summaryrefslogtreecommitdiffstats
path: root/llvm/lib/VMCore/ConstantRange.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/VMCore/ConstantRange.cpp')
-rw-r--r--llvm/lib/VMCore/ConstantRange.cpp332
1 files changed, 332 insertions, 0 deletions
diff --git a/llvm/lib/VMCore/ConstantRange.cpp b/llvm/lib/VMCore/ConstantRange.cpp
new file mode 100644
index 00000000000..3b91c5bc7a0
--- /dev/null
+++ b/llvm/lib/VMCore/ConstantRange.cpp
@@ -0,0 +1,332 @@
+//===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Represent a range of possible values that may occur when the program is run
+// for an integral value. This keeps track of a lower and upper bound for the
+// constant, which MAY wrap around the end of the numeric range. To do this, it
+// keeps track of a [lower, upper) bound, which specifies an interval just like
+// STL iterators. When used with boolean values, the following are important
+// ranges (other integral ranges use min/max values for special range values):
+//
+// [F, F) = {} = Empty set
+// [T, F) = {T}
+// [F, T) = {F}
+// [T, T) = {F, T} = Full set
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/ConstantRange.h"
+#include "llvm/Constants.h"
+#include "llvm/Instruction.h"
+#include "llvm/Type.h"
+#include <iostream>
+
+using namespace llvm;
+
+static ConstantIntegral *Next(ConstantIntegral *CI) {
+ if (CI->getType() == Type::BoolTy)
+ return CI == ConstantBool::True ? ConstantBool::False : ConstantBool::True;
+
+ Constant *Result = ConstantExpr::getAdd(CI,
+ ConstantInt::get(CI->getType(), 1));
+ return cast<ConstantIntegral>(Result);
+}
+
+static bool LT(ConstantIntegral *A, ConstantIntegral *B) {
+ Constant *C = ConstantExpr::getSetLT(A, B);
+ assert(isa<ConstantBool>(C) && "Constant folding of integrals not impl??");
+ return cast<ConstantBool>(C)->getValue();
+}
+
+static bool LTE(ConstantIntegral *A, ConstantIntegral *B) {
+ Constant *C = ConstantExpr::getSetLE(A, B);
+ assert(isa<ConstantBool>(C) && "Constant folding of integrals not impl??");
+ return cast<ConstantBool>(C)->getValue();
+}
+
+static bool GT(ConstantIntegral *A, ConstantIntegral *B) { return LT(B, A); }
+
+static ConstantIntegral *Min(ConstantIntegral *A, ConstantIntegral *B) {
+ return LT(A, B) ? A : B;
+}
+static ConstantIntegral *Max(ConstantIntegral *A, ConstantIntegral *B) {
+ return GT(A, B) ? A : B;
+}
+
+/// Initialize a full (the default) or empty set for the specified type.
+///
+ConstantRange::ConstantRange(const Type *Ty, bool Full) {
+ assert(Ty->isIntegral() &&
+ "Cannot make constant range of non-integral type!");
+ if (Full)
+ Lower = Upper = ConstantIntegral::getMaxValue(Ty);
+ else
+ Lower = Upper = ConstantIntegral::getMinValue(Ty);
+}
+
+/// Initialize a range to hold the single specified value.
+///
+ConstantRange::ConstantRange(Constant *V)
+ : Lower(cast<ConstantIntegral>(V)), Upper(Next(cast<ConstantIntegral>(V))) {
+}
+
+/// Initialize a range of values explicitly... this will assert out if
+/// Lower==Upper and Lower != Min or Max for its type (or if the two constants
+/// have different types)
+///
+ConstantRange::ConstantRange(Constant *L, Constant *U)
+ : Lower(cast<ConstantIntegral>(L)), Upper(cast<ConstantIntegral>(U)) {
+ assert(Lower->getType() == Upper->getType() &&
+ "Incompatible types for ConstantRange!");
+
+ // Make sure that if L & U are equal that they are either Min or Max...
+ assert((L != U || (L == ConstantIntegral::getMaxValue(L->getType()) ||
+ L == ConstantIntegral::getMinValue(L->getType()))) &&
+ "Lower == Upper, but they aren't min or max for type!");
+}
+
+/// Initialize a set of values that all satisfy the condition with C.
+///
+ConstantRange::ConstantRange(unsigned SetCCOpcode, ConstantIntegral *C) {
+ switch (SetCCOpcode) {
+ default: assert(0 && "Invalid SetCC opcode to ConstantRange ctor!");
+ case Instruction::SetEQ: Lower = C; Upper = Next(C); return;
+ case Instruction::SetNE: Upper = C; Lower = Next(C); return;
+ case Instruction::SetLT:
+ Lower = ConstantIntegral::getMinValue(C->getType());
+ Upper = C;
+ return;
+ case Instruction::SetGT:
+ Lower = Next(C);
+ Upper = ConstantIntegral::getMinValue(C->getType()); // Min = Next(Max)
+ return;
+ case Instruction::SetLE:
+ Lower = ConstantIntegral::getMinValue(C->getType());
+ Upper = Next(C);
+ return;
+ case Instruction::SetGE:
+ Lower = C;
+ Upper = ConstantIntegral::getMinValue(C->getType()); // Min = Next(Max)
+ return;
+ }
+}
+
+/// getType - Return the LLVM data type of this range.
+///
+const Type *ConstantRange::getType() const { return Lower->getType(); }
+
+/// isFullSet - Return true if this set contains all of the elements possible
+/// for this data-type
+bool ConstantRange::isFullSet() const {
+ return Lower == Upper && Lower == ConstantIntegral::getMaxValue(getType());
+}
+
+/// isEmptySet - Return true if this set contains no members.
+///
+bool ConstantRange::isEmptySet() const {
+ return Lower == Upper && Lower == ConstantIntegral::getMinValue(getType());
+}
+
+/// isWrappedSet - Return true if this set wraps around the top of the range,
+/// for example: [100, 8)
+///
+bool ConstantRange::isWrappedSet() const {
+ return GT(Lower, Upper);
+}
+
+
+/// getSingleElement - If this set contains a single element, return it,
+/// otherwise return null.
+ConstantIntegral *ConstantRange::getSingleElement() const {
+ if (Upper == Next(Lower)) // Is it a single element range?
+ return Lower;
+ return 0;
+}
+
+/// getSetSize - Return the number of elements in this set.
+///
+uint64_t ConstantRange::getSetSize() const {
+ if (isEmptySet()) return 0;
+ if (getType() == Type::BoolTy) {
+ if (Lower != Upper) // One of T or F in the set...
+ return 1;
+ return 2; // Must be full set...
+ }
+
+ // Simply subtract the bounds...
+ Constant *Result = ConstantExpr::getSub(Upper, Lower);
+ return cast<ConstantInt>(Result)->getRawValue();
+}
+
+/// contains - Return true if the specified value is in the set.
+///
+bool ConstantRange::contains(ConstantInt *Val) const {
+ if (Lower == Upper) {
+ if (isFullSet()) return true;
+ return false;
+ }
+
+ if (!isWrappedSet())
+ return LTE(Lower, Val) && LT(Val, Upper);
+ return LTE(Lower, Val) || LT(Val, Upper);
+}
+
+
+
+/// subtract - Subtract the specified constant from the endpoints of this
+/// constant range.
+ConstantRange ConstantRange::subtract(ConstantInt *CI) const {
+ assert(CI->getType() == getType() && getType()->isInteger() &&
+ "Cannot subtract from different type range or non-integer!");
+ // If the set is empty or full, don't modify the endpoints.
+ if (Lower == Upper) return *this;
+ return ConstantRange(ConstantExpr::getSub(Lower, CI),
+ ConstantExpr::getSub(Upper, CI));
+}
+
+
+// intersect1Wrapped - This helper function is used to intersect two ranges when
+// it is known that LHS is wrapped and RHS isn't.
+//
+static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
+ const ConstantRange &RHS) {
+ assert(LHS.isWrappedSet() && !RHS.isWrappedSet());
+
+ // Check to see if we overlap on the Left side of RHS...
+ //
+ if (LT(RHS.getLower(), LHS.getUpper())) {
+ // We do overlap on the left side of RHS, see if we overlap on the right of
+ // RHS...
+ if (GT(RHS.getUpper(), LHS.getLower())) {
+ // Ok, the result overlaps on both the left and right sides. See if the
+ // resultant interval will be smaller if we wrap or not...
+ //
+ if (LHS.getSetSize() < RHS.getSetSize())
+ return LHS;
+ else
+ return RHS;
+
+ } else {
+ // No overlap on the right, just on the left.
+ return ConstantRange(RHS.getLower(), LHS.getUpper());
+ }
+
+ } else {
+ // We don't overlap on the left side of RHS, see if we overlap on the right
+ // of RHS...
+ if (GT(RHS.getUpper(), LHS.getLower())) {
+ // Simple overlap...
+ return ConstantRange(LHS.getLower(), RHS.getUpper());
+ } else {
+ // No overlap...
+ return ConstantRange(LHS.getType(), false);
+ }
+ }
+}
+
+/// intersect - Return the range that results from the intersection of this
+/// range with another range.
+///
+ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
+ assert(getType() == CR.getType() && "ConstantRange types don't agree!");
+ // Handle common special cases
+ if (isEmptySet() || CR.isFullSet()) return *this;
+ if (isFullSet() || CR.isEmptySet()) return CR;
+
+ if (!isWrappedSet()) {
+ if (!CR.isWrappedSet()) {
+ ConstantIntegral *L = Max(Lower, CR.Lower);
+ ConstantIntegral *U = Min(Upper, CR.Upper);
+
+ if (LT(L, U)) // If range isn't empty...
+ return ConstantRange(L, U);
+ else
+ return ConstantRange(getType(), false); // Otherwise, return empty set
+ } else
+ return intersect1Wrapped(CR, *this);
+ } else { // We know "this" is wrapped...
+ if (!CR.isWrappedSet())
+ return intersect1Wrapped(*this, CR);
+ else {
+ // Both ranges are wrapped...
+ ConstantIntegral *L = Max(Lower, CR.Lower);
+ ConstantIntegral *U = Min(Upper, CR.Upper);
+ return ConstantRange(L, U);
+ }
+ }
+ return *this;
+}
+
+/// union - Return the range that results from the union of this range with
+/// another range. The resultant range is guaranteed to include the elements of
+/// both sets, but may contain more. For example, [3, 9) union [12,15) is [3,
+/// 15), which includes 9, 10, and 11, which were not included in either set
+/// before.
+///
+ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
+ assert(getType() == CR.getType() && "ConstantRange types don't agree!");
+
+ assert(0 && "Range union not implemented yet!");
+
+ return *this;
+}
+
+/// zeroExtend - Return a new range in the specified integer type, which must
+/// be strictly larger than the current type. The returned range will
+/// correspond to the possible range of values if the source range had been
+/// zero extended.
+ConstantRange ConstantRange::zeroExtend(const Type *Ty) const {
+ assert(getLower()->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
+ "Not a value extension");
+ if (isFullSet()) {
+ // Change a source full set into [0, 1 << 8*numbytes)
+ unsigned SrcTySize = getLower()->getType()->getPrimitiveSize();
+ return ConstantRange(Constant::getNullValue(Ty),
+ ConstantUInt::get(Ty, 1ULL << SrcTySize*8));
+ }
+
+ Constant *Lower = getLower();
+ Constant *Upper = getUpper();
+ if (Lower->getType()->isInteger() && !Lower->getType()->isUnsigned()) {
+ // Ensure we are doing a ZERO extension even if the input range is signed.
+ Lower = ConstantExpr::getCast(Lower, Ty->getUnsignedVersion());
+ Upper = ConstantExpr::getCast(Upper, Ty->getUnsignedVersion());
+ }
+
+ return ConstantRange(ConstantExpr::getCast(Lower, Ty),
+ ConstantExpr::getCast(Upper, Ty));
+}
+
+/// truncate - Return a new range in the specified integer type, which must be
+/// strictly smaller than the current type. The returned range will
+/// correspond to the possible range of values if the source range had been
+/// truncated to the specified type.
+ConstantRange ConstantRange::truncate(const Type *Ty) const {
+ assert(getLower()->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
+ "Not a value truncation");
+ uint64_t Size = 1ULL << Ty->getPrimitiveSize()*8;
+ if (isFullSet() || getSetSize() >= Size)
+ return ConstantRange(getType());
+
+ return ConstantRange(ConstantExpr::getCast(getLower(), Ty),
+ ConstantExpr::getCast(getUpper(), Ty));
+}
+
+
+/// print - Print out the bounds to a stream...
+///
+void ConstantRange::print(std::ostream &OS) const {
+ OS << "[" << *Lower << "," << *Upper << " )";
+}
+
+/// dump - Allow printing from a debugger easily...
+///
+void ConstantRange::dump() const {
+ print(std::cerr);
+}
OpenPOWER on IntegriCloud