diff options
Diffstat (limited to 'llvm/lib')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/GCSE.cpp | 272 | 
1 files changed, 272 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/Scalar/GCSE.cpp b/llvm/lib/Transforms/Scalar/GCSE.cpp new file mode 100644 index 00000000000..d3f893f0220 --- /dev/null +++ b/llvm/lib/Transforms/Scalar/GCSE.cpp @@ -0,0 +1,272 @@ +//===-- GCSE.cpp - SSA based Global Common Subexpr Elimination ------------===// +// +// This pass is designed to be a very quick global transformation that +// eliminates global common subexpressions from a function.  It does this by +// examining the SSA value graph of the function, instead of doing slow, dense, +// bit-vector computations. +// +// This pass works best if it is proceeded with a simple constant propogation +// pass and an instruction combination pass because this pass does not do any +// value numbering (in order to be speedy). +// +// This pass does not attempt to CSE load instructions, because it does not use +// pointer analysis to determine when it is safe. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/GCSE.h" +#include "llvm/Pass.h" +#include "llvm/InstrTypes.h" +#include "llvm/iMemory.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Support/InstVisitor.h" +#include "llvm/Support/InstIterator.h" +#include <set> +#include <algorithm> +using namespace cfg; + +namespace { +  class GCSE : public FunctionPass, public InstVisitor<GCSE, bool> { +    set<Instruction*> WorkList; +    DominatorSet        *DomSetInfo; +    ImmediateDominators *ImmDominator; +  public: +    virtual bool runOnFunction(Function *F); + +    // Visitation methods, these are invoked depending on the type of +    // instruction being checked.  They should return true if a common +    // subexpression was folded. +    // +    bool visitUnaryOperator(Instruction *I); +    bool visitBinaryOperator(Instruction *I); +    bool visitGetElementPtrInst(GetElementPtrInst *I); +    bool visitCastInst(CastInst *I){return visitUnaryOperator((Instruction*)I);} +    bool visitShiftInst(ShiftInst *I) { +      return visitBinaryOperator((Instruction*)I); +    } +    bool visitInstruction(Instruction *) { return false; } + +  private: +    void ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI); +    void CommonSubExpressionFound(Instruction *I, Instruction *Other); + +    // This transformation requires dominator and immediate dominator info +    virtual void getAnalysisUsage(AnalysisUsage &AU) const { +      //preservesCFG(AU); +      AU.addRequired(DominatorSet::ID); +      AU.addRequired(ImmediateDominators::ID);  +    } +  }; +} + +// createGCSEPass - The public interface to this file... +Pass *createGCSEPass() { return new GCSE(); } + + +// GCSE::runOnFunction - This is the main transformation entry point for a +// function. +// +bool GCSE::runOnFunction(Function *F) { +  bool Changed = false; + +  DomSetInfo = &getAnalysis<DominatorSet>(); +  ImmDominator = &getAnalysis<ImmediateDominators>(); + +  // Step #1: Add all instructions in the function to the worklist for +  // processing.  All of the instructions are considered to be our +  // subexpressions to eliminate if possible. +  // +  WorkList.insert(inst_begin(F), inst_end(F)); + +  // Step #2: WorkList processing.  Iterate through all of the instructions, +  // checking to see if there are any additionally defined subexpressions in the +  // program.  If so, eliminate them! +  // +  while (!WorkList.empty()) { +    Instruction *I = *WorkList.begin();  // Get an instruction from the worklist +    WorkList.erase(WorkList.begin()); + +    // Visit the instruction, dispatching to the correct visit function based on +    // the instruction type.  This does the checking. +    // +    Changed |= visit(I); +  } +   +  // When the worklist is empty, return whether or not we changed anything... +  return Changed; +} + + +// ReplaceInstWithInst - Destroy the instruction pointed to by SI, making all +// uses of the instruction use First now instead. +// +void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) { +  Instruction *Second = *SI; + +  // Add the first instruction back to the worklist +  WorkList.insert(First); + +  // Add all uses of the second instruction to the worklist +  for (Value::use_iterator UI = Second->use_begin(), UE = Second->use_end(); +       UI != UE; ++UI) +    WorkList.insert(cast<Instruction>(*UI)); +     +  // Make all users of 'Second' now use 'First' +  Second->replaceAllUsesWith(First); + +  // Erase the second instruction from the program +  delete Second->getParent()->getInstList().remove(SI); +} + +// CommonSubExpressionFound - The two instruction I & Other have been found to +// be common subexpressions.  This function is responsible for eliminating one +// of them, and for fixing the worklist to be correct. +// +void GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) { +  // I has already been removed from the worklist, Other needs to be. +  assert(WorkList.count(I) == 0 && WorkList.count(Other) && +         "I in worklist or Other not!"); +  WorkList.erase(Other); + +  // Handle the easy case, where both instructions are in the same basic block +  BasicBlock *BB1 = I->getParent(), *BB2 = Other->getParent(); +  if (BB1 == BB2) { +    // Eliminate the second occuring instruction.  Add all uses of the second +    // instruction to the worklist. +    // +    // Scan the basic block looking for the "first" instruction +    BasicBlock::iterator BI = BB1->begin(); +    while (*BI != I && *BI != Other) { +      ++BI; +      assert(BI != BB1->end() && "Instructions not found in parent BB!"); +    } + +    // Keep track of which instructions occurred first & second +    Instruction *First = *BI; +    Instruction *Second = I != First ? I : Other; // Get iterator to second inst +    BI = find(BI, BB1->end(), Second); +    assert(BI != BB1->end() && "Second instruction not found in parent block!"); + +    // Destroy Second, using First instead. +    ReplaceInstWithInst(First, BI);     + +    // Otherwise, the two instructions are in different basic blocks.  If one +    // dominates the other instruction, we can simply use it +    // +  } else if (DomSetInfo->dominates(BB1, BB2)) {    // I dom Other? +    BasicBlock::iterator BI = find(BB2->begin(), BB2->end(), Other); +    assert(BI != BB2->end() && "Other not in parent basic block!"); +    ReplaceInstWithInst(I, BI);     +  } else if (DomSetInfo->dominates(BB2, BB1)) {    // Other dom I? +    BasicBlock::iterator BI = find(BB1->begin(), BB1->end(), I); +    assert(BI != BB1->end() && "I not in parent basic block!"); +    ReplaceInstWithInst(Other, BI); +  } else { +    // Handle the most general case now.  In this case, neither I dom Other nor +    // Other dom I.  Because we are in SSA form, we are guaranteed that the +    // operands of the two instructions both dominate the uses, so we _know_ +    // that there must exist a block that dominates both instructions (if the +    // operands of the instructions are globals or constants, worst case we +    // would get the entry node of the function).  Search for this block now. +    // + +    // Search up the immediate dominator chain of BB1 for the shared dominator +    BasicBlock *SharedDom = (*ImmDominator)[BB1]; +    while (!DomSetInfo->dominates(SharedDom, BB2)) +      SharedDom = (*ImmDominator)[SharedDom]; + +    // At this point, shared dom must dominate BOTH BB1 and BB2... +    assert(SharedDom && DomSetInfo->dominates(SharedDom, BB1) && +           DomSetInfo->dominates(SharedDom, BB2) && "Dominators broken!"); + +    // Rip 'I' out of BB1, and move it to the end of SharedDom. +    BB1->getInstList().remove(I); +    SharedDom->getInstList().insert(SharedDom->end()-1, I); + +    // Eliminate 'Other' now. +    BasicBlock::iterator BI = find(BB2->begin(), BB2->end(), Other); +    assert(BI != BB2->end() && "I not in parent basic block!"); +    ReplaceInstWithInst(I, BI); +  } +} + +//===----------------------------------------------------------------------===// +// +// Visitation methods, these are invoked depending on the type of instruction +// being checked.  They should return true if a common subexpression was folded. +// +//===----------------------------------------------------------------------===// + +bool GCSE::visitUnaryOperator(Instruction *I) { +  Value *Op = I->getOperand(0); +  Function *F = I->getParent()->getParent(); +   +  for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end(); +       UI != UE; ++UI) +    if (Instruction *Other = dyn_cast<Instruction>(*UI)) +      // Check to see if this new binary operator is not I, but same operand... +      if (Other != I && Other->getOpcode() == I->getOpcode() && +          Other->getOperand(0) == Op &&     // Is the operand the same? +          // Is it embeded in the same function?  (This could be false if LHS +          // is a constant or global!) +          Other->getParent()->getParent() == F && + +          // Check that the types are the same, since this code handles casts... +          Other->getType() == I->getType()) { +         +        // These instructions are identical.  Handle the situation. +        CommonSubExpressionFound(I, Other); +        return true;   // One instruction eliminated! +      } +   +  return false; +} + +bool GCSE::visitBinaryOperator(Instruction *I) { +  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); +  Function *F = I->getParent()->getParent(); +   +  for (Value::use_iterator UI = LHS->use_begin(), UE = LHS->use_end(); +       UI != UE; ++UI) +    if (Instruction *Other = dyn_cast<Instruction>(*UI)) +      // Check to see if this new binary operator is not I, but same operand... +      if (Other != I && Other->getOpcode() == I->getOpcode() && +          // Are the LHS and RHS the same? +          Other->getOperand(0) == LHS && Other->getOperand(1) == RHS && +          // Is it embeded in the same function?  (This could be false if LHS +          // is a constant or global!) +          Other->getParent()->getParent() == F) { +         +        // These instructions are identical.  Handle the situation. +        CommonSubExpressionFound(I, Other); +        return true;   // One instruction eliminated! +      } +   +  return false; +} + +bool GCSE::visitGetElementPtrInst(GetElementPtrInst *I) { +  Value *Op = I->getOperand(0); +  Function *F = I->getParent()->getParent(); +   +  for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end(); +       UI != UE; ++UI) +    if (GetElementPtrInst *Other = dyn_cast<GetElementPtrInst>(*UI)) +      // Check to see if this new binary operator is not I, but same operand... +      if (Other != I && Other->getParent()->getParent() == F && +          Other->getType() == I->getType()) { + +        // Check to see that all operators past the 0th are the same... +        unsigned i = 1, e = I->getNumOperands(); +        for (; i != e; ++i) +          if (I->getOperand(i) != Other->getOperand(i)) break; +         +        if (i == e) { +          // These instructions are identical.  Handle the situation. +          CommonSubExpressionFound(I, Other); +          return true;   // One instruction eliminated! +        } +      } +   +  return false; +} | 

