the result, allowing the load of the alloca to be promoted.
-/// From this:
-/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
-/// %V = load i32* %P2
-/// to:
-/// %V1 = load i32* %Alloca -> will be mem2reg'd
-/// %V2 = load i32* %Other
-/// %V = select i1 %cond, i32 %V1, i32 %V2
-///
-/// We can do this to a select if its only uses are loads and if the operand to
-/// the select can be loaded unconditionally.
-static bool isSafeSelectToSpeculate(SelectInst *SI) {
- const DataLayout &DL = SI->getModule()->getDataLayout();
-
- for (User *U : SI->users()) {
- LoadInst *LI = dyn_cast<LoadInst>(U);
- if (!LI || !LI->isSimple()) return false;
-
- // Both operands to the select need to be dereferencable, either absolutely
- // (e.g. allocas) or at this point because we can see other accesses to it.
- if (!isSafeToLoadUnconditionally(SI->getTrueValue(), LI->getAlignment(),
- DL, LI))
- return false;
- if (!isSafeToLoadUnconditionally(SI->getFalseValue(), LI->getAlignment(),
- DL, LI))
- return false;
- }
-
- return true;
-}
-
-/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
-/// subsequently loaded can be rewritten to load both input pointers in the pred
-/// blocks and then PHI the results, allowing the load of the alloca to be
-/// promoted.
-/// From this:
-/// %P2 = phi [i32* %Alloca, i32* %Other]
-/// %V = load i32* %P2
-/// to:
-/// %V1 = load i32* %Alloca -> will be mem2reg'd
-/// ...
-/// %V2 = load i32* %Other
-/// ...
-/// %V = phi [i32 %V1, i32 %V2]
-///
-/// We can do this to a select if its only uses are loads and if the operand to
-/// the select can be loaded unconditionally.
-static bool isSafePHIToSpeculate(PHINode *PN) {
- // For now, we can only do this promotion if the load is in the same block as
- // the PHI, and if there are no stores between the phi and load.
- // TODO: Allow recursive phi users.
- // TODO: Allow stores.
- BasicBlock *BB = PN->getParent();
- unsigned MaxAlign = 0;
- for (User *U : PN->users()) {
- LoadInst *LI = dyn_cast<LoadInst>(U);
- if (!LI || !LI->isSimple()) return false;
-
- // For now we only allow loads in the same block as the PHI. This is a
- // common case that happens when instcombine merges two loads through a PHI.
- if (LI->getParent() != BB) return false;
-
- // Ensure that there are no instructions between the PHI and the load that
- // could store.
- for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
- if (BBI->mayWriteToMemory())
- return false;
-
- MaxAlign = std::max(MaxAlign, LI->getAlignment());
- }
-
- const DataLayout &DL = PN->getModule()->getDataLayout();
-
- // Okay, we know that we have one or more loads in the same block as the PHI.
- // We can transform this if it is safe to push the loads into the predecessor
- // blocks. The only thing to watch out for is that we can't put a possibly
- // trapping load in the predecessor if it is a critical edge.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *Pred = PN->getIncomingBlock(i);
- Value *InVal = PN->getIncomingValue(i);
-
- // If the terminator of the predecessor has side-effects (an invoke),
- // there is no safe place to put a load in the predecessor.
- if (Pred->getTerminator()->mayHaveSideEffects())
- return false;
-
- // If the value is produced by the terminator of the predecessor
- // (an invoke), there is no valid place to put a load in the predecessor.
- if (Pred->getTerminator() == InVal)
- return false;
-
- // If the predecessor has a single successor, then the edge isn't critical.
- if (Pred->getTerminator()->getNumSuccessors() == 1)
- continue;
-
- // If this pointer is always safe to load, or if we can prove that there is
- // already a load in the block, then we can move the load to the pred block.
- if (isSafeToLoadUnconditionally(InVal, MaxAlign, DL, Pred->getTerminator()))
- continue;
-
- return false;
- }
-
- return true;
-}
-
-
-/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
-/// direct (non-volatile) loads and stores to it. If the alloca is close but
-/// not quite there, this will transform the code to allow promotion. As such,
-/// it is a non-pure predicate.
-static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout &DL) {
- SetVector<Instruction*, SmallVector<Instruction*, 4>,
- SmallPtrSet<Instruction*, 4> > InstsToRewrite;
- for (User *U : AI->users()) {
- if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
- if (!LI->isSimple())
- return false;
- continue;
- }
-
- if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- if (SI->getOperand(0) == AI || !SI->isSimple())
- return false; // Don't allow a store OF the AI, only INTO the AI.
- continue;
- }
-
- if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
- // If the condition being selected on is a constant, fold the select, yes
- // this does (rarely) happen early on.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
- Value *Result = SI->getOperand(1+CI->isZero());
- SI->replaceAllUsesWith(Result);
- SI->eraseFromParent();
-
- // This is very rare and we just scrambled the use list of AI, start
- // over completely.
- return tryToMakeAllocaBePromotable(AI, DL);
- }
-
- // If it is safe to turn "load (select c, AI, ptr)" into a select of two
- // loads, then we can transform this by rewriting the select.
- if (!isSafeSelectToSpeculate(SI))
- return false;
-
- InstsToRewrite.insert(SI);
- continue;
- }
-
- if (PHINode *PN = dyn_cast<PHINode>(U)) {
- if (PN->use_empty()) { // Dead PHIs can be stripped.
- InstsToRewrite.insert(PN);
- continue;
- }
-
- // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
- // in the pred blocks, then we can transform this by rewriting the PHI.
- if (!isSafePHIToSpeculate(PN))
- return false;
-
- InstsToRewrite.insert(PN);
- continue;
- }
-
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
- if (onlyUsedByLifetimeMarkers(BCI)) {
- InstsToRewrite.insert(BCI);
- continue;
- }
- }
-
- return false;
- }
-
- // If there are no instructions to rewrite, then all uses are load/stores and
- // we're done!
- if (InstsToRewrite.empty())
- return true;
-
- // If we have instructions that need to be rewritten for this to be promotable
- // take care of it now.
- for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
- // This could only be a bitcast used by nothing but lifetime intrinsics.
- for (BitCastInst::user_iterator I = BCI->user_begin(), E = BCI->user_end();
- I != E;)
- cast<Instruction>(*I++)->eraseFromParent();
- BCI->eraseFromParent();
- continue;
- }
-
- if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
- // Selects in InstsToRewrite only have load uses. Rewrite each as two
- // loads with a new select.
- while (!SI->use_empty()) {
- LoadInst *LI = cast<LoadInst>(SI->user_back());
-
- IRBuilder<> Builder(LI);
- LoadInst *TrueLoad =
- Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
- LoadInst *FalseLoad =
- Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
-
- // Transfer alignment and AA info if present.
- TrueLoad->setAlignment(LI->getAlignment());
- FalseLoad->setAlignment(LI->getAlignment());
-
- AAMDNodes Tags;
- LI->getAAMetadata(Tags);
- if (Tags) {
- TrueLoad->setAAMetadata(Tags);
- FalseLoad->setAAMetadata(Tags);
- }
-
- Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
- V->takeName(LI);
- LI->replaceAllUsesWith(V);
- LI->eraseFromParent();
- }
-
- // Now that all the loads are gone, the select is gone too.
- SI->eraseFromParent();
- continue;
- }
-
- // Otherwise, we have a PHI node which allows us to push the loads into the
- // predecessors.
- PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
- if (PN->use_empty()) {
- PN->eraseFromParent();
- continue;
- }
-
- Type *LoadTy = AI->getAllocatedType();
- PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
- PN->getName()+".ld", PN);
-
- // Get the AA tags and alignment to use from one of the loads. It doesn't
- // matter which one we get and if any differ, it doesn't matter.
- LoadInst *SomeLoad = cast<LoadInst>(PN->user_back());
-
- AAMDNodes AATags;
- SomeLoad->getAAMetadata(AATags);
- unsigned Align = SomeLoad->getAlignment();
-
- // Rewrite all loads of the PN to use the new PHI.
- while (!PN->use_empty()) {
- LoadInst *LI = cast<LoadInst>(PN->user_back());
- LI->replaceAllUsesWith(NewPN);
- LI->eraseFromParent();
- }
-
- // Inject loads into all of the pred blocks. Keep track of which blocks we
- // insert them into in case we have multiple edges from the same block.
- DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
-
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *Pred = PN->getIncomingBlock(i);
- LoadInst *&Load = InsertedLoads[Pred];
- if (!Load) {
- Load = new LoadInst(PN->getIncomingValue(i),
- PN->getName() + "." + Pred->getName(),
- Pred->getTerminator());
- Load->setAlignment(Align);
- if (AATags) Load->setAAMetadata(AATags);
- }
-
- NewPN->addIncoming(Load, Pred);
- }
-
- PN->eraseFromParent();
- }
-
- ++NumAdjusted;
- return true;
-}
-
-bool SROA::performPromotion(Function &F) {
- std::vector<AllocaInst*> Allocas;
- const DataLayout &DL = F.getParent()->getDataLayout();
- DominatorTree *DT = nullptr;
- if (HasDomTree)
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- AssumptionCache &AC =
- getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
-
- BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
- DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
- bool Changed = false;
- SmallVector<Instruction*, 64> Insts;
- while (1) {
- Allocas.clear();
-
- // Find allocas that are safe to promote, by looking at all instructions in
- // the entry node
- for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
- if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
- if (tryToMakeAllocaBePromotable(AI, DL))
- Allocas.push_back(AI);
-
- if (Allocas.empty()) break;
-
- if (HasDomTree)
- PromoteMemToReg(Allocas, *DT, nullptr, &AC);
- else {
- SSAUpdater SSA;
- for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
- AllocaInst *AI = Allocas[i];
-
- // Build list of instructions to promote.
- for (User *U : AI->users())
- Insts.push_back(cast<Instruction>(U));
- AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
- Insts.clear();
- }
- }
- NumPromoted += Allocas.size();
- Changed = true;
- }
-
- return Changed;
-}
-
-
-/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
-/// SROA. It must be a struct or array type with a small number of elements.
-bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) {
- Type *T = AI->getAllocatedType();
- // Do not promote any struct that has too many members.
- if (StructType *ST = dyn_cast<StructType>(T))
- return ST->getNumElements() <= StructMemberThreshold;
- // Do not promote any array that has too many elements.
- if (ArrayType *AT = dyn_cast<ArrayType>(T))
- return AT->getNumElements() <= ArrayElementThreshold;
- return false;
-}
-
-// performScalarRepl - This algorithm is a simple worklist driven algorithm,
-// which runs on all of the alloca instructions in the entry block, removing
-// them if they are only used by getelementptr instructions.
-//
-bool SROA::performScalarRepl(Function &F) {
- std::vector<AllocaInst*> WorkList;
- const DataLayout &DL = F.getParent()->getDataLayout();
-
- // Scan the entry basic block, adding allocas to the worklist.
- BasicBlock &BB = F.getEntryBlock();
- for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
- if (AllocaInst *A = dyn_cast<AllocaInst>(I))
- WorkList.push_back(A);
-
- // Process the worklist
- bool Changed = false;
- while (!WorkList.empty()) {
- AllocaInst *AI = WorkList.back();
- WorkList.pop_back();
-
- // Handle dead allocas trivially. These can be formed by SROA'ing arrays
- // with unused elements.
- if (AI->use_empty()) {
- AI->eraseFromParent();
- Changed = true;
- continue;
- }
-
- // If this alloca is impossible for us to promote, reject it early.
- if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
- continue;
-
- // Check to see if we can perform the core SROA transformation. We cannot
- // transform the allocation instruction if it is an array allocation
- // (allocations OF arrays are ok though), and an allocation of a scalar
- // value cannot be decomposed at all.
- uint64_t AllocaSize = DL.getTypeAllocSize(AI->getAllocatedType());
-
- // Do not promote [0 x %struct].
- if (AllocaSize == 0) continue;
-
- // Do not promote any struct whose size is too big.
- if (AllocaSize > SRThreshold) continue;
-
- // If the alloca looks like a good candidate for scalar replacement, and if
- // all its users can be transformed, then split up the aggregate into its
- // separate elements.
- if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
- DoScalarReplacement(AI, WorkList);
- Changed = true;
- continue;
- }
-
- // If we can turn this aggregate value (potentially with casts) into a
- // simple scalar value that can be mem2reg'd into a register value.
- // IsNotTrivial tracks whether this is something that mem2reg could have
- // promoted itself. If so, we don't want to transform it needlessly. Note
- // that we can't just check based on the type: the alloca may be of an i32
- // but that has pointer arithmetic to set byte 3 of it or something.
- if (AllocaInst *NewAI =
- ConvertToScalarInfo((unsigned)AllocaSize, DL, ScalarLoadThreshold)
- .TryConvert(AI)) {
- NewAI->takeName(AI);
- AI->eraseFromParent();
- ++NumConverted;
- Changed = true;
- continue;
- }
-
- // Otherwise, couldn't process this alloca.
- }
-
- return Changed;
-}
-
-/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
-/// predicate, do SROA now.
-void SROA::DoScalarReplacement(AllocaInst *AI,
- std::vector<AllocaInst*> &WorkList) {
- DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
- SmallVector<AllocaInst*, 32> ElementAllocas;
- if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
- ElementAllocas.reserve(ST->getNumContainedTypes());
- for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
- AllocaInst *NA = new AllocaInst(ST->getContainedType(i), nullptr,
- AI->getAlignment(),
- AI->getName() + "." + Twine(i), AI);
- ElementAllocas.push_back(NA);
- WorkList.push_back(NA); // Add to worklist for recursive processing
- }
- } else {
- ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
- ElementAllocas.reserve(AT->getNumElements());
- Type *ElTy = AT->getElementType();
- for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
- AllocaInst *NA = new AllocaInst(ElTy, nullptr, AI->getAlignment(),
- AI->getName() + "." + Twine(i), AI);
- ElementAllocas.push_back(NA);
- WorkList.push_back(NA); // Add to worklist for recursive processing
- }
- }
-
- // Now that we have created the new alloca instructions, rewrite all the
- // uses of the old alloca.
- RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
-
- // Now erase any instructions that were made dead while rewriting the alloca.
- DeleteDeadInstructions();
- AI->eraseFromParent();
-
- ++NumReplaced;
-}
-
-/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
-/// recursively including all their operands that become trivially dead.
-void SROA::DeleteDeadInstructions() {
- while (!DeadInsts.empty()) {
- Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
-
- for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
- if (Instruction *U = dyn_cast<Instruction>(*OI)) {
- // Zero out the operand and see if it becomes trivially dead.
- // (But, don't add allocas to the dead instruction list -- they are
- // already on the worklist and will be deleted separately.)
- *OI = nullptr;
- if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
- DeadInsts.push_back(U);
- }
-
- I->eraseFromParent();
- }
-}
-
-/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
-/// performing scalar replacement of alloca AI. The results are flagged in
-/// the Info parameter. Offset indicates the position within AI that is
-/// referenced by this instruction.
-void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
- AllocaInfo &Info) {
- const DataLayout &DL = I->getModule()->getDataLayout();
- for (Use &U : I->uses()) {
- Instruction *User = cast<Instruction>(U.getUser());
-
- if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
- isSafeForScalarRepl(BC, Offset, Info);
- } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
- uint64_t GEPOffset = Offset;
- isSafeGEP(GEPI, GEPOffset, Info);
- if (!Info.isUnsafe)
- isSafeForScalarRepl(GEPI, GEPOffset, Info);
- } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
- ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
- if (!Length || Length->isNegative())
- return MarkUnsafe(Info, User);
-
- isSafeMemAccess(Offset, Length->getZExtValue(), nullptr,
- U.getOperandNo() == 0, Info, MI,
- true /*AllowWholeAccess*/);
- } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
- if (!LI->isSimple())
- return MarkUnsafe(Info, User);
- Type *LIType = LI->getType();
- isSafeMemAccess(Offset, DL.getTypeAllocSize(LIType), LIType, false, Info,
- LI, true /*AllowWholeAccess*/);
- Info.hasALoadOrStore = true;
-
- } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
- // Store is ok if storing INTO the pointer, not storing the pointer
- if (!SI->isSimple() || SI->getOperand(0) == I)
- return MarkUnsafe(Info, User);
-
- Type *SIType = SI->getOperand(0)->getType();
- isSafeMemAccess(Offset, DL.getTypeAllocSize(SIType), SIType, true, Info,
- SI, true /*AllowWholeAccess*/);
- Info.hasALoadOrStore = true;
- } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
- if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
- II->getIntrinsicID() != Intrinsic::lifetime_end)
- return MarkUnsafe(Info, User);
- } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
- isSafePHISelectUseForScalarRepl(User, Offset, Info);
- } else {
- return MarkUnsafe(Info, User);
- }
- if (Info.isUnsafe) return;
- }
-}
-
-
-/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
-/// derived from the alloca, we can often still split the alloca into elements.
-/// This is useful if we have a large alloca where one element is phi'd
-/// together somewhere: we can SRoA and promote all the other elements even if
-/// we end up not being able to promote this one.
-///
-/// All we require is that the uses of the PHI do not index into other parts of
-/// the alloca. The most important use case for this is single load and stores
-/// that are PHI'd together, which can happen due to code sinking.
-void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
- AllocaInfo &Info) {
- // If we've already checked this PHI, don't do it again.
- if (PHINode *PN = dyn_cast<PHINode>(I))
- if (!Info.CheckedPHIs.insert(PN).second)
- return;
-
- const DataLayout &DL = I->getModule()->getDataLayout();
- for (User *U : I->users()) {
- Instruction *UI = cast<Instruction>(U);
-
- if (BitCastInst *BC = dyn_cast<BitCastInst>(UI)) {
- isSafePHISelectUseForScalarRepl(BC, Offset, Info);
- } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
- // Only allow "bitcast" GEPs for simplicity. We could generalize this,
- // but would have to prove that we're staying inside of an element being
- // promoted.
- if (!GEPI->hasAllZeroIndices())
- return MarkUnsafe(Info, UI);
- isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
- } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
- if (!LI->isSimple())
- return MarkUnsafe(Info, UI);
- Type *LIType = LI->getType();
- isSafeMemAccess(Offset, DL.getTypeAllocSize(LIType), LIType, false, Info,
- LI, false /*AllowWholeAccess*/);
- Info.hasALoadOrStore = true;
-
- } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
- // Store is ok if storing INTO the pointer, not storing the pointer
- if (!SI->isSimple() || SI->getOperand(0) == I)
- return MarkUnsafe(Info, UI);
-
- Type *SIType = SI->getOperand(0)->getType();
- isSafeMemAccess(Offset, DL.getTypeAllocSize(SIType), SIType, true, Info,
- SI, false /*AllowWholeAccess*/);
- Info.hasALoadOrStore = true;
- } else if (isa<PHINode>(UI) || isa<SelectInst>(UI)) {
- isSafePHISelectUseForScalarRepl(UI, Offset, Info);
- } else {
- return MarkUnsafe(Info, UI);
- }
- if (Info.isUnsafe) return;
- }
-}
-
-/// isSafeGEP - Check if a GEP instruction can be handled for scalar
-/// replacement. It is safe when all the indices are constant, in-bounds
-/// references, and when the resulting offset corresponds to an element within
-/// the alloca type. The results are flagged in the Info parameter. Upon
-/// return, Offset is adjusted as specified by the GEP indices.
-void SROA::isSafeGEP(GetElementPtrInst *GEPI,
- uint64_t &Offset, AllocaInfo &Info) {
- gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
- if (GEPIt == E)
- return;
- bool NonConstant = false;
- unsigned NonConstantIdxSize = 0;
-
- // Walk through the GEP type indices, checking the types that this indexes
- // into.
- for (; GEPIt != E; ++GEPIt) {
- // Ignore struct elements, no extra checking needed for these.
- if ((*GEPIt)->isStructTy())
- continue;
-
- ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
- if (!IdxVal)
- return MarkUnsafe(Info, GEPI);
- }
-
- // Compute the offset due to this GEP and check if the alloca has a
- // component element at that offset.
- SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
- // If this GEP is non-constant then the last operand must have been a
- // dynamic index into a vector. Pop this now as it has no impact on the
- // constant part of the offset.
- if (NonConstant)
- Indices.pop_back();
-
- const DataLayout &DL = GEPI->getModule()->getDataLayout();
- Offset += DL.getIndexedOffsetInType(GEPI->getSourceElementType(), Indices);
- if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, NonConstantIdxSize,
- DL))
- MarkUnsafe(Info, GEPI);
-}
-
-/// isHomogeneousAggregate - Check if type T is a struct or array containing
-/// elements of the same type (which is always true for arrays). If so,
-/// return true with NumElts and EltTy set to the number of elements and the
-/// element type, respectively.
-static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
- Type *&EltTy) {
- if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
- NumElts = AT->getNumElements();
- EltTy = (NumElts == 0 ? nullptr : AT->getElementType());
- return true;
- }
- if (StructType *ST = dyn_cast<StructType>(T)) {
- NumElts = ST->getNumContainedTypes();
- EltTy = (NumElts == 0 ? nullptr : ST->getContainedType(0));
- for (unsigned n = 1; n < NumElts; ++n) {
- if (ST->getContainedType(n) != EltTy)
- return false;
- }
- return true;
- }
- return false;
-}
-
-/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
-/// "homogeneous" aggregates with the same element type and number of elements.
-static bool isCompatibleAggregate(Type *T1, Type *T2) {
- if (T1 == T2)
- return true;
-
- unsigned NumElts1, NumElts2;
- Type *EltTy1, *EltTy2;
- if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
- isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
- NumElts1 == NumElts2 &&
- EltTy1 == EltTy2)
- return true;
-
- return false;
-}
-
-/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
-/// alloca or has an offset and size that corresponds to a component element
-/// within it. The offset checked here may have been formed from a GEP with a
-/// pointer bitcasted to a different type.
-///
-/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
-/// unit. If false, it only allows accesses known to be in a single element.
-void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
- Type *MemOpType, bool isStore,
- AllocaInfo &Info, Instruction *TheAccess,
- bool AllowWholeAccess) {
- const DataLayout &DL = TheAccess->getModule()->getDataLayout();
- // Check if this is a load/store of the entire alloca.
- if (Offset == 0 && AllowWholeAccess &&
- MemSize == DL.getTypeAllocSize(Info.AI->getAllocatedType())) {
- // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
- // loads/stores (which are essentially the same as the MemIntrinsics with
- // regard to copying padding between elements). But, if an alloca is
- // flagged as both a source and destination of such operations, we'll need
- // to check later for padding between elements.
- if (!MemOpType || MemOpType->isIntegerTy()) {
- if (isStore)
- Info.isMemCpyDst = true;
- else
- Info.isMemCpySrc = true;
- return;
- }
- // This is also safe for references using a type that is compatible with
- // the type of the alloca, so that loads/stores can be rewritten using
- // insertvalue/extractvalue.
- if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
- Info.hasSubelementAccess = true;
- return;
- }
- }
- // Check if the offset/size correspond to a component within the alloca type.
- Type *T = Info.AI->getAllocatedType();
- if (TypeHasComponent(T, Offset, MemSize, DL)) {
- Info.hasSubelementAccess = true;
- return;
- }
-
- return MarkUnsafe(Info, TheAccess);
-}
-
-/// TypeHasComponent - Return true if T has a component type with the
-/// specified offset and size. If Size is zero, do not check the size.
-bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size,
- const DataLayout &DL) {
- Type *EltTy;
- uint64_t EltSize;
- if (StructType *ST = dyn_cast<StructType>(T)) {
- const StructLayout *Layout = DL.getStructLayout(ST);
- unsigned EltIdx = Layout->getElementContainingOffset(Offset);
- EltTy = ST->getContainedType(EltIdx);
- EltSize = DL.getTypeAllocSize(EltTy);
- Offset -= Layout->getElementOffset(EltIdx);
- } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
- EltTy = AT->getElementType();
- EltSize = DL.getTypeAllocSize(EltTy);
- if (Offset >= AT->getNumElements() * EltSize)
- return false;
- Offset %= EltSize;
- } else if (VectorType *VT = dyn_cast<VectorType>(T)) {
- EltTy = VT->getElementType();
- EltSize = DL.getTypeAllocSize(EltTy);
- if (Offset >= VT->getNumElements() * EltSize)
- return false;
- Offset %= EltSize;
- } else {
- return false;
- }
- if (Offset == 0 && (Size == 0 || EltSize == Size))
- return true;
- // Check if the component spans multiple elements.
- if (Offset + Size > EltSize)
- return false;
- return TypeHasComponent(EltTy, Offset, Size, DL);
-}
-
-/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
-/// the instruction I, which references it, to use the separate elements.
-/// Offset indicates the position within AI that is referenced by this
-/// instruction.
-void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
- SmallVectorImpl<AllocaInst *> &NewElts) {
- const DataLayout &DL = I->getModule()->getDataLayout();
- for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
- Use &TheUse = *UI++;
- Instruction *User = cast<Instruction>(TheUse.getUser());
-
- if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
- RewriteBitCast(BC, AI, Offset, NewElts);
- continue;
- }
-
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
- RewriteGEP(GEPI, AI, Offset, NewElts);
- continue;
- }
-
- if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
- ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
- uint64_t MemSize = Length->getZExtValue();
- if (Offset == 0 && MemSize == DL.getTypeAllocSize(AI->getAllocatedType()))
- RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
- // Otherwise the intrinsic can only touch a single element and the
- // address operand will be updated, so nothing else needs to be done.
- continue;
- }
-
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
- if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
- II->getIntrinsicID() == Intrinsic::lifetime_end) {
- RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
- }
- continue;
- }
-
- if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
- Type *LIType = LI->getType();
-
- if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
- // Replace:
- // %res = load { i32, i32 }* %alloc
- // with:
- // %load.0 = load i32* %alloc.0
- // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
- // %load.1 = load i32* %alloc.1
- // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
- // (Also works for arrays instead of structs)
- Value *Insert = UndefValue::get(LIType);
- IRBuilder<> Builder(LI);
- for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
- Value *Load = Builder.CreateLoad(NewElts[i], "load");
- Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
- }
- LI->replaceAllUsesWith(Insert);
- DeadInsts.push_back(LI);
- } else if (LIType->isIntegerTy() &&
- DL.getTypeAllocSize(LIType) ==
- DL.getTypeAllocSize(AI->getAllocatedType())) {
- // If this is a load of the entire alloca to an integer, rewrite it.
- RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
- }
- continue;
- }
-
- if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
- Value *Val = SI->getOperand(0);
- Type *SIType = Val->getType();
- if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
- // Replace:
- // store { i32, i32 } %val, { i32, i32 }* %alloc
- // with:
- // %val.0 = extractvalue { i32, i32 } %val, 0
- // store i32 %val.0, i32* %alloc.0
- // %val.1 = extractvalue { i32, i32 } %val, 1
- // store i32 %val.1, i32* %alloc.1
- // (Also works for arrays instead of structs)
- IRBuilder<> Builder(SI);
- for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
- Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
- Builder.CreateStore(Extract, NewElts[i]);
- }
- DeadInsts.push_back(SI);
- } else if (SIType->isIntegerTy() &&
- DL.getTypeAllocSize(SIType) ==
- DL.getTypeAllocSize(AI->getAllocatedType())) {
- // If this is a store of the entire alloca from an integer, rewrite it.
- RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
- }
- continue;
- }
-
- if (isa<SelectInst>(User) || isa<PHINode>(User)) {
- // If we have a PHI user of the alloca itself (as opposed to a GEP or
- // bitcast) we have to rewrite it. GEP and bitcast uses will be RAUW'd to
- // the new pointer.
- if (!isa<AllocaInst>(I)) continue;
-
- assert(Offset == 0 && NewElts[0] &&
- "Direct alloca use should have a zero offset");
-
- // If we have a use of the alloca, we know the derived uses will be
- // utilizing just the first element of the scalarized result. Insert a
- // bitcast of the first alloca before the user as required.
- AllocaInst *NewAI = NewElts[0];
- BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
- NewAI->moveBefore(BCI);
- TheUse = BCI;
- continue;
- }
- }
-}
-
-/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
-/// and recursively continue updating all of its uses.
-void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
- SmallVectorImpl<AllocaInst *> &NewElts) {
- RewriteForScalarRepl(BC, AI, Offset, NewElts);
- if (BC->getOperand(0) != AI)
- return;
-
- // The bitcast references the original alloca. Replace its uses with
- // references to the alloca containing offset zero (which is normally at
- // index zero, but might not be in cases involving structs with elements
- // of size zero).
- Type *T = AI->getAllocatedType();
- uint64_t EltOffset = 0;
- Type *IdxTy;
- uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy,
- BC->getModule()->getDataLayout());
- Instruction *Val = NewElts[Idx];
- if (Val->getType() != BC->getDestTy()) {
- Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
- Val->takeName(BC);
- }
- BC->replaceAllUsesWith(Val);
- DeadInsts.push_back(BC);
-}
-
-/// FindElementAndOffset - Return the index of the element containing Offset
-/// within the specified type, which must be either a struct or an array.
-/// Sets T to the type of the element and Offset to the offset within that
-/// element. IdxTy is set to the type of the index result to be used in a
-/// GEP instruction.
-uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset, Type *&IdxTy,
- const DataLayout &DL) {
- uint64_t Idx = 0;
-
- if (StructType *ST = dyn_cast<StructType>(T)) {
- const StructLayout *Layout = DL.getStructLayout(ST);
- Idx = Layout->getElementContainingOffset(Offset);
- T = ST->getContainedType(Idx);
- Offset -= Layout->getElementOffset(Idx);
- IdxTy = Type::getInt32Ty(T->getContext());
- return Idx;
- } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
- T = AT->getElementType();
- uint64_t EltSize = DL.getTypeAllocSize(T);
- Idx = Offset / EltSize;
- Offset -= Idx * EltSize;
- IdxTy = Type::getInt64Ty(T->getContext());
- return Idx;
- }
- VectorType *VT = cast<VectorType>(T);
- T = VT->getElementType();
- uint64_t EltSize = DL.getTypeAllocSize(T);
- Idx = Offset / EltSize;
- Offset -= Idx * EltSize;
- IdxTy = Type::getInt64Ty(T->getContext());
- return Idx;
-}
-
-/// RewriteGEP - Check if this GEP instruction moves the pointer across
-/// elements of the alloca that are being split apart, and if so, rewrite
-/// the GEP to be relative to the new element.
-void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
- SmallVectorImpl<AllocaInst *> &NewElts) {
- uint64_t OldOffset = Offset;
- const DataLayout &DL = GEPI->getModule()->getDataLayout();
- SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
- // If the GEP was dynamic then it must have been a dynamic vector lookup.
- // In this case, it must be the last GEP operand which is dynamic so keep that
- // aside until we've found the constant GEP offset then add it back in at the
- // end.
- Value* NonConstantIdx = nullptr;
- if (!GEPI->hasAllConstantIndices())
- NonConstantIdx = Indices.pop_back_val();
- Offset += DL.getIndexedOffsetInType(GEPI->getSourceElementType(), Indices);
-
- RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
-
- Type *T = AI->getAllocatedType();
- Type *IdxTy;
- uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy, DL);
- if (GEPI->getOperand(0) == AI)
- OldIdx = ~0ULL; // Force the GEP to be rewritten.
-
- T = AI->getAllocatedType();
- uint64_t EltOffset = Offset;
- uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy, DL);
-
- // If this GEP does not move the pointer across elements of the alloca
- // being split, then it does not needs to be rewritten.
- if (Idx == OldIdx)
- return;
-
- Type *i32Ty = Type::getInt32Ty(AI->getContext());
- SmallVector<Value*, 8> NewArgs;
- NewArgs.push_back(Constant::getNullValue(i32Ty));
- while (EltOffset != 0) {
- uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy, DL);
- NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
- }
- if (NonConstantIdx) {
- Type* GepTy = T;
- // This GEP has a dynamic index. We need to add "i32 0" to index through
- // any structs or arrays in the original type until we get to the vector
- // to index.
- while (!isa<VectorType>(GepTy)) {
- NewArgs.push_back(Constant::getNullValue(i32Ty));
- GepTy = cast<CompositeType>(GepTy)->getTypeAtIndex(0U);
- }
- NewArgs.push_back(NonConstantIdx);
- }
- Instruction *Val = NewElts[Idx];
- if (NewArgs.size() > 1) {
- Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
- Val->takeName(GEPI);
- }
- if (Val->getType() != GEPI->getType())
- Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
- GEPI->replaceAllUsesWith(Val);
- DeadInsts.push_back(GEPI);
-}
-
-/// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
-/// to mark the lifetime of the scalarized memory.
-void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
- uint64_t Offset,
- SmallVectorImpl<AllocaInst *> &NewElts) {
- ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
- // Put matching lifetime markers on everything from Offset up to
- // Offset+OldSize.
- Type *AIType = AI->getAllocatedType();
- const DataLayout &DL = II->getModule()->getDataLayout();
- uint64_t NewOffset = Offset;
- Type *IdxTy;
- uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy, DL);
-
- IRBuilder<> Builder(II);
- uint64_t Size = OldSize->getLimitedValue();
-
- if (NewOffset) {
- // Splice the first element and index 'NewOffset' bytes in. SROA will
- // split the alloca again later.
- unsigned AS = AI->getType()->getAddressSpace();
- Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy(AS));
- V = Builder.CreateGEP(Builder.getInt8Ty(), V, Builder.getInt64(NewOffset));
-
- IdxTy = NewElts[Idx]->getAllocatedType();
- uint64_t EltSize = DL.getTypeAllocSize(IdxTy) - NewOffset;
- if (EltSize > Size) {
- EltSize = Size;
- Size = 0;
- } else {
- Size -= EltSize;
- }
- if (II->getIntrinsicID() == Intrinsic::lifetime_start)
- Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
- else
- Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
- ++Idx;
- }
-
- for (; Idx != NewElts.size() && Size; ++Idx) {
- IdxTy = NewElts[Idx]->getAllocatedType();
- uint64_t EltSize = DL.getTypeAllocSize(IdxTy);
- if (EltSize > Size) {
- EltSize = Size;
- Size = 0;
- } else {
- Size -= EltSize;
- }
- if (II->getIntrinsicID() == Intrinsic::lifetime_start)
- Builder.CreateLifetimeStart(NewElts[Idx],
- Builder.getInt64(EltSize));
- else
- Builder.CreateLifetimeEnd(NewElts[Idx],
- Builder.getInt64(EltSize));
- }
- DeadInsts.push_back(II);
-}
-
-/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
-/// Rewrite it to copy or set the elements of the scalarized memory.
-void
-SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
- AllocaInst *AI,
- SmallVectorImpl<AllocaInst *> &NewElts) {
- // If this is a memcpy/memmove, construct the other pointer as the
- // appropriate type. The "Other" pointer is the pointer that goes to memory
- // that doesn't have anything to do with the alloca that we are promoting. For
- // memset, this Value* stays null.
- Value *OtherPtr = nullptr;
- unsigned MemAlignment = MI->getAlignment();
- if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
- if (Inst == MTI->getRawDest())
- OtherPtr = MTI->getRawSource();
- else {
- assert(Inst == MTI->getRawSource());
- OtherPtr = MTI->getRawDest();
- }
- }
-
- // If there is an other pointer, we want to convert it to the same pointer
- // type as AI has, so we can GEP through it safely.
- if (OtherPtr) {
- unsigned AddrSpace =
- cast<PointerType>(OtherPtr->getType())->getAddressSpace();
-
- // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
- // optimization, but it's also required to detect the corner case where
- // both pointer operands are referencing the same memory, and where
- // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
- // function is only called for mem intrinsics that access the whole
- // aggregate, so non-zero GEPs are not an issue here.)
- OtherPtr = OtherPtr->stripPointerCasts();
-
- // Copying the alloca to itself is a no-op: just delete it.
- if (OtherPtr == AI || OtherPtr == NewElts[0]) {
- // This code will run twice for a no-op memcpy -- once for each operand.
- // Put only one reference to MI on the DeadInsts list.
- for (SmallVectorImpl<Value *>::const_iterator I = DeadInsts.begin(),
- E = DeadInsts.end(); I != E; ++I)
- if (*I == MI) return;
- DeadInsts.push_back(MI);
- return;
- }
-
- // If the pointer is not the right type, insert a bitcast to the right
- // type.
- Type *NewTy = PointerType::get(AI->getAllocatedType(), AddrSpace);
-
- if (OtherPtr->getType() != NewTy)
- OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
- }
-
- // Process each element of the aggregate.
- bool SROADest = MI->getRawDest() == Inst;
-
- Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
- const DataLayout &DL = MI->getModule()->getDataLayout();
-
- for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
- // If this is a memcpy/memmove, emit a GEP of the other element address.
- Value *OtherElt = nullptr;
- unsigned OtherEltAlign = MemAlignment;
-
- if (OtherPtr) {
- Value *Idx[2] = { Zero,
- ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
- OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
- OtherPtr->getName()+"."+Twine(i),
- MI);
- uint64_t EltOffset;
- Type *OtherTy = AI->getAllocatedType();
- if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
- EltOffset = DL.getStructLayout(ST)->getElementOffset(i);
- } else {
- Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
- EltOffset = DL.getTypeAllocSize(EltTy) * i;
- }
-
- // The alignment of the other pointer is the guaranteed alignment of the
- // element, which is affected by both the known alignment of the whole
- // mem intrinsic and the alignment of the element. If the alignment of
- // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
- // known alignment is just 4 bytes.
- OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
- }
-
- AllocaInst *EltPtr = NewElts[i];
- Type *EltTy = EltPtr->getAllocatedType();
-
- // If we got down to a scalar, insert a load or store as appropriate.
- if (EltTy->isSingleValueType()) {
- if (isa<MemTransferInst>(MI)) {
- if (SROADest) {
- // From Other to Alloca.
- Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
- new StoreInst(Elt, EltPtr, MI);
- } else {
- // From Alloca to Other.
- Value *Elt = new LoadInst(EltPtr, "tmp", MI);
- new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
- }
- continue;
- }
- assert(isa<MemSetInst>(MI));
-
- // If the stored element is zero (common case), just store a null
- // constant.
- Constant *StoreVal;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
- if (CI->isZero()) {
- StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
- } else {
- // If EltTy is a vector type, get the element type.
- Type *ValTy = EltTy->getScalarType();
-
- // Construct an integer with the right value.
- unsigned EltSize = DL.getTypeSizeInBits(ValTy);
- APInt OneVal(EltSize, CI->getZExtValue());
- APInt TotalVal(OneVal);
- // Set each byte.
- for (unsigned i = 0; 8*i < EltSize; ++i) {
- TotalVal = TotalVal.shl(8);
- TotalVal |= OneVal;
- }
-
- // Convert the integer value to the appropriate type.
- StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
- if (ValTy->isPointerTy())
- StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
- else if (ValTy->isFloatingPointTy())
- StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
- assert(StoreVal->getType() == ValTy && "Type mismatch!");
-
- // If the requested value was a vector constant, create it.
- if (EltTy->isVectorTy()) {
- unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
- StoreVal = ConstantVector::getSplat(NumElts, StoreVal);
- }
- }
- new StoreInst(StoreVal, EltPtr, MI);
- continue;
- }
- // Otherwise, if we're storing a byte variable, use a memset call for
- // this element.
- }
-
- unsigned EltSize = DL.getTypeAllocSize(EltTy);
- if (!EltSize)
- continue;
-
- IRBuilder<> Builder(MI);
-
- // Finally, insert the meminst for this element.
- if (isa<MemSetInst>(MI)) {
- Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
- MI->isVolatile());
- } else {
- assert(isa<MemTransferInst>(MI));
- Value *Dst = SROADest ? EltPtr : OtherElt; // Dest ptr
- Value *Src = SROADest ? OtherElt : EltPtr; // Src ptr
-
- if (isa<MemCpyInst>(MI))
- Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
- else
- Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
- }
- }
- DeadInsts.push_back(MI);
-}
-
-/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
-/// overwrites the entire allocation. Extract out the pieces of the stored
-/// integer and store them individually.
-void
-SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
- SmallVectorImpl<AllocaInst *> &NewElts) {
- // Extract each element out of the integer according to its structure offset
- // and store the element value to the individual alloca.
- Value *SrcVal = SI->getOperand(0);
- Type *AllocaEltTy = AI->getAllocatedType();
- const DataLayout &DL = SI->getModule()->getDataLayout();
- uint64_t AllocaSizeBits = DL.getTypeAllocSizeInBits(AllocaEltTy);
-
- IRBuilder<> Builder(SI);
-
- // Handle tail padding by extending the operand
- if (DL.getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
- SrcVal = Builder.CreateZExt(SrcVal,
- IntegerType::get(SI->getContext(), AllocaSizeBits));
-
- DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
- << '\n');
-
- // There are two forms here: AI could be an array or struct. Both cases
- // have different ways to compute the element offset.
- if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
- const StructLayout *Layout = DL.getStructLayout(EltSTy);
-
- for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
- // Get the number of bits to shift SrcVal to get the value.
- Type *FieldTy = EltSTy->getElementType(i);
- uint64_t Shift = Layout->getElementOffsetInBits(i);
-
- if (DL.isBigEndian())
- Shift = AllocaSizeBits - Shift - DL.getTypeAllocSizeInBits(FieldTy);
-
- Value *EltVal = SrcVal;
- if (Shift) {
- Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
- EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
- }
-
- // Truncate down to an integer of the right size.
- uint64_t FieldSizeBits = DL.getTypeSizeInBits(FieldTy);
-
- // Ignore zero sized fields like {}, they obviously contain no data.
- if (FieldSizeBits == 0) continue;
-
- if (FieldSizeBits != AllocaSizeBits)
- EltVal = Builder.CreateTrunc(EltVal,
- IntegerType::get(SI->getContext(), FieldSizeBits));
- Value *DestField = NewElts[i];
- if (EltVal->getType() == FieldTy) {
- // Storing to an integer field of this size, just do it.
- } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
- // Bitcast to the right element type (for fp/vector values).
- EltVal = Builder.CreateBitCast(EltVal, FieldTy);
- } else {
- // Otherwise, bitcast the dest pointer (for aggregates).
- DestField = Builder.CreateBitCast(DestField,
- PointerType::getUnqual(EltVal->getType()));
- }
- new StoreInst(EltVal, DestField, SI);
- }
-
- } else {
- ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
- Type *ArrayEltTy = ATy->getElementType();
- uint64_t ElementOffset = DL.getTypeAllocSizeInBits(ArrayEltTy);
- uint64_t ElementSizeBits = DL.getTypeSizeInBits(ArrayEltTy);
-
- uint64_t Shift;
-
- if (DL.isBigEndian())
- Shift = AllocaSizeBits-ElementOffset;
- else
- Shift = 0;
-
- for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
- // Ignore zero sized fields like {}, they obviously contain no data.
- if (ElementSizeBits == 0) continue;
-
- Value *EltVal = SrcVal;
- if (Shift) {
- Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
- EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
- }
-
- // Truncate down to an integer of the right size.
- if (ElementSizeBits != AllocaSizeBits)
- EltVal = Builder.CreateTrunc(EltVal,
- IntegerType::get(SI->getContext(),
- ElementSizeBits));
- Value *DestField = NewElts[i];
- if (EltVal->getType() == ArrayEltTy) {
- // Storing to an integer field of this size, just do it.
- } else if (ArrayEltTy->isFloatingPointTy() ||
- ArrayEltTy->isVectorTy()) {
- // Bitcast to the right element type (for fp/vector values).
- EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
- } else {
- // Otherwise, bitcast the dest pointer (for aggregates).
- DestField = Builder.CreateBitCast(DestField,
- PointerType::getUnqual(EltVal->getType()));
- }
- new StoreInst(EltVal, DestField, SI);
-
- if (DL.isBigEndian())
- Shift -= ElementOffset;
- else
- Shift += ElementOffset;
- }
- }
-
- DeadInsts.push_back(SI);
-}
-
-/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
-/// an integer. Load the individual pieces to form the aggregate value.
-void
-SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
- SmallVectorImpl<AllocaInst *> &NewElts) {
- // Extract each element out of the NewElts according to its structure offset
- // and form the result value.
- Type *AllocaEltTy = AI->getAllocatedType();
- const DataLayout &DL = LI->getModule()->getDataLayout();
- uint64_t AllocaSizeBits = DL.getTypeAllocSizeInBits(AllocaEltTy);
-
- DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
- << '\n');
-
- // There are two forms here: AI could be an array or struct. Both cases
- // have different ways to compute the element offset.
- const StructLayout *Layout = nullptr;
- uint64_t ArrayEltBitOffset = 0;
- if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
- Layout = DL.getStructLayout(EltSTy);
- } else {
- Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
- ArrayEltBitOffset = DL.getTypeAllocSizeInBits(ArrayEltTy);
- }
-
- Value *ResultVal =
- Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
-
- for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
- // Load the value from the alloca. If the NewElt is an aggregate, cast
- // the pointer to an integer of the same size before doing the load.
- Value *SrcField = NewElts[i];
- Type *FieldTy = NewElts[i]->getAllocatedType();
- uint64_t FieldSizeBits = DL.getTypeSizeInBits(FieldTy);
-
- // Ignore zero sized fields like {}, they obviously contain no data.
- if (FieldSizeBits == 0) continue;
-
- IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
- FieldSizeBits);
- if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
- !FieldTy->isVectorTy())
- SrcField = new BitCastInst(SrcField,
- PointerType::getUnqual(FieldIntTy),
- "", LI);
- SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
-
- // If SrcField is a fp or vector of the right size but that isn't an
- // integer type, bitcast to an integer so we can shift it.
- if (SrcField->getType() != FieldIntTy)
- SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
-
- // Zero extend the field to be the same size as the final alloca so that
- // we can shift and insert it.
- if (SrcField->getType() != ResultVal->getType())
- SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
-
- // Determine the number of bits to shift SrcField.
- uint64_t Shift;
- if (Layout) // Struct case.
- Shift = Layout->getElementOffsetInBits(i);
- else // Array case.
- Shift = i*ArrayEltBitOffset;
-
- if (DL.isBigEndian())
- Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
-
- if (Shift) {
- Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
- SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
- }
-
- // Don't create an 'or x, 0' on the first iteration.
- if (!isa<Constant>(ResultVal) ||
- !cast<Constant>(ResultVal)->isNullValue())
- ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
- else
- ResultVal = SrcField;
- }
-
- // Handle tail padding by truncating the result
- if (DL.getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
- ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
-
- LI->replaceAllUsesWith(ResultVal);
- DeadInsts.push_back(LI);
-}
-
-/// HasPadding - Return true if the specified type has any structure or
-/// alignment padding in between the elements that would be split apart
-/// by SROA; return false otherwise.
-static bool HasPadding(Type *Ty, const DataLayout &DL) {
- if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- Ty = ATy->getElementType();
- return DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty);
- }
-
- // SROA currently handles only Arrays and Structs.
- StructType *STy = cast<StructType>(Ty);
- const StructLayout *SL = DL.getStructLayout(STy);
- unsigned PrevFieldBitOffset = 0;
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
-
- // Check to see if there is any padding between this element and the
- // previous one.
- if (i) {
- unsigned PrevFieldEnd =
- PrevFieldBitOffset+DL.getTypeSizeInBits(STy->getElementType(i-1));
- if (PrevFieldEnd < FieldBitOffset)
- return true;
- }
- PrevFieldBitOffset = FieldBitOffset;
- }
- // Check for tail padding.
- if (unsigned EltCount = STy->getNumElements()) {
- unsigned PrevFieldEnd = PrevFieldBitOffset +
- DL.getTypeSizeInBits(STy->getElementType(EltCount-1));
- if (PrevFieldEnd < SL->getSizeInBits())
- return true;
- }
- return false;
-}
-
-/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
-/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
-/// or 1 if safe after canonicalization has been performed.
-bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
- // Loop over the use list of the alloca. We can only transform it if all of
- // the users are safe to transform.
- AllocaInfo Info(AI);
-
- isSafeForScalarRepl(AI, 0, Info);
- if (Info.isUnsafe) {
- DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
- return false;
- }
-
- const DataLayout &DL = AI->getModule()->getDataLayout();
-
- // Okay, we know all the users are promotable. If the aggregate is a memcpy
- // source and destination, we have to be careful. In particular, the memcpy
- // could be moving around elements that live in structure padding of the LLVM
- // types, but may actually be used. In these cases, we refuse to promote the
- // struct.
- if (Info.isMemCpySrc && Info.isMemCpyDst &&
- HasPadding(AI->getAllocatedType(), DL))
- return false;
-
- // If the alloca never has an access to just *part* of it, but is accessed
- // via loads and stores, then we should use ConvertToScalarInfo to promote
- // the alloca instead of promoting each piece at a time and inserting fission
- // and fusion code.
- if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
- // If the struct/array just has one element, use basic SRoA.
- if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
- if (ST->getNumElements() > 1) return false;
- } else {
- if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
- return false;
- }
- }
-
- return true;
-}
OpenPOWER on IntegriCloud