diff options
Diffstat (limited to 'llvm/lib')
-rw-r--r-- | llvm/lib/Passes/PassBuilder.cpp | 1 | ||||
-rw-r--r-- | llvm/lib/Transforms/Utils/CMakeLists.txt | 1 | ||||
-rw-r--r-- | llvm/lib/Transforms/Utils/PredicateInfo.cpp | 640 | ||||
-rw-r--r-- | llvm/lib/Transforms/Utils/Utils.cpp | 1 |
4 files changed, 643 insertions, 0 deletions
diff --git a/llvm/lib/Passes/PassBuilder.cpp b/llvm/lib/Passes/PassBuilder.cpp index efdb54adf03..6691a442e9b 100644 --- a/llvm/lib/Passes/PassBuilder.cpp +++ b/llvm/lib/Passes/PassBuilder.cpp @@ -136,6 +136,7 @@ #include "llvm/Transforms/Utils/Mem2Reg.h" #include "llvm/Transforms/Utils/MemorySSA.h" #include "llvm/Transforms/Utils/NameAnonGlobals.h" +#include "llvm/Transforms/Utils/PredicateInfo.h" #include "llvm/Transforms/Utils/SimplifyInstructions.h" #include "llvm/Transforms/Utils/SymbolRewriter.h" #include "llvm/Transforms/Vectorize/LoopVectorize.h" diff --git a/llvm/lib/Transforms/Utils/CMakeLists.txt b/llvm/lib/Transforms/Utils/CMakeLists.txt index f8a1b4d2f49..d0ceb61c986 100644 --- a/llvm/lib/Transforms/Utils/CMakeLists.txt +++ b/llvm/lib/Transforms/Utils/CMakeLists.txt @@ -38,6 +38,7 @@ add_llvm_library(LLVMTransformUtils MetaRenamer.cpp ModuleUtils.cpp NameAnonGlobals.cpp + PredicateInfo.cpp PromoteMemoryToRegister.cpp StripGCRelocates.cpp SSAUpdater.cpp diff --git a/llvm/lib/Transforms/Utils/PredicateInfo.cpp b/llvm/lib/Transforms/Utils/PredicateInfo.cpp new file mode 100644 index 00000000000..13537d2382e --- /dev/null +++ b/llvm/lib/Transforms/Utils/PredicateInfo.cpp @@ -0,0 +1,640 @@ +//===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------===// +// +// This file implements the PredicateInfo class. +// +//===----------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/PredicateInfo.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/OrderedBasicBlock.h" +#include "llvm/IR/AssemblyAnnotationWriter.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/FormattedStream.h" +#include "llvm/Transforms/Scalar.h" +#include <algorithm> +#define DEBUG_TYPE "predicateinfo" +using namespace llvm; +using namespace PatternMatch; +using namespace llvm::PredicateInfoClasses; + +INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", + "PredicateInfo Printer", false, false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", + "PredicateInfo Printer", false, false) +static cl::opt<bool> VerifyPredicateInfo( + "verify-predicateinfo", cl::init(false), cl::Hidden, + cl::desc("Verify PredicateInfo in legacy printer pass.")); +namespace llvm { +namespace PredicateInfoClasses { +enum LocalNum { + // Operations that must appear first in the block. + LN_First, + // Operations that are somewhere in the middle of the block, and are sorted on + // demand. + LN_Middle, + // Operations that must appear last in a block, like successor phi node uses. + LN_Last +}; + +// Associate global and local DFS info with defs and uses, so we can sort them +// into a global domination ordering. +struct ValueDFS { + int DFSIn = 0; + int DFSOut = 0; + unsigned int LocalNum = LN_Middle; + PredicateBase *PInfo = nullptr; + // Only one of Def or Use will be set. + Value *Def = nullptr; + Use *Use = nullptr; +}; + +// This compares ValueDFS structures, creating OrderedBasicBlocks where +// necessary to compare uses/defs in the same block. Doing so allows us to walk +// the minimum number of instructions necessary to compute our def/use ordering. +struct ValueDFS_Compare { + DenseMap<const BasicBlock *, std::unique_ptr<OrderedBasicBlock>> &OBBMap; + ValueDFS_Compare( + DenseMap<const BasicBlock *, std::unique_ptr<OrderedBasicBlock>> &OBBMap) + : OBBMap(OBBMap) {} + bool operator()(const ValueDFS &A, const ValueDFS &B) const { + if (&A == &B) + return false; + // The only case we can't directly compare them is when they in the same + // block, and both have localnum == middle. In that case, we have to use + // comesbefore to see what the real ordering is, because they are in the + // same basic block. + + bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut); + + if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) + return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.Use) < + std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.Use); + return localComesBefore(A, B); + } + + // Get the definition of an instruction that occurs in the middle of a block. + Value *getMiddleDef(const ValueDFS &VD) const { + if (VD.Def) + return VD.Def; + // It's possible for the defs and uses to be null. For branches, the local + // numbering will say the placed predicaeinfos should go first (IE + // LN_beginning), so we won't be in this function. For assumes, we will end + // up here, beause we need to order the def we will place relative to the + // assume. So for the purpose of ordering, we pretend the def is the assume + // because that is where we will insert the info. + if (!VD.Use) { + assert(VD.PInfo && + "No def, no use, and no predicateinfo should not occur"); + assert(isa<PredicateAssume>(VD.PInfo) && + "Middle of block should only occur for assumes"); + return cast<PredicateAssume>(VD.PInfo)->AssumeInst; + } + return nullptr; + } + + // Return either the Def, if it's not null, or the user of the Use, if the def + // is null. + const Instruction *getDefOrUser(const Value *Def, const Use *Use) const { + if (Def) + return cast<Instruction>(Def); + return cast<Instruction>(Use->getUser()); + } + + // This performs the necessary local basic block ordering checks to tell + // whether A comes before B, where both are in the same basic block. + bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { + auto *ADef = getMiddleDef(A); + auto *BDef = getMiddleDef(B); + + // See if we have real values or uses. If we have real values, we are + // guaranteed they are instructions or arguments. No matter what, we are + // guaranteed they are in the same block if they are instructions. + auto *ArgA = dyn_cast_or_null<Argument>(ADef); + auto *ArgB = dyn_cast_or_null<Argument>(BDef); + + if (ArgA && !ArgB) + return true; + if (ArgB && !ArgA) + return false; + if (ArgA && ArgB) + return ArgA->getArgNo() < ArgB->getArgNo(); + + auto *AInst = getDefOrUser(ADef, A.Use); + auto *BInst = getDefOrUser(BDef, B.Use); + + auto *BB = AInst->getParent(); + auto LookupResult = OBBMap.find(BB); + if (LookupResult != OBBMap.end()) + return LookupResult->second->dominates(AInst, BInst); + else { + auto Result = OBBMap.insert({BB, make_unique<OrderedBasicBlock>(BB)}); + return Result.first->second->dominates(AInst, BInst); + } + return std::tie(ADef, A.Use) < std::tie(BDef, B.Use); + } +}; + +} // namespace PredicateInfoClasses + +bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack, int DFSIn, + int DFSOut) const { + if (Stack.empty()) + return false; + return DFSIn >= Stack.back().DFSIn && DFSOut <= Stack.back().DFSOut; +} + +void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack, int DFSIn, + int DFSOut) { + while (!Stack.empty() && !stackIsInScope(Stack, DFSIn, DFSOut)) + Stack.pop_back(); +} + +// Convert the uses of Op into a vector of uses, associating global and local +// DFS info with each one. +void PredicateInfo::convertUsesToDFSOrdered( + Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { + for (auto &U : Op->uses()) { + if (auto *I = dyn_cast<Instruction>(U.getUser())) { + ValueDFS VD; + // Put the phi node uses in the incoming block. + BasicBlock *IBlock; + if (auto *PN = dyn_cast<PHINode>(I)) { + IBlock = PN->getIncomingBlock(U); + // Make phi node users appear last in the incoming block + // they are from. + VD.LocalNum = LN_Last; + } else { + // If it's not a phi node use, it is somewhere in the middle of the + // block. + IBlock = I->getParent(); + VD.LocalNum = LN_Middle; + } + DomTreeNode *DomNode = DT.getNode(IBlock); + // It's possible our use is in an unreachable block. Skip it if so. + if (!DomNode) + continue; + VD.DFSIn = DomNode->getDFSNumIn(); + VD.DFSOut = DomNode->getDFSNumOut(); + VD.Use = &U; + DFSOrderedSet.push_back(VD); + } + } +} + +// Collect relevant operations from Comparison that we may want to insert copies +// for. +void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { + auto *Op0 = Comparison->getOperand(0); + auto *Op1 = Comparison->getOperand(1); + if (Op0 == Op1) + return; + CmpOperands.push_back(Comparison); + // Only want real values, not constants. Additionally, operands with one use + // are only being used in the comparison, which means they will not be useful + // for us to consider for predicateinfo. + // + // FIXME: LLVM crashes trying to create an intrinsic declaration of some + // pointer to function types that return structs, so we avoid them. + if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse() && + !(Op0->getType()->isPointerTy() && + Op0->getType()->getPointerElementType()->isFunctionTy())) + CmpOperands.push_back(Op0); + if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse() && + !(Op1->getType()->isPointerTy() && + Op1->getType()->getPointerElementType()->isFunctionTy())) + CmpOperands.push_back(Op1); +} + +// Process an assume instruction and place relevant operations we want to rename +// into OpsToRename. +void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB, + SmallPtrSetImpl<Value *> &OpsToRename) { + SmallVector<Value *, 8> CmpOperands; + // Second, see if we have a comparison we support + SmallVector<Value *, 2> ComparisonsToProcess; + CmpInst::Predicate Pred; + Value *Operand = II->getOperand(0); + if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()), + m_Cmp(Pred, m_Value(), m_Value())) + .match(II->getOperand(0))) { + ComparisonsToProcess.push_back( + cast<BinaryOperator>(Operand)->getOperand(0)); + ComparisonsToProcess.push_back( + cast<BinaryOperator>(Operand)->getOperand(1)); + } else { + ComparisonsToProcess.push_back(Operand); + } + for (auto Comparison : ComparisonsToProcess) { + if (auto *Cmp = dyn_cast<CmpInst>(Comparison)) { + collectCmpOps(Cmp, CmpOperands); + // Now add our copy infos for our operands + for (auto *Op : CmpOperands) { + OpsToRename.insert(Op); + auto &OperandInfo = getOrCreateValueInfo(Op); + PredicateBase *PB = new PredicateAssume(Op, II, Cmp); + AllInfos.push_back(PB); + OperandInfo.Infos.push_back(PB); + } + CmpOperands.clear(); + } + } +} + +// Process a block terminating branch, and place relevant operations to be +// renamed into OpsToRename. +void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB, + SmallPtrSetImpl<Value *> &OpsToRename) { + SmallVector<Value *, 8> CmpOperands; + BasicBlock *FirstBB = BI->getSuccessor(0); + BasicBlock *SecondBB = BI->getSuccessor(1); + bool FirstSinglePred = FirstBB->getSinglePredecessor(); + bool SecondSinglePred = SecondBB->getSinglePredecessor(); + SmallVector<BasicBlock *, 2> SuccsToProcess; + bool isAnd = false; + bool isOr = false; + // First make sure we have single preds for these successors, as we can't + // usefully propagate true/false info to them if there are multiple paths to + // them. + if (FirstSinglePred) + SuccsToProcess.push_back(FirstBB); + if (SecondSinglePred) + SuccsToProcess.push_back(SecondBB); + if (SuccsToProcess.empty()) + return; + // Second, see if we have a comparison we support + SmallVector<Value *, 2> ComparisonsToProcess; + CmpInst::Predicate Pred; + + // Match combinations of conditions. + if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()), + m_Cmp(Pred, m_Value(), m_Value()))) || + match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()), + m_Cmp(Pred, m_Value(), m_Value())))) { + auto *BinOp = cast<BinaryOperator>(BI->getCondition()); + if (BinOp->getOpcode() == Instruction::And) + isAnd = true; + else if (BinOp->getOpcode() == Instruction::Or) + isOr = true; + ComparisonsToProcess.push_back(BinOp->getOperand(0)); + ComparisonsToProcess.push_back(BinOp->getOperand(1)); + } else { + ComparisonsToProcess.push_back(BI->getCondition()); + } + for (auto Comparison : ComparisonsToProcess) { + if (auto *Cmp = dyn_cast<CmpInst>(Comparison)) { + collectCmpOps(Cmp, CmpOperands); + // Now add our copy infos for our operands + for (auto *Op : CmpOperands) { + OpsToRename.insert(Op); + auto &OperandInfo = getOrCreateValueInfo(Op); + for (auto *Succ : SuccsToProcess) { + bool TakenEdge = (Succ == FirstBB); + // For and, only insert on the true edge + // For or, only insert on the false edge + if ((isAnd && !TakenEdge) || (isOr && TakenEdge)) + continue; + PredicateBase *PB = + new PredicateBranch(Op, BranchBB, Succ, Cmp, TakenEdge); + AllInfos.push_back(PB); + OperandInfo.Infos.push_back(PB); + } + } + CmpOperands.clear(); + } + } +} + +// Build predicate info for our function +void PredicateInfo::buildPredicateInfo() { + DT.updateDFSNumbers(); + // Collect operands to rename from all conditional branch terminators, as well + // as assume statements. + SmallPtrSet<Value *, 8> OpsToRename; + for (auto DTN : depth_first(DT.getRootNode())) { + BasicBlock *BranchBB = DTN->getBlock(); + if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { + if (!BI->isConditional()) + continue; + processBranch(BI, BranchBB, OpsToRename); + } + } + for (auto &Assume : AC.assumptions()) { + if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) + processAssume(II, II->getParent(), OpsToRename); + } + // Now rename all our operations. + renameUses(OpsToRename); +} +Value *PredicateInfo::materializeStack(unsigned int &Counter, + ValueDFSStack &RenameStack, + Value *OrigOp) { + // Find the first thing we have to materialize + auto RevIter = RenameStack.rbegin(); + for (; RevIter != RenameStack.rend(); ++RevIter) + if (RevIter->Def) + break; + + size_t Start = RevIter - RenameStack.rbegin(); + // The maximum number of things we should be trying to materialize at once + // right now is 4, depending on if we had an assume, a branch, and both used + // and of conditions. + for (auto RenameIter = RenameStack.end() - Start; + RenameIter != RenameStack.end(); ++RenameIter) { + auto *Op = + RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; + ValueDFS &Result = *RenameIter; + auto *ValInfo = Result.PInfo; + // For branches, we can just place the operand in the split block. For + // assume, we have to place it right before the assume to ensure we dominate + // all of our uses. + if (isa<PredicateBranch>(ValInfo)) { + auto *PBranch = cast<PredicateBranch>(ValInfo); + // It's possible we are trying to insert multiple predicateinfos in the + // same block at the beginning of the block. When we do this, we need to + // insert them one after the other, not one before the other. To see if we + // have already inserted predicateinfo into this block, we see if Op != + // OrigOp && Op->getParent() == PBranch->SplitBB. Op must be an + // instruction we inserted if it's not the original op. + BasicBlock::iterator InsertPt; + if (Op == OrigOp || + cast<Instruction>(Op)->getParent() != PBranch->SplitBB) { + InsertPt = PBranch->SplitBB->begin(); + // Insert after last phi node. + while (isa<PHINode>(InsertPt)) + ++InsertPt; + } else { + // Insert after op. + InsertPt = ++(cast<Instruction>(Op)->getIterator()); + } + IRBuilder<> B(PBranch->SplitBB, InsertPt); + Function *IF = Intrinsic::getDeclaration( + F.getParent(), Intrinsic::ssa_copy, Op->getType()); + Value *PIC = B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); + PredicateMap.insert({PIC, ValInfo}); + Result.Def = PIC; + } else { + auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); + assert(PAssume && + "Should not have gotten here without it being an assume"); + // Unlike above, this should already insert in the right order when we + // insert multiple predicateinfos in the same block. Because we are + // always inserting right before the assume (instead of the beginning of a + // block), newer insertions will end up after older ones. + IRBuilder<> B(PAssume->AssumeInst->getParent(), + PAssume->AssumeInst->getIterator()); + Function *IF = Intrinsic::getDeclaration( + F.getParent(), Intrinsic::ssa_copy, Op->getType()); + Value *PIC = B.CreateCall(IF, Op); + PredicateMap.insert({PIC, ValInfo}); + Result.Def = PIC; + } + } + return RenameStack.back().Def; +} + +// Instead of the standard SSA renaming algorithm, which is O(Number of +// instructions), and walks the entire dominator tree, we walk only the defs + +// uses. The standard SSA renaming algorithm does not really rely on the +// dominator tree except to order the stack push/pops of the renaming stacks, so +// that defs end up getting pushed before hitting the correct uses. This does +// not require the dominator tree, only the *order* of the dominator tree. The +// complete and correct ordering of the defs and uses, in dominator tree is +// contained in the DFS numbering of the dominator tree. So we sort the defs and +// uses into the DFS ordering, and then just use the renaming stack as per +// normal, pushing when we hit a def (which is a predicateinfo instruction), +// popping when we are out of the dfs scope for that def, and replacing any uses +// with top of stack if it exists. In order to handle liveness without +// propagating liveness info, we don't actually insert the predicateinfo +// instruction def until we see a use that it would dominate. Once we see such +// a use, we materialize the predicateinfo instruction in the right place and +// use it. +// +// TODO: Use this algorithm to perform fast single-variable renaming in +// promotememtoreg and memoryssa. +void PredicateInfo::renameUses(SmallPtrSetImpl<Value *> &OpsToRename) { + ValueDFS_Compare Compare(OBBMap); + // Compute liveness, and rename in O(uses) per Op. + for (auto *Op : OpsToRename) { + unsigned Counter = 0; + SmallVector<ValueDFS, 16> OrderedUses; + const auto &ValueInfo = getValueInfo(Op); + // Insert the possible copies into the def/use list. + // They will become real copies if we find a real use for them, and never + // created otherwise. + for (auto &PossibleCopy : ValueInfo.Infos) { + ValueDFS VD; + BasicBlock *CopyBB = nullptr; + // Determine where we are going to place the copy by the copy type. + // The predicate info for branches always come first, they will get + // materialized in the split block at the top of the block. + // The predicate info for assumes will be somewhere in the middle, + // it will get materialized in front of the assume. + if (const auto *PBranch = dyn_cast<PredicateBranch>(PossibleCopy)) { + CopyBB = PBranch->SplitBB; + VD.LocalNum = LN_First; + } else if (const auto *PAssume = + dyn_cast<PredicateAssume>(PossibleCopy)) { + CopyBB = PAssume->AssumeInst->getParent(); + VD.LocalNum = LN_Middle; + } else + llvm_unreachable("Unhandled predicate info type"); + DomTreeNode *DomNode = DT.getNode(CopyBB); + if (!DomNode) + continue; + VD.DFSIn = DomNode->getDFSNumIn(); + VD.DFSOut = DomNode->getDFSNumOut(); + VD.PInfo = PossibleCopy; + OrderedUses.push_back(VD); + } + + convertUsesToDFSOrdered(Op, OrderedUses); + std::sort(OrderedUses.begin(), OrderedUses.end(), Compare); + SmallVector<ValueDFS, 8> RenameStack; + // For each use, sorted into dfs order, push values and replaces uses with + // top of stack, which will represent the reaching def. + for (auto &VD : OrderedUses) { + // We currently do not materialize copy over copy, but we should decide if + // we want to. + bool PossibleCopy = VD.PInfo != nullptr; + if (RenameStack.empty()) { + DEBUG(dbgs() << "Rename Stack is empty\n"); + } else { + DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" + << RenameStack.back().DFSIn << "," + << RenameStack.back().DFSOut << ")\n"); + } + + DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," + << VD.DFSOut << ")\n"); + + bool ShouldPush = (VD.Def || PossibleCopy); + bool OutOfScope = !stackIsInScope(RenameStack, VD.DFSIn, VD.DFSOut); + if (OutOfScope || ShouldPush) { + // Sync to our current scope. + popStackUntilDFSScope(RenameStack, VD.DFSIn, VD.DFSOut); + ShouldPush |= (VD.Def || PossibleCopy); + if (ShouldPush) { + RenameStack.push_back(VD); + } + } + // If we get to this point, and the stack is empty we must have a use + // with no renaming needed, just skip it. + if (RenameStack.empty()) + continue; + // Skip values, only want to rename the uses + if (VD.Def || PossibleCopy) + continue; + ValueDFS &Result = RenameStack.back(); + + // If the possible copy dominates something, materialize our stack up to + // this point. This ensures every comparison that affects our operation + // ends up with predicateinfo. + if (!Result.Def) + Result.Def = materializeStack(Counter, RenameStack, Op); + + DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " + << *VD.Use->get() << " in " << *(VD.Use->getUser()) << "\n"); + assert(DT.dominates(cast<Instruction>(Result.Def), *VD.Use) && + "Predicateinfo def should have dominated this use"); + VD.Use->set(Result.Def); + } + } +} + +PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) { + auto OIN = ValueInfoNums.find(Operand); + if (OIN == ValueInfoNums.end()) { + // This will grow it + ValueInfos.resize(ValueInfos.size() + 1); + // This will use the new size and give us a 0 based number of the info + auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); + assert(InsertResult.second && "Value info number already existed?"); + return ValueInfos[InsertResult.first->second]; + } + return ValueInfos[OIN->second]; +} + +const PredicateInfo::ValueInfo & +PredicateInfo::getValueInfo(Value *Operand) const { + auto OINI = ValueInfoNums.lookup(Operand); + assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); + assert(OINI < ValueInfos.size() && + "Value Info Number greater than size of Value Info Table"); + return ValueInfos[OINI]; +} + +PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, + AssumptionCache &AC) + : F(F), DT(DT), AC(AC) { + // Push an empty operand info so that we can detect 0 as not finding one + ValueInfos.resize(1); + buildPredicateInfo(); +} + +PredicateInfo::~PredicateInfo() {} + +void PredicateInfo::verifyPredicateInfo() const {} + +char PredicateInfoPrinterLegacyPass::ID = 0; + +PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() + : FunctionPass(ID) { + initializePredicateInfoPrinterLegacyPassPass( + *PassRegistry::getPassRegistry()); +} + +void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequiredTransitive<DominatorTreeWrapperPass>(); + AU.addRequired<AssumptionCacheTracker>(); +} + +bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { + auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); + auto PredInfo = make_unique<PredicateInfo>(F, DT, AC); + PredInfo->print(dbgs()); + if (VerifyPredicateInfo) + PredInfo->verifyPredicateInfo(); + return false; +} + +PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, + FunctionAnalysisManager &AM) { + auto &DT = AM.getResult<DominatorTreeAnalysis>(F); + auto &AC = AM.getResult<AssumptionAnalysis>(F); + OS << "PredicateInfo for function: " << F.getName() << "\n"; + make_unique<PredicateInfo>(F, DT, AC)->print(OS); + + return PreservedAnalyses::all(); +} + +/// \brief An assembly annotator class to print PredicateInfo information in +/// comments. +class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { + friend class PredicateInfo; + const PredicateInfo *PredInfo; + +public: + PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} + + virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, + formatted_raw_ostream &OS) {} + + virtual void emitInstructionAnnot(const Instruction *I, + formatted_raw_ostream &OS) { + if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { + OS << "; Has predicate info\n"; + if (const auto *PB = dyn_cast<PredicateBranch>(PI)) + OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge + << " Comparison:" << *PB->Comparison << " }\n"; + else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) + OS << "; assume predicate info {" + << " Comparison:" << *PA->Comparison << " }\n"; + } + } +}; + +void PredicateInfo::print(raw_ostream &OS) const { + PredicateInfoAnnotatedWriter Writer(this); + F.print(OS, &Writer); +} + +void PredicateInfo::dump() const { + PredicateInfoAnnotatedWriter Writer(this); + F.print(dbgs(), &Writer); +} + +PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, + FunctionAnalysisManager &AM) { + auto &DT = AM.getResult<DominatorTreeAnalysis>(F); + auto &AC = AM.getResult<AssumptionAnalysis>(F); + make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); + + return PreservedAnalyses::all(); +} +} diff --git a/llvm/lib/Transforms/Utils/Utils.cpp b/llvm/lib/Transforms/Utils/Utils.cpp index 7b9de2eadc6..dd47c5532c5 100644 --- a/llvm/lib/Transforms/Utils/Utils.cpp +++ b/llvm/lib/Transforms/Utils/Utils.cpp @@ -38,6 +38,7 @@ void llvm::initializeTransformUtils(PassRegistry &Registry) { initializeMemorySSAWrapperPassPass(Registry); initializeMemorySSAPrinterLegacyPassPass(Registry); initializeStripGCRelocatesPass(Registry); + initializePredicateInfoPrinterLegacyPassPass(Registry); } /// LLVMInitializeTransformUtils - C binding for initializeTransformUtilsPasses. |