diff options
Diffstat (limited to 'llvm/lib')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/JumpThreading.cpp | 606 | 
1 files changed, 363 insertions, 243 deletions
diff --git a/llvm/lib/Transforms/Scalar/JumpThreading.cpp b/llvm/lib/Transforms/Scalar/JumpThreading.cpp index e623f917662..c0fd45da1f5 100644 --- a/llvm/lib/Transforms/Scalar/JumpThreading.cpp +++ b/llvm/lib/Transforms/Scalar/JumpThreading.cpp @@ -72,17 +72,23 @@ namespace {      void FindLoopHeaders(Function &F);      bool ProcessBlock(BasicBlock *BB); -    bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB); +    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, +                    BasicBlock *SuccBB);      bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,                                            BasicBlock *PredBB); - -    BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val); +     +    typedef SmallVectorImpl<std::pair<ConstantInt*, +                                      BasicBlock*> > PredValueInfo; +     +    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, +                                         PredValueInfo &Result); +    bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB); +     +          bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);      bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);      bool ProcessJumpOnPHI(PHINode *PN); -    bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd); -    bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);      bool SimplifyPartiallyRedundantLoad(LoadInst *LI);    }; @@ -198,28 +204,133 @@ void JumpThreading::FindLoopHeaders(Function &F) {      LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));  } -/// FactorCommonPHIPreds - If there are multiple preds with the same incoming -/// value for the PHI, factor them together so we get one block to thread for -/// the whole group. -/// This is important for things like "phi i1 [true, true, false, true, x]" -/// where we only need to clone the block for the true blocks once. +/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right +/// hand sides of the compare instruction, try to determine the result. If the +/// result can not be determined, a null pointer is returned. +static Constant *GetResultOfComparison(CmpInst::Predicate pred, +                                       Value *LHS, Value *RHS) { +  if (Constant *CLHS = dyn_cast<Constant>(LHS)) +    if (Constant *CRHS = dyn_cast<Constant>(RHS)) +      return ConstantExpr::getCompare(pred, CLHS, CRHS); +   +  if (LHS == RHS) +    if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType())) { +      if (ICmpInst::isTrueWhenEqual(pred)) +        return ConstantInt::getTrue(LHS->getContext()); +      else +        return ConstantInt::getFalse(LHS->getContext()); +    } +  return 0; +} + + +/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see +/// if we can infer that the value is a known ConstantInt in any of our +/// predecessors.  If so, return the known the list of value and pred BB in the +/// result vector.  If a value is known to be undef, it is returned as null. +/// +/// The BB basic block is known to start with a PHI node. +/// +/// This returns true if there were any known values.  /// -BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) { -  SmallVector<BasicBlock*, 16> CommonPreds; -  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) -    if (PN->getIncomingValue(i) == Val) -      CommonPreds.push_back(PN->getIncomingBlock(i)); -   -  if (CommonPreds.size() == 1) -    return CommonPreds[0]; +/// +/// TODO: Per PR2563, we could infer value range information about a predecessor +/// based on its terminator. +bool JumpThreading:: +ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ +  PHINode *TheFirstPHI = cast<PHINode>(BB->begin()); +   +  // If V is a constantint, then it is known in all predecessors. +  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) { +    ConstantInt *CI = dyn_cast<ConstantInt>(V); +    Result.resize(TheFirstPHI->getNumIncomingValues()); +    for (unsigned i = 0, e = Result.size(); i != e; ++i) +      Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i)); +    return true; +  } +   +  // If V is a non-instruction value, or an instruction in a different block, +  // then it can't be derived from a PHI. +  Instruction *I = dyn_cast<Instruction>(V); +  if (I == 0 || I->getParent() != BB) +    return false; +   +  /// If I is a PHI node, then we know the incoming values for any constants. +  if (PHINode *PN = dyn_cast<PHINode>(I)) { +    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { +      Value *InVal = PN->getIncomingValue(i); +      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) { +        ConstantInt *CI = dyn_cast<ConstantInt>(InVal); +        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); +      } +    } +    return !Result.empty(); +  } +   +  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals; + +  // Handle some boolean conditions. +  if (I->getType()->getPrimitiveSizeInBits() == 1) {  +    // X | true -> true +    // X & false -> false +    if (I->getOpcode() == Instruction::Or || +        I->getOpcode() == Instruction::And) { +      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); +      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); +       +      if (LHSVals.empty() && RHSVals.empty()) +        return false; +       +      ConstantInt *InterestingVal; +      if (I->getOpcode() == Instruction::Or) +        InterestingVal = ConstantInt::getTrue(I->getContext()); +      else +        InterestingVal = ConstantInt::getFalse(I->getContext()); +       +      // Scan for the sentinel. +      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) +        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) +          Result.push_back(LHSVals[i]); +      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) +        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) +          Result.push_back(RHSVals[i]); +      return !Result.empty(); +    } -  DEBUG(errs() << "  Factoring out " << CommonPreds.size() -        << " common predecessors.\n"); -  return SplitBlockPredecessors(PN->getParent(), -                                &CommonPreds[0], CommonPreds.size(), -                                ".thr_comm", this); -} +    // TODO: Should handle the NOT form of XOR. +     +  } +  // Handle compare with phi operand, where the PHI is defined in this block. +  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { +    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); +    if (PN && PN->getParent() == BB) { +      // We can do this simplification if any comparisons fold to true or false. +      // See if any do. +      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { +        BasicBlock *PredBB = PN->getIncomingBlock(i); +        Value *LHS = PN->getIncomingValue(i); +        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); +         +        Constant *Res = GetResultOfComparison(Cmp->getPredicate(), LHS, RHS); +        if (Res == 0) continue; +         +        if (isa<UndefValue>(Res)) +          Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); +        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res)) +          Result.push_back(std::make_pair(CI, PredBB)); +      } +       +      return !Result.empty(); +    } +     +    // TODO: We could also recurse to see if we can determine constants another +    // way. +  } +  return false; +} + +  /// GetBestDestForBranchOnUndef - If we determine that the specified block ends  /// in an undefined jump, decide which block is best to revector to. @@ -250,7 +361,7 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {    // successor, merge the blocks.  This encourages recursive jump threading    // because now the condition in this block can be threaded through    // predecessors of our predecessor block. -  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) +  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {      if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&          SinglePred != BB) {        // If SinglePred was a loop header, BB becomes one. @@ -266,10 +377,10 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {          BB->moveBefore(&BB->getParent()->getEntryBlock());        return true;      } -   -  // See if this block ends with a branch or switch.  If so, see if the -  // condition is a phi node.  If so, and if an entry of the phi node is a -  // constant, we can thread the block. +  } + +  // Look to see if the terminator is a branch of switch, if not we can't thread +  // it.    Value *Condition;    if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {      // Can't thread an unconditional jump. @@ -345,44 +456,26 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {      if (PN->getParent() == BB)        return ProcessJumpOnPHI(PN); -  // If this is a conditional branch whose condition is and/or of a phi, try to -  // simplify it. -  if ((CondInst->getOpcode() == Instruction::And ||  -       CondInst->getOpcode() == Instruction::Or) && -      isa<BranchInst>(BB->getTerminator()) && -      ProcessBranchOnLogical(CondInst, BB, -                             CondInst->getOpcode() == Instruction::And)) -    return true; -      if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { -    if (isa<PHINode>(CondCmp->getOperand(0))) { -      // If we have "br (phi != 42)" and the phi node has any constant values -      // as operands, we can thread through this block. -      //  -      // If we have "br (cmp phi, x)" and the phi node contains x such that the -      // comparison uniquely identifies the branch target, we can thread -      // through this block. - -      if (ProcessBranchOnCompare(CondCmp, BB)) -        return true;       -    } -     -    // If we have a comparison, loop over the predecessors to see if there is -    // a condition with the same value. -    pred_iterator PI = pred_begin(BB), E = pred_end(BB); -    for (; PI != E; ++PI) -      if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) -        if (PBI->isConditional() && *PI != BB) { -          if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { -            if (CI->getOperand(0) == CondCmp->getOperand(0) && -                CI->getOperand(1) == CondCmp->getOperand(1) && -                CI->getPredicate() == CondCmp->getPredicate()) { -              // TODO: Could handle things like (x != 4) --> (x == 17) -              if (ProcessBranchOnDuplicateCond(*PI, BB)) -                return true; +    if (!isa<PHINode>(CondCmp->getOperand(0)) || +        cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) { +      // If we have a comparison, loop over the predecessors to see if there is +      // a condition with a lexically identical value. +      pred_iterator PI = pred_begin(BB), E = pred_end(BB); +      for (; PI != E; ++PI) +        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) +          if (PBI->isConditional() && *PI != BB) { +            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) { +              if (CI->getOperand(0) == CondCmp->getOperand(0) && +                  CI->getOperand(1) == CondCmp->getOperand(1) && +                  CI->getPredicate() == CondCmp->getPredicate()) { +                // TODO: Could handle things like (x != 4) --> (x == 17) +                if (ProcessBranchOnDuplicateCond(*PI, BB)) +                  return true; +              }              }            } -        } +    }    }    // Check for some cases that are worth simplifying.  Right now we want to look @@ -401,6 +494,19 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {      if (SimplifyPartiallyRedundantLoad(LI))        return true; +   +  // Handle a variety of cases where we are branching on something derived from +  // a PHI node in the current block.  If we can prove that any predecessors +  // compute a predictable value based on a PHI node, thread those predecessors. +  // +  // We only bother doing this if the current block has a PHI node and if the +  // conditional instruction lives in the current block.  If either condition +  // fail, this won't be a computable value anyway. +  if (CondInst->getParent() == BB && isa<PHINode>(BB->front())) +    if (ProcessThreadableEdges(CondInst, BB)) +      return true; +   +      // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know    // "(X == 4)" thread through this block. @@ -458,8 +564,11 @@ bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,    // Next, figure out which successor we are threading to.    BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); +  SmallVector<BasicBlock*, 2> Preds; +  Preds.push_back(PredBB); +      // Ok, try to thread it! -  return ThreadEdge(BB, PredBB, SuccBB); +  return ThreadEdge(BB, Preds, SuccBB);  }  /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that @@ -689,55 +798,186 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {    return true;  } - -/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in -/// the current block.  See if there are any simplifications we can do based on -/// inputs to the phi node. -///  -bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { -  BasicBlock *BB = PN->getParent(); +/// FindMostPopularDest - The specified list contains multiple possible +/// threadable destinations.  Pick the one that occurs the most frequently in +/// the list. +static BasicBlock * +FindMostPopularDest(BasicBlock *BB, +                    const SmallVectorImpl<std::pair<BasicBlock*, +                                  BasicBlock*> > &PredToDestList) { +  assert(!PredToDestList.empty()); +   +  // Determine popularity.  If there are multiple possible destinations, we +  // explicitly choose to ignore 'undef' destinations.  We prefer to thread +  // blocks with known and real destinations to threading undef.  We'll handle +  // them later if interesting. +  DenseMap<BasicBlock*, unsigned> DestPopularity; +  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) +    if (PredToDestList[i].second) +      DestPopularity[PredToDestList[i].second]++; +   +  // Find the most popular dest. +  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); +  BasicBlock *MostPopularDest = DPI->first; +  unsigned Popularity = DPI->second; +  SmallVector<BasicBlock*, 4> SamePopularity; +   +  for (++DPI; DPI != DestPopularity.end(); ++DPI) { +    // If the popularity of this entry isn't higher than the popularity we've +    // seen so far, ignore it. +    if (DPI->second < Popularity) +      ; // ignore. +    else if (DPI->second == Popularity) { +      // If it is the same as what we've seen so far, keep track of it. +      SamePopularity.push_back(DPI->first); +    } else { +      // If it is more popular, remember it. +      SamePopularity.clear(); +      MostPopularDest = DPI->first; +      Popularity = DPI->second; +    }       +  } -  // See if the phi node has any constant integer or undef values.  If so, we -  // can determine where the corresponding predecessor will branch. -  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { -    Value *PredVal = PN->getIncomingValue(i); -     -    // Check to see if this input is a constant integer.  If so, the direction -    // of the branch is predictable. -    if (ConstantInt *CI = dyn_cast<ConstantInt>(PredVal)) { -      // Merge any common predecessors that will act the same. -      BasicBlock *PredBB = FactorCommonPHIPreds(PN, CI); +  // Okay, now we know the most popular destination.  If there is more than +  // destination, we need to determine one.  This is arbitrary, but we need +  // to make a deterministic decision.  Pick the first one that appears in the +  // successor list. +  if (!SamePopularity.empty()) { +    SamePopularity.push_back(MostPopularDest); +    TerminatorInst *TI = BB->getTerminator(); +    for (unsigned i = 0; ; ++i) { +      assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); -      BasicBlock *SuccBB; -      if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) -        SuccBB = BI->getSuccessor(CI->isZero()); -      else { -        SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); -        SuccBB = SI->getSuccessor(SI->findCaseValue(CI)); -      } +      if (std::find(SamePopularity.begin(), SamePopularity.end(), +                    TI->getSuccessor(i)) == SamePopularity.end()) +        continue; -      // Ok, try to thread it! -      return ThreadEdge(BB, PredBB, SuccBB); +      MostPopularDest = TI->getSuccessor(i); +      break; +    } +  } +   +  // Okay, we have finally picked the most popular destination. +  return MostPopularDest; +} + +bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst, +                                           BasicBlock *BB) { +  // If threading this would thread across a loop header, don't even try to +  // thread the edge. +  if (LoopHeaders.count(BB)) +    return false; +   +   +   +  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues; +  if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues)) +    return false; +  assert(!PredValues.empty() && +         "ComputeValueKnownInPredecessors returned true with no values"); + +  DEBUG(errs() << "IN BB: " << *BB; +        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { +          errs() << "  BB '" << BB->getName() << "': FOUND condition = "; +          if (PredValues[i].first) +            errs() << *PredValues[i].first; +          else +            errs() << "UNDEF"; +          errs() << " for pred '" << PredValues[i].second->getName() +          << "'.\n"; +        }); +   +  // Decide what we want to thread through.  Convert our list of known values to +  // a list of known destinations for each pred.  This also discards duplicate +  // predecessors and keeps track of the undefined inputs (which are represented +  // as a null dest in the PredToDestList. +  SmallPtrSet<BasicBlock*, 16> SeenPreds; +  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; +   +  BasicBlock *OnlyDest = 0; +  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; +   +  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { +    BasicBlock *Pred = PredValues[i].second; +    if (!SeenPreds.insert(Pred)) +      continue;  // Duplicate predecessor entry. +     +    // If the predecessor ends with an indirect goto, we can't change its +    // destination. +    if (isa<IndirectBrInst>(Pred->getTerminator())) +      continue; +     +    ConstantInt *Val = PredValues[i].first; +     +    BasicBlock *DestBB; +    if (Val == 0)      // Undef. +      DestBB = 0; +    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) +      DestBB = BI->getSuccessor(Val->isZero()); +    else { +      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator()); +      DestBB = SI->getSuccessor(SI->findCaseValue(Val));      } + +    // If we have exactly one destination, remember it for efficiency below. +    if (i == 0) +      OnlyDest = DestBB; +    else if (OnlyDest != DestBB) +      OnlyDest = MultipleDestSentinel; -    // If the input is an undef, then it doesn't matter which way it will go. -    // Pick an arbitrary dest and thread the edge. -    if (UndefValue *UV = dyn_cast<UndefValue>(PredVal)) { -      // Merge any common predecessors that will act the same. -      BasicBlock *PredBB = FactorCommonPHIPreds(PN, UV); -      BasicBlock *SuccBB = -        BB->getTerminator()->getSuccessor(GetBestDestForJumpOnUndef(BB)); +    PredToDestList.push_back(std::make_pair(Pred, DestBB)); +  } +   +  // If all edges were unthreadable, we fail. +  if (PredToDestList.empty()) +    return false; +   +  // Determine which is the most common successor.  If we have many inputs and +  // this block is a switch, we want to start by threading the batch that goes +  // to the most popular destination first.  If we only know about one +  // threadable destination (the common case) we can avoid this. +  BasicBlock *MostPopularDest = OnlyDest; +   +  if (MostPopularDest == MultipleDestSentinel) +    MostPopularDest = FindMostPopularDest(BB, PredToDestList); +   +  // Now that we know what the most popular destination is, factor all +  // predecessors that will jump to it into a single predecessor. +  SmallVector<BasicBlock*, 16> PredsToFactor; +  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) +    if (PredToDestList[i].second == MostPopularDest) { +      BasicBlock *Pred = PredToDestList[i].first; -      // Ok, try to thread it! -      return ThreadEdge(BB, PredBB, SuccBB); +      // This predecessor may be a switch or something else that has multiple +      // edges to the block.  Factor each of these edges by listing them +      // according to # occurrences in PredsToFactor. +      TerminatorInst *PredTI = Pred->getTerminator(); +      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) +        if (PredTI->getSuccessor(i) == BB) +          PredsToFactor.push_back(Pred);      } -  } + +  // If the threadable edges are branching on an undefined value, we get to pick +  // the destination that these predecessors should get to. +  if (MostPopularDest == 0) +    MostPopularDest = BB->getTerminator()-> +                            getSuccessor(GetBestDestForJumpOnUndef(BB)); +         +  // Ok, try to thread it! +  return ThreadEdge(BB, PredsToFactor, MostPopularDest); +} + +/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in +/// the current block.  See if there are any simplifications we can do based on +/// inputs to the phi node. +///  +bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { +  BasicBlock *BB = PN->getParent(); -  // If the incoming values are all variables, we don't know the destination of -  // any predecessors.  However, if any of the predecessor blocks end in an -  // unconditional branch, we can *duplicate* the jump into that block in order -  // to further encourage jump threading and to eliminate cases where we have -  // branch on a phi of an icmp (branch on icmp is much better). +  // If any of the predecessor blocks end in an unconditional branch, we can +  // *duplicate* the jump into that block in order to further encourage jump +  // threading and to eliminate cases where we have branch on a phi of an icmp +  // (branch on icmp is much better).    // We don't want to do this tranformation for switches, because we don't    // really want to duplicate a switch. @@ -758,137 +998,6 @@ bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {  } -/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch -/// whose condition is an AND/OR where one side is PN.  If PN has constant -/// operands that permit us to evaluate the condition for some operand, thread -/// through the block.  For example with: -///   br (and X, phi(Y, Z, false)) -/// the predecessor corresponding to the 'false' will always jump to the false -/// destination of the branch. -/// -bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB, -                                           bool isAnd) { -  // If this is a binary operator tree of the same AND/OR opcode, check the -  // LHS/RHS. -  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) -    if ((isAnd && BO->getOpcode() == Instruction::And) || -        (!isAnd && BO->getOpcode() == Instruction::Or)) { -      if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd)) -        return true; -      if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd)) -        return true; -    } -       -  // If this isn't a PHI node, we can't handle it. -  PHINode *PN = dyn_cast<PHINode>(V); -  if (!PN || PN->getParent() != BB) return false; -                                              -  // We can only do the simplification for phi nodes of 'false' with AND or -  // 'true' with OR.  See if we have any entries in the phi for this. -  unsigned PredNo = ~0U; -  ConstantInt *PredCst = ConstantInt::get(Type::getInt1Ty(BB->getContext()), -                                          !isAnd); -  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { -    if (PN->getIncomingValue(i) == PredCst) { -      PredNo = i; -      break; -    } -  } -   -  // If no match, bail out. -  if (PredNo == ~0U) -    return false; -   -  // If so, we can actually do this threading.  Merge any common predecessors -  // that will act the same. -  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst); -   -  // Next, figure out which successor we are threading to.  If this was an AND, -  // the constant must be FALSE, and we must be targeting the 'false' block. -  // If this is an OR, the constant must be TRUE, and we must be targeting the -  // 'true' block. -  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd); -   -  // Ok, try to thread it! -  return ThreadEdge(BB, PredBB, SuccBB); -} - -/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right -/// hand sides of the compare instruction, try to determine the result. If the -/// result can not be determined, a null pointer is returned. -static Constant *GetResultOfComparison(CmpInst::Predicate pred, -                                       Value *LHS, Value *RHS, -                                       LLVMContext &Context) { -  if (Constant *CLHS = dyn_cast<Constant>(LHS)) -    if (Constant *CRHS = dyn_cast<Constant>(RHS)) -      return ConstantExpr::getCompare(pred, CLHS, CRHS); - -  if (LHS == RHS) -    if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType())) -      return ICmpInst::isTrueWhenEqual(pred) ?  -                 ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context); - -  return 0; -} - -/// ProcessBranchOnCompare - We found a branch on a comparison between a phi -/// node and a value.  If we can identify when the comparison is true between -/// the phi inputs and the value, we can fold the compare for that edge and -/// thread through it. -bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) { -  PHINode *PN = cast<PHINode>(Cmp->getOperand(0)); -  Value *RHS = Cmp->getOperand(1); -   -  // If the phi isn't in the current block, an incoming edge to this block -  // doesn't control the destination. -  if (PN->getParent() != BB) -    return false; -   -  // We can do this simplification if any comparisons fold to true or false. -  // See if any do. -  Value *PredVal = 0; -  bool TrueDirection = false; -  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { -    PredVal = PN->getIncomingValue(i); -     -    Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal, -                                          RHS, Cmp->getContext()); -    if (!Res) { -      PredVal = 0; -      continue; -    } -     -    // If this folded to a constant expr, we can't do anything. -    if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) { -      TrueDirection = ResC->getZExtValue(); -      break; -    } -    // If this folded to undef, just go the false way. -    if (isa<UndefValue>(Res)) { -      TrueDirection = false; -      break; -    } -     -    // Otherwise, we can't fold this input. -    PredVal = 0; -  } -   -  // If no match, bail out. -  if (PredVal == 0) -    return false; -   -  // If so, we can actually do this threading.  Merge any common predecessors -  // that will act the same. -  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal); -   -  // Next, get our successor. -  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection); -   -  // Ok, try to thread it! -  return ThreadEdge(BB, PredBB, SuccBB); -} - -  /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new  /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for  /// NewPred using the entries from OldPred (suitably mapped). @@ -913,10 +1022,11 @@ static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,    }  } -/// ThreadEdge - We have decided that it is safe and profitable to thread an -/// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this -/// change. -bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,  +/// ThreadEdge - We have decided that it is safe and profitable to factor the +/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB +/// across BB.  Transform the IR to reflect this change. +bool JumpThreading::ThreadEdge(BasicBlock *BB,  +                               const SmallVectorImpl<BasicBlock*> &PredBBs,                                  BasicBlock *SuccBB) {    // If threading to the same block as we come from, we would infinite loop.    if (SuccBB == BB) { @@ -928,8 +1038,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,    // If threading this would thread across a loop header, don't thread the edge.    // See the comments above FindLoopHeaders for justifications and caveats.    if (LoopHeaders.count(BB)) { -    DEBUG(errs() << "  Not threading from '" << PredBB->getName() -          << "' across loop header BB '" << BB->getName() +    DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()            << "' to dest BB '" << SuccBB->getName()            << "' - it might create an irreducible loop!\n");      return false; @@ -942,6 +1051,17 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,      return false;    } +  // And finally, do it!  Start by factoring the predecessors is needed. +  BasicBlock *PredBB; +  if (PredBBs.size() == 1) +    PredBB = PredBBs[0]; +  else { +    DEBUG(errs() << "  Factoring out " << PredBBs.size() +          << " common predecessors.\n"); +    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), +                                    ".thr_comm", this); +  } +      // And finally, do it!    DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"          << SuccBB->getName() << "' with cost: " << JumpThreadCost  | 

