diff options
Diffstat (limited to 'llvm/lib/Transforms')
-rw-r--r-- | llvm/lib/Transforms/IPO/ArgumentPromotion.cpp | 2 | ||||
-rw-r--r-- | llvm/lib/Transforms/IPO/PassManagerBuilder.cpp | 19 | ||||
-rw-r--r-- | llvm/lib/Transforms/Scalar/CMakeLists.txt | 1 | ||||
-rw-r--r-- | llvm/lib/Transforms/Scalar/Scalar.cpp | 8 | ||||
-rw-r--r-- | llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp | 2618 |
5 files changed, 7 insertions, 2641 deletions
diff --git a/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp b/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp index a808df2af76..1599ddd2ad5 100644 --- a/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp +++ b/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp @@ -307,7 +307,7 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) { } // Safe to transform, don't even bother trying to "promote" it. - // Passing the elements as a scalar will allow scalarrepl to hack on + // Passing the elements as a scalar will allow sroa to hack on // the new alloca we introduce. if (AllSimple) { ByValArgsToTransform.insert(PtrArg); diff --git a/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp b/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp index 6397915da1c..094dda8cc1f 100644 --- a/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp +++ b/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp @@ -61,10 +61,6 @@ static cl::opt<bool> ExtraVectorizerPasses( "extra-vectorizer-passes", cl::init(false), cl::Hidden, cl::desc("Run cleanup optimization passes after vectorization.")); -static cl::opt<bool> UseNewSROA("use-new-sroa", - cl::init(true), cl::Hidden, - cl::desc("Enable the new, experimental SROA pass")); - static cl::opt<bool> RunLoopRerolling("reroll-loops", cl::Hidden, cl::desc("Run the loop rerolling pass")); @@ -201,10 +197,7 @@ void PassManagerBuilder::populateFunctionPassManager( addInitialAliasAnalysisPasses(FPM); FPM.add(createCFGSimplificationPass()); - if (UseNewSROA) - FPM.add(createSROAPass()); - else - FPM.add(createScalarReplAggregatesPass()); + FPM.add(createSROAPass()); FPM.add(createEarlyCSEPass()); FPM.add(createLowerExpectIntrinsicPass()); } @@ -225,10 +218,7 @@ void PassManagerBuilder::addFunctionSimplificationPasses( legacy::PassManagerBase &MPM) { // Start of function pass. // Break up aggregate allocas, using SSAUpdater. - if (UseNewSROA) - MPM.add(createSROAPass()); - else - MPM.add(createScalarReplAggregatesPass(-1, false)); + MPM.add(createSROAPass()); MPM.add(createEarlyCSEPass()); // Catch trivial redundancies // Speculative execution if the target has divergent branches; otherwise nop. MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass()); @@ -654,10 +644,7 @@ void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { PM.add(createJumpThreadingPass()); // Break up allocas - if (UseNewSROA) - PM.add(createSROAPass()); - else - PM.add(createScalarReplAggregatesPass()); + PM.add(createSROAPass()); // Run a few AA driven optimizations here and now, to cleanup the code. PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture. diff --git a/llvm/lib/Transforms/Scalar/CMakeLists.txt b/llvm/lib/Transforms/Scalar/CMakeLists.txt index bb623576c77..ac162039037 100644 --- a/llvm/lib/Transforms/Scalar/CMakeLists.txt +++ b/llvm/lib/Transforms/Scalar/CMakeLists.txt @@ -45,7 +45,6 @@ add_llvm_library(LLVMScalarOpts SCCP.cpp SROA.cpp Scalar.cpp - ScalarReplAggregates.cpp Scalarizer.cpp SeparateConstOffsetFromGEP.cpp SimplifyCFGPass.cpp diff --git a/llvm/lib/Transforms/Scalar/Scalar.cpp b/llvm/lib/Transforms/Scalar/Scalar.cpp index 98603ac0305..1f655840360 100644 --- a/llvm/lib/Transforms/Scalar/Scalar.cpp +++ b/llvm/lib/Transforms/Scalar/Scalar.cpp @@ -74,8 +74,6 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) { initializeSCCPLegacyPassPass(Registry); initializeIPSCCPLegacyPassPass(Registry); initializeSROALegacyPassPass(Registry); - initializeSROA_DTPass(Registry); - initializeSROA_SSAUpPass(Registry); initializeCFGSimplifyPassPass(Registry); initializeStructurizeCFGPass(Registry); initializeSinkingLegacyPassPass(Registry); @@ -198,16 +196,16 @@ void LLVMAddSCCPPass(LLVMPassManagerRef PM) { } void LLVMAddScalarReplAggregatesPass(LLVMPassManagerRef PM) { - unwrap(PM)->add(createScalarReplAggregatesPass()); + unwrap(PM)->add(createSROAPass()); } void LLVMAddScalarReplAggregatesPassSSA(LLVMPassManagerRef PM) { - unwrap(PM)->add(createScalarReplAggregatesPass(-1, false)); + unwrap(PM)->add(createSROAPass()); } void LLVMAddScalarReplAggregatesPassWithThreshold(LLVMPassManagerRef PM, int Threshold) { - unwrap(PM)->add(createScalarReplAggregatesPass(Threshold)); + unwrap(PM)->add(createSROAPass()); } void LLVMAddSimplifyLibCallsPass(LLVMPassManagerRef PM) { diff --git a/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp deleted file mode 100644 index 9ff149ae91d..00000000000 --- a/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp +++ /dev/null @@ -1,2618 +0,0 @@ -//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This transformation implements the well known scalar replacement of -// aggregates transformation. This xform breaks up alloca instructions of -// aggregate type (structure or array) into individual alloca instructions for -// each member (if possible). Then, if possible, it transforms the individual -// alloca instructions into nice clean scalar SSA form. -// -// This combines a simple SRoA algorithm with the Mem2Reg algorithm because they -// often interact, especially for C++ programs. As such, iterating between -// SRoA, then Mem2Reg until we run out of things to promote works well. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Scalar.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/Loads.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DIBuilder.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DebugInfo.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GetElementPtrTypeIterator.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Operator.h" -#include "llvm/Pass.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/PromoteMemToReg.h" -#include "llvm/Transforms/Utils/SSAUpdater.h" -using namespace llvm; - -#define DEBUG_TYPE "scalarrepl" - -STATISTIC(NumReplaced, "Number of allocas broken up"); -STATISTIC(NumPromoted, "Number of allocas promoted"); -STATISTIC(NumAdjusted, "Number of scalar allocas adjusted to allow promotion"); -STATISTIC(NumConverted, "Number of aggregates converted to scalar"); - -namespace { -#define SROA SROA_ - struct SROA : public FunctionPass { - SROA(int T, bool hasDT, char &ID, int ST, int AT, int SLT) - : FunctionPass(ID), HasDomTree(hasDT) { - if (T == -1) - SRThreshold = 128; - else - SRThreshold = T; - if (ST == -1) - StructMemberThreshold = 32; - else - StructMemberThreshold = ST; - if (AT == -1) - ArrayElementThreshold = 8; - else - ArrayElementThreshold = AT; - if (SLT == -1) - // Do not limit the scalar integer load size if no threshold is given. - ScalarLoadThreshold = -1; - else - ScalarLoadThreshold = SLT; - } - - bool runOnFunction(Function &F) override; - - bool performScalarRepl(Function &F); - bool performPromotion(Function &F); - - private: - bool HasDomTree; - - /// DeadInsts - Keep track of instructions we have made dead, so that - /// we can remove them after we are done working. - SmallVector<Value*, 32> DeadInsts; - - /// AllocaInfo - When analyzing uses of an alloca instruction, this captures - /// information about the uses. All these fields are initialized to false - /// and set to true when something is learned. - struct AllocaInfo { - /// The alloca to promote. - AllocaInst *AI; - - /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite - /// looping and avoid redundant work. - SmallPtrSet<PHINode*, 8> CheckedPHIs; - - /// isUnsafe - This is set to true if the alloca cannot be SROA'd. - bool isUnsafe : 1; - - /// isMemCpySrc - This is true if this aggregate is memcpy'd from. - bool isMemCpySrc : 1; - - /// isMemCpyDst - This is true if this aggregate is memcpy'd into. - bool isMemCpyDst : 1; - - /// hasSubelementAccess - This is true if a subelement of the alloca is - /// ever accessed, or false if the alloca is only accessed with mem - /// intrinsics or load/store that only access the entire alloca at once. - bool hasSubelementAccess : 1; - - /// hasALoadOrStore - This is true if there are any loads or stores to it. - /// The alloca may just be accessed with memcpy, for example, which would - /// not set this. - bool hasALoadOrStore : 1; - - explicit AllocaInfo(AllocaInst *ai) - : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false), - hasSubelementAccess(false), hasALoadOrStore(false) {} - }; - - /// SRThreshold - The maximum alloca size to considered for SROA. - unsigned SRThreshold; - - /// StructMemberThreshold - The maximum number of members a struct can - /// contain to be considered for SROA. - unsigned StructMemberThreshold; - - /// ArrayElementThreshold - The maximum number of elements an array can - /// have to be considered for SROA. - unsigned ArrayElementThreshold; - - /// ScalarLoadThreshold - The maximum size in bits of scalars to load when - /// converting to scalar - unsigned ScalarLoadThreshold; - - void MarkUnsafe(AllocaInfo &I, Instruction *User) { - I.isUnsafe = true; - DEBUG(dbgs() << " Transformation preventing inst: " << *User << '\n'); - } - - bool isSafeAllocaToScalarRepl(AllocaInst *AI); - - void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info); - void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset, - AllocaInfo &Info); - void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info); - void isSafeMemAccess(uint64_t Offset, uint64_t MemSize, - Type *MemOpType, bool isStore, AllocaInfo &Info, - Instruction *TheAccess, bool AllowWholeAccess); - bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size, - const DataLayout &DL); - uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset, Type *&IdxTy, - const DataLayout &DL); - - void DoScalarReplacement(AllocaInst *AI, - std::vector<AllocaInst*> &WorkList); - void DeleteDeadInstructions(); - - void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset, - SmallVectorImpl<AllocaInst *> &NewElts); - void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset, - SmallVectorImpl<AllocaInst *> &NewElts); - void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset, - SmallVectorImpl<AllocaInst *> &NewElts); - void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI, - uint64_t Offset, - SmallVectorImpl<AllocaInst *> &NewElts); - void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst, - AllocaInst *AI, - SmallVectorImpl<AllocaInst *> &NewElts); - void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI, - SmallVectorImpl<AllocaInst *> &NewElts); - void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI, - SmallVectorImpl<AllocaInst *> &NewElts); - bool ShouldAttemptScalarRepl(AllocaInst *AI); - }; - - // SROA_DT - SROA that uses DominatorTree. - struct SROA_DT : public SROA { - static char ID; - public: - SROA_DT(int T = -1, int ST = -1, int AT = -1, int SLT = -1) : - SROA(T, true, ID, ST, AT, SLT) { - initializeSROA_DTPass(*PassRegistry::getPassRegistry()); - } - - // getAnalysisUsage - This pass does not require any passes, but we know it - // will not alter the CFG, so say so. - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<AssumptionCacheTracker>(); - AU.addRequired<DominatorTreeWrapperPass>(); - AU.setPreservesCFG(); - } - }; - - // SROA_SSAUp - SROA that uses SSAUpdater. - struct SROA_SSAUp : public SROA { - static char ID; - public: - SROA_SSAUp(int T = -1, int ST = -1, int AT = -1, int SLT = -1) : - SROA(T, false, ID, ST, AT, SLT) { - initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry()); - } - - // getAnalysisUsage - This pass does not require any passes, but we know it - // will not alter the CFG, so say so. - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<AssumptionCacheTracker>(); - AU.setPreservesCFG(); - } - }; - -} - -char SROA_DT::ID = 0; -char SROA_SSAUp::ID = 0; - -INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl", - "Scalar Replacement of Aggregates (DT)", false, false) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_END(SROA_DT, "scalarrepl", - "Scalar Replacement of Aggregates (DT)", false, false) - -INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa", - "Scalar Replacement of Aggregates (SSAUp)", false, false) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa", - "Scalar Replacement of Aggregates (SSAUp)", false, false) - -// Public interface to the ScalarReplAggregates pass -FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold, - bool UseDomTree, - int StructMemberThreshold, - int ArrayElementThreshold, - int ScalarLoadThreshold) { - if (UseDomTree) - return new SROA_DT(Threshold, StructMemberThreshold, ArrayElementThreshold, - ScalarLoadThreshold); - return new SROA_SSAUp(Threshold, StructMemberThreshold, - ArrayElementThreshold, ScalarLoadThreshold); -} - - -//===----------------------------------------------------------------------===// -// Convert To Scalar Optimization. -//===----------------------------------------------------------------------===// - -namespace { -/// ConvertToScalarInfo - This class implements the "Convert To Scalar" -/// optimization, which scans the uses of an alloca and determines if it can -/// rewrite it in terms of a single new alloca that can be mem2reg'd. -class ConvertToScalarInfo { - /// AllocaSize - The size of the alloca being considered in bytes. - unsigned AllocaSize; - const DataLayout &DL; - unsigned ScalarLoadThreshold; - - /// IsNotTrivial - This is set to true if there is some access to the object - /// which means that mem2reg can't promote it. - bool IsNotTrivial; - - /// ScalarKind - Tracks the kind of alloca being considered for promotion, - /// computed based on the uses of the alloca rather than the LLVM type system. - enum { - Unknown, - - // Accesses via GEPs that are consistent with element access of a vector - // type. This will not be converted into a vector unless there is a later - // access using an actual vector type. - ImplicitVector, - - // Accesses via vector operations and GEPs that are consistent with the - // layout of a vector type. - Vector, - - // An integer bag-of-bits with bitwise operations for insertion and - // extraction. Any combination of types can be converted into this kind - // of scalar. - Integer - } ScalarKind; - - /// VectorTy - This tracks the type that we should promote the vector to if - /// it is possible to turn it into a vector. This starts out null, and if it - /// isn't possible to turn into a vector type, it gets set to VoidTy. - VectorType *VectorTy; - - /// HadNonMemTransferAccess - True if there is at least one access to the - /// alloca that is not a MemTransferInst. We don't want to turn structs into - /// large integers unless there is some potential for optimization. - bool HadNonMemTransferAccess; - - /// HadDynamicAccess - True if some element of this alloca was dynamic. - /// We don't yet have support for turning a dynamic access into a large - /// integer. - bool HadDynamicAccess; - -public: - explicit ConvertToScalarInfo(unsigned Size, const DataLayout &DL, - unsigned SLT) - : AllocaSize(Size), DL(DL), ScalarLoadThreshold(SLT), IsNotTrivial(false), - ScalarKind(Unknown), VectorTy(nullptr), HadNonMemTransferAccess(false), - HadDynamicAccess(false) { } - - AllocaInst *TryConvert(AllocaInst *AI); - -private: - bool CanConvertToScalar(Value *V, uint64_t Offset, Value* NonConstantIdx); - void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset); - bool MergeInVectorType(VectorType *VInTy, uint64_t Offset); - void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset, - Value *NonConstantIdx); - - Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType, - uint64_t Offset, Value* NonConstantIdx, - IRBuilder<> &Builder); - Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal, - uint64_t Offset, Value* NonConstantIdx, - IRBuilder<> &Builder); -}; -} // end anonymous namespace. - - -/// TryConvert - Analyze the specified alloca, and if it is safe to do so, -/// rewrite it to be a new alloca which is mem2reg'able. This returns the new -/// alloca if possible or null if not. -AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) { - // If we can't convert this scalar, or if mem2reg can trivially do it, bail - // out. - if (!CanConvertToScalar(AI, 0, nullptr) || !IsNotTrivial) - return nullptr; - - // If an alloca has only memset / memcpy uses, it may still have an Unknown - // ScalarKind. Treat it as an Integer below. - if (ScalarKind == Unknown) - ScalarKind = Integer; - - if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8) - ScalarKind = Integer; - - // If we were able to find a vector type that can handle this with - // insert/extract elements, and if there was at least one use that had - // a vector type, promote this to a vector. We don't want to promote - // random stuff that doesn't use vectors (e.g. <9 x double>) because then - // we just get a lot of insert/extracts. If at least one vector is - // involved, then we probably really do have a union of vector/array. - Type *NewTy; - if (ScalarKind == Vector) { - assert(VectorTy && "Missing type for vector scalar."); - DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = " - << *VectorTy << '\n'); - NewTy = VectorTy; // Use the vector type. - } else { - unsigned BitWidth = AllocaSize * 8; - - // Do not convert to scalar integer if the alloca size exceeds the - // scalar load threshold. - if (BitWidth > ScalarLoadThreshold) - return nullptr; - - if ((ScalarKind == ImplicitVector || ScalarKind == Integer) && - !HadNonMemTransferAccess && !DL.fitsInLegalInteger(BitWidth)) - return nullptr; - // Dynamic accesses on integers aren't yet supported. They need us to shift - // by a dynamic amount which could be difficult to work out as we might not - // know whether to use a left or right shift. - if (ScalarKind == Integer && HadDynamicAccess) - return nullptr; - - DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n"); - // Create and insert the integer alloca. - NewTy = IntegerType::get(AI->getContext(), BitWidth); - } - AllocaInst *NewAI = - new AllocaInst(NewTy, nullptr, "", &AI->getParent()->front()); - ConvertUsesToScalar(AI, NewAI, 0, nullptr); - return NewAI; -} - -/// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type -/// (VectorTy) so far at the offset specified by Offset (which is specified in -/// bytes). -/// -/// There are two cases we handle here: -/// 1) A union of vector types of the same size and potentially its elements. -/// Here we turn element accesses into insert/extract element operations. -/// This promotes a <4 x float> with a store of float to the third element -/// into a <4 x float> that uses insert element. -/// 2) A fully general blob of memory, which we turn into some (potentially -/// large) integer type with extract and insert operations where the loads -/// and stores would mutate the memory. We mark this by setting VectorTy -/// to VoidTy. -void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In, - uint64_t Offset) { - // If we already decided to turn this into a blob of integer memory, there is - // nothing to be done. - if (ScalarKind == Integer) - return; - - // If this could be contributing to a vector, analyze it. - - // If the In type is a vector that is the same size as the alloca, see if it - // matches the existing VecTy. - if (VectorType *VInTy = dyn_cast<VectorType>(In)) { - if (MergeInVectorType(VInTy, Offset)) - return; - } else if (In->isFloatTy() || In->isDoubleTy() || - (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 && - isPowerOf2_32(In->getPrimitiveSizeInBits()))) { - // Full width accesses can be ignored, because they can always be turned - // into bitcasts. - unsigned EltSize = In->getPrimitiveSizeInBits()/8; - if (EltSize == AllocaSize) - return; - - // If we're accessing something that could be an element of a vector, see - // if the implied vector agrees with what we already have and if Offset is - // compatible with it. - if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 && - (!VectorTy || EltSize == VectorTy->getElementType() - ->getPrimitiveSizeInBits()/8)) { - if (!VectorTy) { - ScalarKind = ImplicitVector; - VectorTy = VectorType::get(In, AllocaSize/EltSize); - } - return; - } - } - - // Otherwise, we have a case that we can't handle with an optimized vector - // form. We can still turn this into a large integer. - ScalarKind = Integer; -} - -/// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore, -/// returning true if the type was successfully merged and false otherwise. -bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy, - uint64_t Offset) { - if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) { - // If we're storing/loading a vector of the right size, allow it as a - // vector. If this the first vector we see, remember the type so that - // we know the element size. If this is a subsequent access, ignore it - // even if it is a differing type but the same size. Worst case we can - // bitcast the resultant vectors. - if (!VectorTy) - VectorTy = VInTy; - ScalarKind = Vector; - return true; - } - - return false; -} - -/// CanConvertToScalar - V is a pointer. If we can convert the pointee and all -/// its accesses to a single vector type, return true and set VecTy to -/// the new type. If we could convert the alloca into a single promotable -/// integer, return true but set VecTy to VoidTy. Further, if the use is not a -/// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset -/// is the current offset from the base of the alloca being analyzed. -/// -/// If we see at least one access to the value that is as a vector type, set the -/// SawVec flag. -bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset, - Value* NonConstantIdx) { - for (User *U : V->users()) { - Instruction *UI = cast<Instruction>(U); - - if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { - // Don't break volatile loads. - if (!LI->isSimple()) - return false; - // Don't touch MMX operations. - if (LI->getType()->isX86_MMXTy()) - return false; - HadNonMemTransferAccess = true; - MergeInTypeForLoadOrStore(LI->getType(), Offset); - continue; - } - - if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { - // Storing the pointer, not into the value? - if (SI->getOperand(0) == V || !SI->isSimple()) return false; - // Don't touch MMX operations. - if (SI->getOperand(0)->getType()->isX86_MMXTy()) - return false; - HadNonMemTransferAccess = true; - MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset); - continue; - } - - if (BitCastInst *BCI = dyn_cast<BitCastInst>(UI)) { - if (!onlyUsedByLifetimeMarkers(BCI)) - IsNotTrivial = true; // Can't be mem2reg'd. - if (!CanConvertToScalar(BCI, Offset, NonConstantIdx)) - return false; - continue; - } - - if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UI)) { - // If this is a GEP with a variable indices, we can't handle it. - // Compute the offset that this GEP adds to the pointer. - SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end()); - Value *GEPNonConstantIdx = nullptr; - if (!GEP->hasAllConstantIndices()) { - if (!isa<VectorType>(GEP->getSourceElementType())) - return false; - if (NonConstantIdx) - return false; - GEPNonConstantIdx = Indices.pop_back_val(); - if (!GEPNonConstantIdx->getType()->isIntegerTy(32)) - return false; - HadDynamicAccess = true; - } else - GEPNonConstantIdx = NonConstantIdx; - uint64_t GEPOffset = DL.getIndexedOffsetInType(GEP->getSourceElementType(), - Indices); - // See if all uses can be converted. - if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx)) - return false; - IsNotTrivial = true; // Can't be mem2reg'd. - HadNonMemTransferAccess = true; - continue; - } - - // If this is a constant sized memset of a constant value (e.g. 0) we can - // handle it. - if (MemSetInst *MSI = dyn_cast<MemSetInst>(UI)) { - // Store to dynamic index. - if (NonConstantIdx) - return false; - // Store of constant value. - if (!isa<ConstantInt>(MSI->getValue())) - return false; - - // Store of constant size. - ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength()); - if (!Len) - return false; - - // If the size differs from the alloca, we can only convert the alloca to - // an integer bag-of-bits. - // FIXME: This should handle all of the cases that are currently accepted - // as vector element insertions. - if (Len->getZExtValue() != AllocaSize || Offset != 0) - ScalarKind = Integer; - - IsNotTrivial = true; // Can't be mem2reg'd. - HadNonMemTransferAccess = true; - continue; - } - - // If this is a memcpy or memmove into or out of the whole allocation, we - // can handle it like a load or store of the scalar type. - if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(UI)) { - // Store to dynamic index. - if (NonConstantIdx) - return false; - ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()); - if (!Len || Len->getZExtValue() != AllocaSize || Offset != 0) - return false; - - IsNotTrivial = true; // Can't be mem2reg'd. - continue; - } - - // If this is a lifetime intrinsic, we can handle it. - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(UI)) { - if (II->getIntrinsicID() == Intrinsic::lifetime_start || - II->getIntrinsicID() == Intrinsic::lifetime_end) { - continue; - } - } - - // Otherwise, we cannot handle this! - return false; - } - - return true; -} - -/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca -/// directly. This happens when we are converting an "integer union" to a -/// single integer scalar, or when we are converting a "vector union" to a -/// vector with insert/extractelement instructions. -/// -/// Offset is an offset from the original alloca, in bits that need to be -/// shifted to the right. By the end of this, there should be no uses of Ptr. -void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, - uint64_t Offset, - Value* NonConstantIdx) { - while (!Ptr->use_empty()) { - Instruction *User = cast<Instruction>(Ptr->user_back()); - - if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) { - ConvertUsesToScalar(CI, NewAI, Offset, NonConstantIdx); - CI->eraseFromParent(); - continue; - } - - if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) { - // Compute the offset that this GEP adds to the pointer. - SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end()); - Value* GEPNonConstantIdx = nullptr; - if (!GEP->hasAllConstantIndices()) { - assert(!NonConstantIdx && - "Dynamic GEP reading from dynamic GEP unsupported"); - GEPNonConstantIdx = Indices.pop_back_val(); - } else - GEPNonConstantIdx = NonConstantIdx; - uint64_t GEPOffset = DL.getIndexedOffsetInType(GEP->getSourceElementType(), - Indices); - ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx); - GEP->eraseFromParent(); - continue; - } - - IRBuilder<> Builder(User); - - if (LoadInst *LI = dyn_cast<LoadInst>(User)) { - // The load is a bit extract from NewAI shifted right by Offset bits. - Value *LoadedVal = Builder.CreateLoad(NewAI); - Value *NewLoadVal - = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, - NonConstantIdx, Builder); - LI->replaceAllUsesWith(NewLoadVal); - LI->eraseFromParent(); - continue; - } - - if (StoreInst *SI = dyn_cast<StoreInst>(User)) { - assert(SI->getOperand(0) != Ptr && "Consistency error!"); - Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in"); - Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset, - NonConstantIdx, Builder); - Builder.CreateStore(New, NewAI); - SI->eraseFromParent(); - - // If the load we just inserted is now dead, then the inserted store - // overwrote the entire thing. - if (Old->use_empty()) - Old->eraseFromParent(); - continue; - } - - // If this is a constant sized memset of a constant value (e.g. 0) we can - // transform it into a store of the expanded constant value. - if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) { - assert(MSI->getRawDest() == Ptr && "Consistency error!"); - assert(!NonConstantIdx && "Cannot replace dynamic memset with insert"); - int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue(); - if (SNumBytes > 0 && (SNumBytes >> 32) == 0) { - unsigned NumBytes = static_cast<unsigned>(SNumBytes); - unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue(); - - // Compute the value replicated the right number of times. - APInt APVal(NumBytes*8, Val); - - // Splat the value if non-zero. - if (Val) - for (unsigned i = 1; i != NumBytes; ++i) - APVal |= APVal << 8; - - Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in"); - Value *New = ConvertScalar_InsertValue( - ConstantInt::get(User->getContext(), APVal), - Old, Offset, nullptr, Builder); - Builder.CreateStore(New, NewAI); - - // If the load we just inserted is now dead, then the memset overwrote - // the entire thing. - if (Old->use_empty()) - Old->eraseFromParent(); - } - MSI->eraseFromParent(); - continue; - } - - // If this is a memcpy or memmove into or out of the whole allocation, we - // can handle it like a load or store of the scalar type. - if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) { - assert(Offset == 0 && "must be store to start of alloca"); - assert(!NonConstantIdx && "Cannot replace dynamic transfer with insert"); - - // If the source and destination are both to the same alloca, then this is - // a noop copy-to-self, just delete it. Otherwise, emit a load and store - // as appropriate. - AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, DL, 0)); - - if (GetUnderlyingObject(MTI->getSource(), DL, 0) != OrigAI) { - // Dest must be OrigAI, change this to be a load from the original - // pointer (bitcasted), then a store to our new alloca. - assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?"); - Value *SrcPtr = MTI->getSource(); - PointerType* SPTy = cast<PointerType>(SrcPtr->getType()); - PointerType* AIPTy = cast<PointerType>(NewAI->getType()); - if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) { - AIPTy = PointerType::get(NewAI->getAllocatedType(), - SPTy->getAddressSpace()); - } - SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy); - - LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval"); - SrcVal->setAlignment(MTI->getAlignment()); - Builder.CreateStore(SrcVal, NewAI); - } else if (GetUnderlyingObject(MTI->getDest(), DL, 0) != OrigAI) { - // Src must be OrigAI, change this to be a load from NewAI then a store - // through the original dest pointer (bitcasted). - assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?"); - LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval"); - - PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType()); - PointerType* AIPTy = cast<PointerType>(NewAI->getType()); - if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) { - AIPTy = PointerType::get(NewAI->getAllocatedType(), - DPTy->getAddressSpace()); - } - Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy); - - StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr); - NewStore->setAlignment(MTI->getAlignment()); - } else { - // Noop transfer. Src == Dst - } - - MTI->eraseFromParent(); - continue; - } - - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) { - if (II->getIntrinsicID() == Intrinsic::lifetime_start || - II->getIntrinsicID() == Intrinsic::lifetime_end) { - // There's no need to preserve these, as the resulting alloca will be - // converted to a register anyways. - II->eraseFromParent(); - continue; - } - } - - llvm_unreachable("Unsupported operation!"); - } -} - -/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer -/// or vector value FromVal, extracting the bits from the offset specified by -/// Offset. This returns the value, which is of type ToType. -/// -/// This happens when we are converting an "integer union" to a single -/// integer scalar, or when we are converting a "vector union" to a vector with -/// insert/extractelement instructions. -/// -/// Offset is an offset from the original alloca, in bits that need to be -/// shifted to the right. -Value *ConvertToScalarInfo:: -ConvertScalar_ExtractValue(Value *FromVal, Type *ToType, - uint64_t Offset, Value* NonConstantIdx, - IRBuilder<> &Builder) { - // If the load is of the whole new alloca, no conversion is needed. - Type *FromType = FromVal->getType(); - if (FromType == ToType && Offset == 0) - return FromVal; - - // If the result alloca is a vector type, this is either an element - // access or a bitcast to another vector type of the same size. - if (VectorType *VTy = dyn_cast<VectorType>(FromType)) { - unsigned FromTypeSize = DL.getTypeAllocSize(FromType); - unsigned ToTypeSize = DL.getTypeAllocSize(ToType); - if (FromTypeSize == ToTypeSize) - return Builder.CreateBitCast(FromVal, ToType); - - // Otherwise it must be an element access. - unsigned Elt = 0; - if (Offset) { - unsigned EltSize = DL.getTypeAllocSizeInBits(VTy->getElementType()); - Elt = Offset/EltSize; - assert(EltSize*Elt == Offset && "Invalid modulus in validity checking"); - } - // Return the element extracted out of it. - Value *Idx; - if (NonConstantIdx) { - if (Elt) - Idx = Builder.CreateAdd(NonConstantIdx, - Builder.getInt32(Elt), - "dyn.offset"); - else - Idx = NonConstantIdx; - } else - Idx = Builder.getInt32(Elt); - Value *V = Builder.CreateExtractElement(FromVal, Idx); - if (V->getType() != ToType) - V = Builder.CreateBitCast(V, ToType); - return V; - } - - // If ToType is a first class aggregate, extract out each of the pieces and - // use insertvalue's to form the FCA. - if (StructType *ST = dyn_cast<StructType>(ToType)) { - assert(!NonConstantIdx && - "Dynamic indexing into struct types not supported"); - const StructLayout &Layout = *DL.getStructLayout(ST); - Value *Res = UndefValue::get(ST); - for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { - Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i), - Offset+Layout.getElementOffsetInBits(i), - nullptr, Builder); - Res = Builder.CreateInsertValue(Res, Elt, i); - } - return Res; - } - - if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) { - assert(!NonConstantIdx && - "Dynamic indexing into array types not supported"); - uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType()); - Value *Res = UndefValue::get(AT); - for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { - Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(), - Offset+i*EltSize, nullptr, - Builder); - Res = Builder.CreateInsertValue(Res, Elt, i); - } - return Res; - } - - // Otherwise, this must be a union that was converted to an integer value. - IntegerType *NTy = cast<IntegerType>(FromVal->getType()); - - // If this is a big-endian system and the load is narrower than the - // full alloca type, we need to do a shift to get the right bits. - int ShAmt = 0; - if (DL.isBigEndian()) { - // On big-endian machines, the lowest bit is stored at the bit offset - // from the pointer given by getTypeStoreSizeInBits. This matters for - // integers with a bitwidth that is not a multiple of 8. - ShAmt = DL.getTypeStoreSizeInBits(NTy) - - DL.getTypeStoreSizeInBits(ToType) - Offset; - } else { - ShAmt = Offset; - } - - // Note: we support negative bitwidths (with shl) which are not defined. - // We do this to support (f.e.) loads off the end of a structure where - // only some bits are used. - if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth()) - FromVal = Builder.CreateLShr(FromVal, - ConstantInt::get(FromVal->getType(), ShAmt)); - else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth()) - FromVal = Builder.CreateShl(FromVal, - ConstantInt::get(FromVal->getType(), -ShAmt)); - - // Finally, unconditionally truncate the integer to the right width. - unsigned LIBitWidth = DL.getTypeSizeInBits(ToType); - if (LIBitWidth < NTy->getBitWidth()) - FromVal = - Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(), - LIBitWidth)); - else if (LIBitWidth > NTy->getBitWidth()) - FromVal = - Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(), - LIBitWidth)); - - // If the result is an integer, this is a trunc or bitcast. - if (ToType->isIntegerTy()) { - // Should be done. - } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) { - // Just do a bitcast, we know the sizes match up. - FromVal = Builder.CreateBitCast(FromVal, ToType); - } else { - // Otherwise must be a pointer. - FromVal = Builder.CreateIntToPtr(FromVal, ToType); - } - assert(FromVal->getType() == ToType && "Didn't convert right?"); - return FromVal; -} - -/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer -/// or vector value "Old" at the offset specified by Offset. -/// -/// This happens when we are converting an "integer union" to a -/// single integer scalar, or when we are converting a "vector union" to a -/// vector with insert/extractelement instructions. -/// -/// Offset is an offset from the original alloca, in bits that need to be -/// shifted to the right. -/// -/// NonConstantIdx is an index value if there was a GEP with a non-constant -/// index value. If this is 0 then all GEPs used to find this insert address -/// are constant. -Value *ConvertToScalarInfo:: -ConvertScalar_InsertValue(Value *SV, Value *Old, - uint64_t Offset, Value* NonConstantIdx, - IRBuilder<> &Builder) { - // Convert the stored type to the actual type, shift it left to insert - // then 'or' into place. - Type *AllocaType = Old->getType(); - LLVMContext &Context = Old->getContext(); - - if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) { - uint64_t VecSize = DL.getTypeAllocSizeInBits(VTy); - uint64_t ValSize = DL.getTypeAllocSizeInBits(SV->getType()); - - // Changing the whole vector with memset or with an access of a different - // vector type? - if (ValSize == VecSize) - return Builder.CreateBitCast(SV, AllocaType); - - // Must be an element insertion. - Type *EltTy = VTy->getElementType(); - if (SV->getType() != EltTy) - SV = Builder.CreateBitCast(SV, EltTy); - uint64_t EltSize = DL.getTypeAllocSizeInBits(EltTy); - unsigned Elt = Offset/EltSize; - Value *Idx; - if (NonConstantIdx) { - if (Elt) - Idx = Builder.CreateAdd(NonConstantIdx, - Builder.getInt32(Elt), - "dyn.offset"); - else - Idx = NonConstantIdx; - } else - Idx = Builder.getInt32(Elt); - return Builder.CreateInsertElement(Old, SV, Idx); - } - - // If SV is a first-class aggregate value, insert each value recursively. - if (StructType *ST = dyn_cast<StructType>(SV->getType())) { - assert(!NonConstantIdx && - "Dynamic indexing into struct types not supported"); - const StructLayout &Layout = *DL.getStructLayout(ST); - for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { - Value *Elt = Builder.CreateExtractValue(SV, i); - Old = ConvertScalar_InsertValue(Elt, Old, - Offset+Layout.getElementOffsetInBits(i), - nullptr, Builder); - } - return Old; - } - - if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) { - assert(!NonConstantIdx && - "Dynamic indexing into array types not supported"); - uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType()); - for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { - Value *Elt = Builder.CreateExtractValue(SV, i); - Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, nullptr, - Builder); - } - return Old; - } - - // If SV is a float, convert it to the appropriate integer type. - // If it is a pointer, do the same. - unsigned SrcWidth = DL.getTypeSizeInBits(SV->getType()); - unsigned DestWidth = DL.getTypeSizeInBits(AllocaType); - unsigned SrcStoreWidth = DL.getTypeStoreSizeInBits(SV->getType()); - unsigned DestStoreWidth = DL.getTypeStoreSizeInBits(AllocaType); - if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy()) - SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth)); - else if (SV->getType()->isPointerTy()) - SV = Builder.CreatePtrToInt(SV, DL.getIntPtrType(SV->getType())); - - // Zero extend or truncate the value if needed. - if (SV->getType() != AllocaType) { - if (SV->getType()->getPrimitiveSizeInBits() < - AllocaType->getPrimitiveSizeInBits()) - SV = Builder.CreateZExt(SV, AllocaType); - else { - // Truncation may be needed if storing more than the alloca can hold - // (undefined behavior). - SV = Builder.CreateTrunc(SV, AllocaType); - SrcWidth = DestWidth; - SrcStoreWidth = DestStoreWidth; - } - } - - // If this is a big-endian system and the store is narrower than the - // full alloca type, we need to do a shift to get the right bits. - int ShAmt = 0; - if (DL.isBigEndian()) { - // On big-endian machines, the lowest bit is stored at the bit offset - // from the pointer given by getTypeStoreSizeInBits. This matters for - // integers with a bitwidth that is not a multiple of 8. - ShAmt = DestStoreWidth - SrcStoreWidth - Offset; - } else { - ShAmt = Offset; - } - - // Note: we support negative bitwidths (with shr) which are not defined. - // We do this to support (f.e.) stores off the end of a structure where - // only some bits in the structure are set. - APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth)); - if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) { - SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt)); - Mask <<= ShAmt; - } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) { - SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt)); - Mask = Mask.lshr(-ShAmt); - } - - // Mask out the bits we are about to insert from the old value, and or - // in the new bits. - if (SrcWidth != DestWidth) { - assert(DestWidth > SrcWidth); - Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask"); - SV = Builder.CreateOr(Old, SV, "ins"); - } - return SV; -} - - -//===----------------------------------------------------------------------===// -// SRoA Driver -//===----------------------------------------------------------------------===// - - -bool SROA::runOnFunction(Function &F) { - if (skipFunction(F)) - return false; - - bool Changed = performPromotion(F); - - while (1) { - bool LocalChange = performScalarRepl(F); - if (!LocalChange) break; // No need to repromote if no scalarrepl - Changed = true; - LocalChange = performPromotion(F); - if (!LocalChange) break; // No need to re-scalarrepl if no promotion - } - - return Changed; -} - -namespace { -class AllocaPromoter : public LoadAndStorePromoter { - AllocaInst *AI; - DIBuilder *DIB; - SmallVector<DbgDeclareInst *, 4> DDIs; - SmallVector<DbgValueInst *, 4> DVIs; -public: - AllocaPromoter(ArrayRef<Instruction*> Insts, SSAUpdater &S, - DIBuilder *DB) - : LoadAndStorePromoter(Insts, S), AI(nullptr), DIB(DB) {} - - void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) { - // Remember which alloca we're promoting (for isInstInList). - this->AI = AI; - if (auto *L = LocalAsMetadata::getIfExists(AI)) { - if (auto *DINode = MetadataAsValue::getIfExists(AI->getContext(), L)) { - for (User *U : DINode->users()) - if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) - DDIs.push_back(DDI); - else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) - DVIs.push_back(DVI); - } - } - - LoadAndStorePromoter::run(Insts); - AI->eraseFromParent(); - for (SmallVectorImpl<DbgDeclareInst *>::iterator I = DDIs.begin(), - E = DDIs.end(); I != E; ++I) { - DbgDeclareInst *DDI = *I; - DDI->eraseFromParent(); - } - for (SmallVectorImpl<DbgValueInst *>::iterator I = DVIs.begin(), - E = DVIs.end(); I != E; ++I) { - DbgValueInst *DVI = *I; - DVI->eraseFromParent(); - } - } - - bool isInstInList(Instruction *I, - const SmallVectorImpl<Instruction*> &Insts) const override { - if (LoadInst *LI = dyn_cast<LoadInst>(I)) - return LI->getOperand(0) == AI; - return cast<StoreInst>(I)->getPointerOperand() == AI; - } - - void updateDebugInfo(Instruction *Inst) const override { - for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(), - E = DDIs.end(); I != E; ++I) { - DbgDeclareInst *DDI = *I; - if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) - ConvertDebugDeclareToDebugValue(DDI, SI, *DIB); - else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) - ConvertDebugDeclareToDebugValue(DDI, LI, *DIB); - } - for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(), - E = DVIs.end(); I != E; ++I) { - DbgValueInst *DVI = *I; - Value *Arg = nullptr; - if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { - // If an argument is zero extended then use argument directly. The ZExt - // may be zapped by an optimization pass in future. - if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) - Arg = dyn_cast<Argument>(ZExt->getOperand(0)); - if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) - Arg = dyn_cast<Argument>(SExt->getOperand(0)); - if (!Arg) - Arg = SI->getOperand(0); - } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { - Arg = LI->getOperand(0); - } else { - continue; - } - DIB->insertDbgValueIntrinsic(Arg, 0, DVI->getVariable(), - DVI->getExpression(), DVI->getDebugLoc(), - Inst); - } - } -}; -} // end anon namespace - -/// isSafeSelectToSpeculate - Select instructions that use an alloca and are -/// subsequently loaded can be rewritten to load both input pointers and then -/// select between the result, allowing the load of the alloca to be promoted. -/// From this: -/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other -/// %V = load i32* %P2 -/// to: -/// %V1 = load i32* %Alloca -> will be mem2reg'd -/// %V2 = load i32* %Other -/// %V = select i1 %cond, i32 %V1, i32 %V2 -/// -/// We can do this to a select if its only uses are loads and if the operand to -/// the select can be loaded unconditionally. -static bool isSafeSelectToSpeculate(SelectInst *SI) { - const DataLayout &DL = SI->getModule()->getDataLayout(); - - for (User *U : SI->users()) { - LoadInst *LI = dyn_cast<LoadInst>(U); - if (!LI || !LI->isSimple()) return false; - - // Both operands to the select need to be dereferencable, either absolutely - // (e.g. allocas) or at this point because we can see other accesses to it. - if (!isSafeToLoadUnconditionally(SI->getTrueValue(), LI->getAlignment(), - DL, LI)) - return false; - if (!isSafeToLoadUnconditionally(SI->getFalseValue(), LI->getAlignment(), - DL, LI)) - return false; - } - - return true; -} - -/// isSafePHIToSpeculate - PHI instructions that use an alloca and are -/// subsequently loaded can be rewritten to load both input pointers in the pred -/// blocks and then PHI the results, allowing the load of the alloca to be -/// promoted. -/// From this: -/// %P2 = phi [i32* %Alloca, i32* %Other] -/// %V = load i32* %P2 -/// to: -/// %V1 = load i32* %Alloca -> will be mem2reg'd -/// ... -/// %V2 = load i32* %Other -/// ... -/// %V = phi [i32 %V1, i32 %V2] -/// -/// We can do this to a select if its only uses are loads and if the operand to -/// the select can be loaded unconditionally. -static bool isSafePHIToSpeculate(PHINode *PN) { - // For now, we can only do this promotion if the load is in the same block as - // the PHI, and if there are no stores between the phi and load. - // TODO: Allow recursive phi users. - // TODO: Allow stores. - BasicBlock *BB = PN->getParent(); - unsigned MaxAlign = 0; - for (User *U : PN->users()) { - LoadInst *LI = dyn_cast<LoadInst>(U); - if (!LI || !LI->isSimple()) return false; - - // For now we only allow loads in the same block as the PHI. This is a - // common case that happens when instcombine merges two loads through a PHI. - if (LI->getParent() != BB) return false; - - // Ensure that there are no instructions between the PHI and the load that - // could store. - for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) - if (BBI->mayWriteToMemory()) - return false; - - MaxAlign = std::max(MaxAlign, LI->getAlignment()); - } - - const DataLayout &DL = PN->getModule()->getDataLayout(); - - // Okay, we know that we have one or more loads in the same block as the PHI. - // We can transform this if it is safe to push the loads into the predecessor - // blocks. The only thing to watch out for is that we can't put a possibly - // trapping load in the predecessor if it is a critical edge. - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - BasicBlock *Pred = PN->getIncomingBlock(i); - Value *InVal = PN->getIncomingValue(i); - - // If the terminator of the predecessor has side-effects (an invoke), - // there is no safe place to put a load in the predecessor. - if (Pred->getTerminator()->mayHaveSideEffects()) - return false; - - // If the value is produced by the terminator of the predecessor - // (an invoke), there is no valid place to put a load in the predecessor. - if (Pred->getTerminator() == InVal) - return false; - - // If the predecessor has a single successor, then the edge isn't critical. - if (Pred->getTerminator()->getNumSuccessors() == 1) - continue; - - // If this pointer is always safe to load, or if we can prove that there is - // already a load in the block, then we can move the load to the pred block. - if (isSafeToLoadUnconditionally(InVal, MaxAlign, DL, Pred->getTerminator())) - continue; - - return false; - } - - return true; -} - - -/// tryToMakeAllocaBePromotable - This returns true if the alloca only has -/// direct (non-volatile) loads and stores to it. If the alloca is close but -/// not quite there, this will transform the code to allow promotion. As such, -/// it is a non-pure predicate. -static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout &DL) { - SetVector<Instruction*, SmallVector<Instruction*, 4>, - SmallPtrSet<Instruction*, 4> > InstsToRewrite; - for (User *U : AI->users()) { - if (LoadInst *LI = dyn_cast<LoadInst>(U)) { - if (!LI->isSimple()) - return false; - continue; - } - - if (StoreInst *SI = dyn_cast<StoreInst>(U)) { - if (SI->getOperand(0) == AI || !SI->isSimple()) - return false; // Don't allow a store OF the AI, only INTO the AI. - continue; - } - - if (SelectInst *SI = dyn_cast<SelectInst>(U)) { - // If the condition being selected on is a constant, fold the select, yes - // this does (rarely) happen early on. - if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) { - Value *Result = SI->getOperand(1+CI->isZero()); - SI->replaceAllUsesWith(Result); - SI->eraseFromParent(); - - // This is very rare and we just scrambled the use list of AI, start - // over completely. - return tryToMakeAllocaBePromotable(AI, DL); - } - - // If it is safe to turn "load (select c, AI, ptr)" into a select of two - // loads, then we can transform this by rewriting the select. - if (!isSafeSelectToSpeculate(SI)) - return false; - - InstsToRewrite.insert(SI); - continue; - } - - if (PHINode *PN = dyn_cast<PHINode>(U)) { - if (PN->use_empty()) { // Dead PHIs can be stripped. - InstsToRewrite.insert(PN); - continue; - } - - // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads - // in the pred blocks, then we can transform this by rewriting the PHI. - if (!isSafePHIToSpeculate(PN)) - return false; - - InstsToRewrite.insert(PN); - continue; - } - - if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { - if (onlyUsedByLifetimeMarkers(BCI)) { - InstsToRewrite.insert(BCI); - continue; - } - } - - return false; - } - - // If there are no instructions to rewrite, then all uses are load/stores and - // we're done! - if (InstsToRewrite.empty()) - return true; - - // If we have instructions that need to be rewritten for this to be promotable - // take care of it now. - for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) { - if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) { - // This could only be a bitcast used by nothing but lifetime intrinsics. - for (BitCastInst::user_iterator I = BCI->user_begin(), E = BCI->user_end(); - I != E;) - cast<Instruction>(*I++)->eraseFromParent(); - BCI->eraseFromParent(); - continue; - } - - if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) { - // Selects in InstsToRewrite only have load uses. Rewrite each as two - // loads with a new select. - while (!SI->use_empty()) { - LoadInst *LI = cast<LoadInst>(SI->user_back()); - - IRBuilder<> Builder(LI); - LoadInst *TrueLoad = - Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t"); - LoadInst *FalseLoad = - Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f"); - - // Transfer alignment and AA info if present. - TrueLoad->setAlignment(LI->getAlignment()); - FalseLoad->setAlignment(LI->getAlignment()); - - AAMDNodes Tags; - LI->getAAMetadata(Tags); - if (Tags) { - TrueLoad->setAAMetadata(Tags); - FalseLoad->setAAMetadata(Tags); - } - - Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad); - V->takeName(LI); - LI->replaceAllUsesWith(V); - LI->eraseFromParent(); - } - - // Now that all the loads are gone, the select is gone too. - SI->eraseFromParent(); - continue; - } - - // Otherwise, we have a PHI node which allows us to push the loads into the - // predecessors. - PHINode *PN = cast<PHINode>(InstsToRewrite[i]); - if (PN->use_empty()) { - PN->eraseFromParent(); - continue; - } - - Type *LoadTy = AI->getAllocatedType(); - PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(), - PN->getName()+".ld", PN); - - // Get the AA tags and alignment to use from one of the loads. It doesn't - // matter which one we get and if any differ, it doesn't matter. - LoadInst *SomeLoad = cast<LoadInst>(PN->user_back()); - - AAMDNodes AATags; - SomeLoad->getAAMetadata(AATags); - unsigned Align = SomeLoad->getAlignment(); - - // Rewrite all loads of the PN to use the new PHI. - while (!PN->use_empty()) { - LoadInst *LI = cast<LoadInst>(PN->user_back()); - LI->replaceAllUsesWith(NewPN); - LI->eraseFromParent(); - } - - // Inject loads into all of the pred blocks. Keep track of which blocks we - // insert them into in case we have multiple edges from the same block. - DenseMap<BasicBlock*, LoadInst*> InsertedLoads; - - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - BasicBlock *Pred = PN->getIncomingBlock(i); - LoadInst *&Load = InsertedLoads[Pred]; - if (!Load) { - Load = new LoadInst(PN->getIncomingValue(i), - PN->getName() + "." + Pred->getName(), - Pred->getTerminator()); - Load->setAlignment(Align); - if (AATags) Load->setAAMetadata(AATags); - } - - NewPN->addIncoming(Load, Pred); - } - - PN->eraseFromParent(); - } - - ++NumAdjusted; - return true; -} - -bool SROA::performPromotion(Function &F) { - std::vector<AllocaInst*> Allocas; - const DataLayout &DL = F.getParent()->getDataLayout(); - DominatorTree *DT = nullptr; - if (HasDomTree) - DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - AssumptionCache &AC = - getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); - - BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function - DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); - bool Changed = false; - SmallVector<Instruction*, 64> Insts; - while (1) { - Allocas.clear(); - - // Find allocas that are safe to promote, by looking at all instructions in - // the entry node - for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I) - if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca? - if (tryToMakeAllocaBePromotable(AI, DL)) - Allocas.push_back(AI); - - if (Allocas.empty()) break; - - if (HasDomTree) - PromoteMemToReg(Allocas, *DT, nullptr, &AC); - else { - SSAUpdater SSA; - for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { - AllocaInst *AI = Allocas[i]; - - // Build list of instructions to promote. - for (User *U : AI->users()) - Insts.push_back(cast<Instruction>(U)); - AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts); - Insts.clear(); - } - } - NumPromoted += Allocas.size(); - Changed = true; - } - - return Changed; -} - - -/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for -/// SROA. It must be a struct or array type with a small number of elements. -bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) { - Type *T = AI->getAllocatedType(); - // Do not promote any struct that has too many members. - if (StructType *ST = dyn_cast<StructType>(T)) - return ST->getNumElements() <= StructMemberThreshold; - // Do not promote any array that has too many elements. - if (ArrayType *AT = dyn_cast<ArrayType>(T)) - return AT->getNumElements() <= ArrayElementThreshold; - return false; -} - -// performScalarRepl - This algorithm is a simple worklist driven algorithm, -// which runs on all of the alloca instructions in the entry block, removing -// them if they are only used by getelementptr instructions. -// -bool SROA::performScalarRepl(Function &F) { - std::vector<AllocaInst*> WorkList; - const DataLayout &DL = F.getParent()->getDataLayout(); - - // Scan the entry basic block, adding allocas to the worklist. - BasicBlock &BB = F.getEntryBlock(); - for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) - if (AllocaInst *A = dyn_cast<AllocaInst>(I)) - WorkList.push_back(A); - - // Process the worklist - bool Changed = false; - while (!WorkList.empty()) { - AllocaInst *AI = WorkList.back(); - WorkList.pop_back(); - - // Handle dead allocas trivially. These can be formed by SROA'ing arrays - // with unused elements. - if (AI->use_empty()) { - AI->eraseFromParent(); - Changed = true; - continue; - } - - // If this alloca is impossible for us to promote, reject it early. - if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized()) - continue; - - // Check to see if we can perform the core SROA transformation. We cannot - // transform the allocation instruction if it is an array allocation - // (allocations OF arrays are ok though), and an allocation of a scalar - // value cannot be decomposed at all. - uint64_t AllocaSize = DL.getTypeAllocSize(AI->getAllocatedType()); - - // Do not promote [0 x %struct]. - if (AllocaSize == 0) continue; - - // Do not promote any struct whose size is too big. - if (AllocaSize > SRThreshold) continue; - - // If the alloca looks like a good candidate for scalar replacement, and if - // all its users can be transformed, then split up the aggregate into its - // separate elements. - if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) { - DoScalarReplacement(AI, WorkList); - Changed = true; - continue; - } - - // If we can turn this aggregate value (potentially with casts) into a - // simple scalar value that can be mem2reg'd into a register value. - // IsNotTrivial tracks whether this is something that mem2reg could have - // promoted itself. If so, we don't want to transform it needlessly. Note - // that we can't just check based on the type: the alloca may be of an i32 - // but that has pointer arithmetic to set byte 3 of it or something. - if (AllocaInst *NewAI = - ConvertToScalarInfo((unsigned)AllocaSize, DL, ScalarLoadThreshold) - .TryConvert(AI)) { - NewAI->takeName(AI); - AI->eraseFromParent(); - ++NumConverted; - Changed = true; - continue; - } - - // Otherwise, couldn't process this alloca. - } - - return Changed; -} - -/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl -/// predicate, do SROA now. -void SROA::DoScalarReplacement(AllocaInst *AI, - std::vector<AllocaInst*> &WorkList) { - DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n'); - SmallVector<AllocaInst*, 32> ElementAllocas; - if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) { - ElementAllocas.reserve(ST->getNumContainedTypes()); - for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) { - AllocaInst *NA = new AllocaInst(ST->getContainedType(i), nullptr, - AI->getAlignment(), - AI->getName() + "." + Twine(i), AI); - ElementAllocas.push_back(NA); - WorkList.push_back(NA); // Add to worklist for recursive processing - } - } else { - ArrayType *AT = cast<ArrayType>(AI->getAllocatedType()); - ElementAllocas.reserve(AT->getNumElements()); - Type *ElTy = AT->getElementType(); - for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { - AllocaInst *NA = new AllocaInst(ElTy, nullptr, AI->getAlignment(), - AI->getName() + "." + Twine(i), AI); - ElementAllocas.push_back(NA); - WorkList.push_back(NA); // Add to worklist for recursive processing - } - } - - // Now that we have created the new alloca instructions, rewrite all the - // uses of the old alloca. - RewriteForScalarRepl(AI, AI, 0, ElementAllocas); - - // Now erase any instructions that were made dead while rewriting the alloca. - DeleteDeadInstructions(); - AI->eraseFromParent(); - - ++NumReplaced; -} - -/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list, -/// recursively including all their operands that become trivially dead. -void SROA::DeleteDeadInstructions() { - while (!DeadInsts.empty()) { - Instruction *I = cast<Instruction>(DeadInsts.pop_back_val()); - - for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) - if (Instruction *U = dyn_cast<Instruction>(*OI)) { - // Zero out the operand and see if it becomes trivially dead. - // (But, don't add allocas to the dead instruction list -- they are - // already on the worklist and will be deleted separately.) - *OI = nullptr; - if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U)) - DeadInsts.push_back(U); - } - - I->eraseFromParent(); - } -} - -/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to -/// performing scalar replacement of alloca AI. The results are flagged in -/// the Info parameter. Offset indicates the position within AI that is -/// referenced by this instruction. -void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset, - AllocaInfo &Info) { - const DataLayout &DL = I->getModule()->getDataLayout(); - for (Use &U : I->uses()) { - Instruction *User = cast<Instruction>(U.getUser()); - - if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) { - isSafeForScalarRepl(BC, Offset, Info); - } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { - uint64_t GEPOffset = Offset; - isSafeGEP(GEPI, GEPOffset, Info); - if (!Info.isUnsafe) - isSafeForScalarRepl(GEPI, GEPOffset, Info); - } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) { - ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength()); - if (!Length || Length->isNegative()) - return MarkUnsafe(Info, User); - - isSafeMemAccess(Offset, Length->getZExtValue(), nullptr, - U.getOperandNo() == 0, Info, MI, - true /*AllowWholeAccess*/); - } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) { - if (!LI->isSimple()) - return MarkUnsafe(Info, User); - Type *LIType = LI->getType(); - isSafeMemAccess(Offset, DL.getTypeAllocSize(LIType), LIType, false, Info, - LI, true /*AllowWholeAccess*/); - Info.hasALoadOrStore = true; - - } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) { - // Store is ok if storing INTO the pointer, not storing the pointer - if (!SI->isSimple() || SI->getOperand(0) == I) - return MarkUnsafe(Info, User); - - Type *SIType = SI->getOperand(0)->getType(); - isSafeMemAccess(Offset, DL.getTypeAllocSize(SIType), SIType, true, Info, - SI, true /*AllowWholeAccess*/); - Info.hasALoadOrStore = true; - } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) { - if (II->getIntrinsicID() != Intrinsic::lifetime_start && - II->getIntrinsicID() != Intrinsic::lifetime_end) - return MarkUnsafe(Info, User); - } else if (isa<PHINode>(User) || isa<SelectInst>(User)) { - isSafePHISelectUseForScalarRepl(User, Offset, Info); - } else { - return MarkUnsafe(Info, User); - } - if (Info.isUnsafe) return; - } -} - - -/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer -/// derived from the alloca, we can often still split the alloca into elements. -/// This is useful if we have a large alloca where one element is phi'd -/// together somewhere: we can SRoA and promote all the other elements even if -/// we end up not being able to promote this one. -/// -/// All we require is that the uses of the PHI do not index into other parts of -/// the alloca. The most important use case for this is single load and stores -/// that are PHI'd together, which can happen due to code sinking. -void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset, - AllocaInfo &Info) { - // If we've already checked this PHI, don't do it again. - if (PHINode *PN = dyn_cast<PHINode>(I)) - if (!Info.CheckedPHIs.insert(PN).second) - return; - - const DataLayout &DL = I->getModule()->getDataLayout(); - for (User *U : I->users()) { - Instruction *UI = cast<Instruction>(U); - - if (BitCastInst *BC = dyn_cast<BitCastInst>(UI)) { - isSafePHISelectUseForScalarRepl(BC, Offset, Info); - } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { - // Only allow "bitcast" GEPs for simplicity. We could generalize this, - // but would have to prove that we're staying inside of an element being - // promoted. - if (!GEPI->hasAllZeroIndices()) - return MarkUnsafe(Info, UI); - isSafePHISelectUseForScalarRepl(GEPI, Offset, Info); - } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { - if (!LI->isSimple()) - return MarkUnsafe(Info, UI); - Type *LIType = LI->getType(); - isSafeMemAccess(Offset, DL.getTypeAllocSize(LIType), LIType, false, Info, - LI, false /*AllowWholeAccess*/); - Info.hasALoadOrStore = true; - - } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { - // Store is ok if storing INTO the pointer, not storing the pointer - if (!SI->isSimple() || SI->getOperand(0) == I) - return MarkUnsafe(Info, UI); - - Type *SIType = SI->getOperand(0)->getType(); - isSafeMemAccess(Offset, DL.getTypeAllocSize(SIType), SIType, true, Info, - SI, false /*AllowWholeAccess*/); - Info.hasALoadOrStore = true; - } else if (isa<PHINode>(UI) || isa<SelectInst>(UI)) { - isSafePHISelectUseForScalarRepl(UI, Offset, Info); - } else { - return MarkUnsafe(Info, UI); - } - if (Info.isUnsafe) return; - } -} - -/// isSafeGEP - Check if a GEP instruction can be handled for scalar -/// replacement. It is safe when all the indices are constant, in-bounds -/// references, and when the resulting offset corresponds to an element within -/// the alloca type. The results are flagged in the Info parameter. Upon -/// return, Offset is adjusted as specified by the GEP indices. -void SROA::isSafeGEP(GetElementPtrInst *GEPI, - uint64_t &Offset, AllocaInfo &Info) { - gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI); - if (GEPIt == E) - return; - bool NonConstant = false; - unsigned NonConstantIdxSize = 0; - - // Walk through the GEP type indices, checking the types that this indexes - // into. - for (; GEPIt != E; ++GEPIt) { - // Ignore struct elements, no extra checking needed for these. - if ((*GEPIt)->isStructTy()) - continue; - - ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand()); - if (!IdxVal) - return MarkUnsafe(Info, GEPI); - } - - // Compute the offset due to this GEP and check if the alloca has a - // component element at that offset. - SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end()); - // If this GEP is non-constant then the last operand must have been a - // dynamic index into a vector. Pop this now as it has no impact on the - // constant part of the offset. - if (NonConstant) - Indices.pop_back(); - - const DataLayout &DL = GEPI->getModule()->getDataLayout(); - Offset += DL.getIndexedOffsetInType(GEPI->getSourceElementType(), Indices); - if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, NonConstantIdxSize, - DL)) - MarkUnsafe(Info, GEPI); -} - -/// isHomogeneousAggregate - Check if type T is a struct or array containing -/// elements of the same type (which is always true for arrays). If so, -/// return true with NumElts and EltTy set to the number of elements and the -/// element type, respectively. -static bool isHomogeneousAggregate(Type *T, unsigned &NumElts, - Type *&EltTy) { - if (ArrayType *AT = dyn_cast<ArrayType>(T)) { - NumElts = AT->getNumElements(); - EltTy = (NumElts == 0 ? nullptr : AT->getElementType()); - return true; - } - if (StructType *ST = dyn_cast<StructType>(T)) { - NumElts = ST->getNumContainedTypes(); - EltTy = (NumElts == 0 ? nullptr : ST->getContainedType(0)); - for (unsigned n = 1; n < NumElts; ++n) { - if (ST->getContainedType(n) != EltTy) - return false; - } - return true; - } - return false; -} - -/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are -/// "homogeneous" aggregates with the same element type and number of elements. -static bool isCompatibleAggregate(Type *T1, Type *T2) { - if (T1 == T2) - return true; - - unsigned NumElts1, NumElts2; - Type *EltTy1, *EltTy2; - if (isHomogeneousAggregate(T1, NumElts1, EltTy1) && - isHomogeneousAggregate(T2, NumElts2, EltTy2) && - NumElts1 == NumElts2 && - EltTy1 == EltTy2) - return true; - - return false; -} - -/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI -/// alloca or has an offset and size that corresponds to a component element -/// within it. The offset checked here may have been formed from a GEP with a -/// pointer bitcasted to a different type. -/// -/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a -/// unit. If false, it only allows accesses known to be in a single element. -void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize, - Type *MemOpType, bool isStore, - AllocaInfo &Info, Instruction *TheAccess, - bool AllowWholeAccess) { - const DataLayout &DL = TheAccess->getModule()->getDataLayout(); - // Check if this is a load/store of the entire alloca. - if (Offset == 0 && AllowWholeAccess && - MemSize == DL.getTypeAllocSize(Info.AI->getAllocatedType())) { - // This can be safe for MemIntrinsics (where MemOpType is 0) and integer - // loads/stores (which are essentially the same as the MemIntrinsics with - // regard to copying padding between elements). But, if an alloca is - // flagged as both a source and destination of such operations, we'll need - // to check later for padding between elements. - if (!MemOpType || MemOpType->isIntegerTy()) { - if (isStore) - Info.isMemCpyDst = true; - else - Info.isMemCpySrc = true; - return; - } - // This is also safe for references using a type that is compatible with - // the type of the alloca, so that loads/stores can be rewritten using - // insertvalue/extractvalue. - if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) { - Info.hasSubelementAccess = true; - return; - } - } - // Check if the offset/size correspond to a component within the alloca type. - Type *T = Info.AI->getAllocatedType(); - if (TypeHasComponent(T, Offset, MemSize, DL)) { - Info.hasSubelementAccess = true; - return; - } - - return MarkUnsafe(Info, TheAccess); -} - -/// TypeHasComponent - Return true if T has a component type with the -/// specified offset and size. If Size is zero, do not check the size. -bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size, - const DataLayout &DL) { - Type *EltTy; - uint64_t EltSize; - if (StructType *ST = dyn_cast<StructType>(T)) { - const StructLayout *Layout = DL.getStructLayout(ST); - unsigned EltIdx = Layout->getElementContainingOffset(Offset); - EltTy = ST->getContainedType(EltIdx); - EltSize = DL.getTypeAllocSize(EltTy); - Offset -= Layout->getElementOffset(EltIdx); - } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) { - EltTy = AT->getElementType(); - EltSize = DL.getTypeAllocSize(EltTy); - if (Offset >= AT->getNumElements() * EltSize) - return false; - Offset %= EltSize; - } else if (VectorType *VT = dyn_cast<VectorType>(T)) { - EltTy = VT->getElementType(); - EltSize = DL.getTypeAllocSize(EltTy); - if (Offset >= VT->getNumElements() * EltSize) - return false; - Offset %= EltSize; - } else { - return false; - } - if (Offset == 0 && (Size == 0 || EltSize == Size)) - return true; - // Check if the component spans multiple elements. - if (Offset + Size > EltSize) - return false; - return TypeHasComponent(EltTy, Offset, Size, DL); -} - -/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite -/// the instruction I, which references it, to use the separate elements. -/// Offset indicates the position within AI that is referenced by this -/// instruction. -void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset, - SmallVectorImpl<AllocaInst *> &NewElts) { - const DataLayout &DL = I->getModule()->getDataLayout(); - for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) { - Use &TheUse = *UI++; - Instruction *User = cast<Instruction>(TheUse.getUser()); - - if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) { - RewriteBitCast(BC, AI, Offset, NewElts); - continue; - } - - if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { - RewriteGEP(GEPI, AI, Offset, NewElts); - continue; - } - - if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) { - ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength()); - uint64_t MemSize = Length->getZExtValue(); - if (Offset == 0 && MemSize == DL.getTypeAllocSize(AI->getAllocatedType())) - RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts); - // Otherwise the intrinsic can only touch a single element and the - // address operand will be updated, so nothing else needs to be done. - continue; - } - - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) { - if (II->getIntrinsicID() == Intrinsic::lifetime_start || - II->getIntrinsicID() == Intrinsic::lifetime_end) { - RewriteLifetimeIntrinsic(II, AI, Offset, NewElts); - } - continue; - } - - if (LoadInst *LI = dyn_cast<LoadInst>(User)) { - Type *LIType = LI->getType(); - - if (isCompatibleAggregate(LIType, AI->getAllocatedType())) { - // Replace: - // %res = load { i32, i32 }* %alloc - // with: - // %load.0 = load i32* %alloc.0 - // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0 - // %load.1 = load i32* %alloc.1 - // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1 - // (Also works for arrays instead of structs) - Value *Insert = UndefValue::get(LIType); - IRBuilder<> Builder(LI); - for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { - Value *Load = Builder.CreateLoad(NewElts[i], "load"); - Insert = Builder.CreateInsertValue(Insert, Load, i, "insert"); - } - LI->replaceAllUsesWith(Insert); - DeadInsts.push_back(LI); - } else if (LIType->isIntegerTy() && - DL.getTypeAllocSize(LIType) == - DL.getTypeAllocSize(AI->getAllocatedType())) { - // If this is a load of the entire alloca to an integer, rewrite it. - RewriteLoadUserOfWholeAlloca(LI, AI, NewElts); - } - continue; - } - - if (StoreInst *SI = dyn_cast<StoreInst>(User)) { - Value *Val = SI->getOperand(0); - Type *SIType = Val->getType(); - if (isCompatibleAggregate(SIType, AI->getAllocatedType())) { - // Replace: - // store { i32, i32 } %val, { i32, i32 }* %alloc - // with: - // %val.0 = extractvalue { i32, i32 } %val, 0 - // store i32 %val.0, i32* %alloc.0 - // %val.1 = extractvalue { i32, i32 } %val, 1 - // store i32 %val.1, i32* %alloc.1 - // (Also works for arrays instead of structs) - IRBuilder<> Builder(SI); - for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { - Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName()); - Builder.CreateStore(Extract, NewElts[i]); - } - DeadInsts.push_back(SI); - } else if (SIType->isIntegerTy() && - DL.getTypeAllocSize(SIType) == - DL.getTypeAllocSize(AI->getAllocatedType())) { - // If this is a store of the entire alloca from an integer, rewrite it. - RewriteStoreUserOfWholeAlloca(SI, AI, NewElts); - } - continue; - } - - if (isa<SelectInst>(User) || isa<PHINode>(User)) { - // If we have a PHI user of the alloca itself (as opposed to a GEP or - // bitcast) we have to rewrite it. GEP and bitcast uses will be RAUW'd to - // the new pointer. - if (!isa<AllocaInst>(I)) continue; - - assert(Offset == 0 && NewElts[0] && - "Direct alloca use should have a zero offset"); - - // If we have a use of the alloca, we know the derived uses will be - // utilizing just the first element of the scalarized result. Insert a - // bitcast of the first alloca before the user as required. - AllocaInst *NewAI = NewElts[0]; - BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI); - NewAI->moveBefore(BCI); - TheUse = BCI; - continue; - } - } -} - -/// RewriteBitCast - Update a bitcast reference to the alloca being replaced -/// and recursively continue updating all of its uses. -void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset, - SmallVectorImpl<AllocaInst *> &NewElts) { - RewriteForScalarRepl(BC, AI, Offset, NewElts); - if (BC->getOperand(0) != AI) - return; - - // The bitcast references the original alloca. Replace its uses with - // references to the alloca containing offset zero (which is normally at - // index zero, but might not be in cases involving structs with elements - // of size zero). - Type *T = AI->getAllocatedType(); - uint64_t EltOffset = 0; - Type *IdxTy; - uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy, - BC->getModule()->getDataLayout()); - Instruction *Val = NewElts[Idx]; - if (Val->getType() != BC->getDestTy()) { - Val = new BitCastInst(Val, BC->getDestTy(), "", BC); - Val->takeName(BC); - } - BC->replaceAllUsesWith(Val); - DeadInsts.push_back(BC); -} - -/// FindElementAndOffset - Return the index of the element containing Offset -/// within the specified type, which must be either a struct or an array. -/// Sets T to the type of the element and Offset to the offset within that -/// element. IdxTy is set to the type of the index result to be used in a -/// GEP instruction. -uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset, Type *&IdxTy, - const DataLayout &DL) { - uint64_t Idx = 0; - - if (StructType *ST = dyn_cast<StructType>(T)) { - const StructLayout *Layout = DL.getStructLayout(ST); - Idx = Layout->getElementContainingOffset(Offset); - T = ST->getContainedType(Idx); - Offset -= Layout->getElementOffset(Idx); - IdxTy = Type::getInt32Ty(T->getContext()); - return Idx; - } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) { - T = AT->getElementType(); - uint64_t EltSize = DL.getTypeAllocSize(T); - Idx = Offset / EltSize; - Offset -= Idx * EltSize; - IdxTy = Type::getInt64Ty(T->getContext()); - return Idx; - } - VectorType *VT = cast<VectorType>(T); - T = VT->getElementType(); - uint64_t EltSize = DL.getTypeAllocSize(T); - Idx = Offset / EltSize; - Offset -= Idx * EltSize; - IdxTy = Type::getInt64Ty(T->getContext()); - return Idx; -} - -/// RewriteGEP - Check if this GEP instruction moves the pointer across -/// elements of the alloca that are being split apart, and if so, rewrite -/// the GEP to be relative to the new element. -void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset, - SmallVectorImpl<AllocaInst *> &NewElts) { - uint64_t OldOffset = Offset; - const DataLayout &DL = GEPI->getModule()->getDataLayout(); - SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end()); - // If the GEP was dynamic then it must have been a dynamic vector lookup. - // In this case, it must be the last GEP operand which is dynamic so keep that - // aside until we've found the constant GEP offset then add it back in at the - // end. - Value* NonConstantIdx = nullptr; - if (!GEPI->hasAllConstantIndices()) - NonConstantIdx = Indices.pop_back_val(); - Offset += DL.getIndexedOffsetInType(GEPI->getSourceElementType(), Indices); - - RewriteForScalarRepl(GEPI, AI, Offset, NewElts); - - Type *T = AI->getAllocatedType(); - Type *IdxTy; - uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy, DL); - if (GEPI->getOperand(0) == AI) - OldIdx = ~0ULL; // Force the GEP to be rewritten. - - T = AI->getAllocatedType(); - uint64_t EltOffset = Offset; - uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy, DL); - - // If this GEP does not move the pointer across elements of the alloca - // being split, then it does not needs to be rewritten. - if (Idx == OldIdx) - return; - - Type *i32Ty = Type::getInt32Ty(AI->getContext()); - SmallVector<Value*, 8> NewArgs; - NewArgs.push_back(Constant::getNullValue(i32Ty)); - while (EltOffset != 0) { - uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy, DL); - NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx)); - } - if (NonConstantIdx) { - Type* GepTy = T; - // This GEP has a dynamic index. We need to add "i32 0" to index through - // any structs or arrays in the original type until we get to the vector - // to index. - while (!isa<VectorType>(GepTy)) { - NewArgs.push_back(Constant::getNullValue(i32Ty)); - GepTy = cast<CompositeType>(GepTy)->getTypeAtIndex(0U); - } - NewArgs.push_back(NonConstantIdx); - } - Instruction *Val = NewElts[Idx]; - if (NewArgs.size() > 1) { - Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI); - Val->takeName(GEPI); - } - if (Val->getType() != GEPI->getType()) - Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI); - GEPI->replaceAllUsesWith(Val); - DeadInsts.push_back(GEPI); -} - -/// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it -/// to mark the lifetime of the scalarized memory. -void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI, - uint64_t Offset, - SmallVectorImpl<AllocaInst *> &NewElts) { - ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0)); - // Put matching lifetime markers on everything from Offset up to - // Offset+OldSize. - Type *AIType = AI->getAllocatedType(); - const DataLayout &DL = II->getModule()->getDataLayout(); - uint64_t NewOffset = Offset; - Type *IdxTy; - uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy, DL); - - IRBuilder<> Builder(II); - uint64_t Size = OldSize->getLimitedValue(); - - if (NewOffset) { - // Splice the first element and index 'NewOffset' bytes in. SROA will - // split the alloca again later. - unsigned AS = AI->getType()->getAddressSpace(); - Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy(AS)); - V = Builder.CreateGEP(Builder.getInt8Ty(), V, Builder.getInt64(NewOffset)); - - IdxTy = NewElts[Idx]->getAllocatedType(); - uint64_t EltSize = DL.getTypeAllocSize(IdxTy) - NewOffset; - if (EltSize > Size) { - EltSize = Size; - Size = 0; - } else { - Size -= EltSize; - } - if (II->getIntrinsicID() == Intrinsic::lifetime_start) - Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize)); - else - Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize)); - ++Idx; - } - - for (; Idx != NewElts.size() && Size; ++Idx) { - IdxTy = NewElts[Idx]->getAllocatedType(); - uint64_t EltSize = DL.getTypeAllocSize(IdxTy); - if (EltSize > Size) { - EltSize = Size; - Size = 0; - } else { - Size -= EltSize; - } - if (II->getIntrinsicID() == Intrinsic::lifetime_start) - Builder.CreateLifetimeStart(NewElts[Idx], - Builder.getInt64(EltSize)); - else - Builder.CreateLifetimeEnd(NewElts[Idx], - Builder.getInt64(EltSize)); - } - DeadInsts.push_back(II); -} - -/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI. -/// Rewrite it to copy or set the elements of the scalarized memory. -void -SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst, - AllocaInst *AI, - SmallVectorImpl<AllocaInst *> &NewElts) { - // If this is a memcpy/memmove, construct the other pointer as the - // appropriate type. The "Other" pointer is the pointer that goes to memory - // that doesn't have anything to do with the alloca that we are promoting. For - // memset, this Value* stays null. - Value *OtherPtr = nullptr; - unsigned MemAlignment = MI->getAlignment(); - if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy - if (Inst == MTI->getRawDest()) - OtherPtr = MTI->getRawSource(); - else { - assert(Inst == MTI->getRawSource()); - OtherPtr = MTI->getRawDest(); - } - } - - // If there is an other pointer, we want to convert it to the same pointer - // type as AI has, so we can GEP through it safely. - if (OtherPtr) { - unsigned AddrSpace = - cast<PointerType>(OtherPtr->getType())->getAddressSpace(); - - // Remove bitcasts and all-zero GEPs from OtherPtr. This is an - // optimization, but it's also required to detect the corner case where - // both pointer operands are referencing the same memory, and where - // OtherPtr may be a bitcast or GEP that currently being rewritten. (This - // function is only called for mem intrinsics that access the whole - // aggregate, so non-zero GEPs are not an issue here.) - OtherPtr = OtherPtr->stripPointerCasts(); - - // Copying the alloca to itself is a no-op: just delete it. - if (OtherPtr == AI || OtherPtr == NewElts[0]) { - // This code will run twice for a no-op memcpy -- once for each operand. - // Put only one reference to MI on the DeadInsts list. - for (SmallVectorImpl<Value *>::const_iterator I = DeadInsts.begin(), - E = DeadInsts.end(); I != E; ++I) - if (*I == MI) return; - DeadInsts.push_back(MI); - return; - } - - // If the pointer is not the right type, insert a bitcast to the right - // type. - Type *NewTy = PointerType::get(AI->getAllocatedType(), AddrSpace); - - if (OtherPtr->getType() != NewTy) - OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI); - } - - // Process each element of the aggregate. - bool SROADest = MI->getRawDest() == Inst; - - Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext())); - const DataLayout &DL = MI->getModule()->getDataLayout(); - - for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { - // If this is a memcpy/memmove, emit a GEP of the other element address. - Value *OtherElt = nullptr; - unsigned OtherEltAlign = MemAlignment; - - if (OtherPtr) { - Value *Idx[2] = { Zero, - ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) }; - OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, - OtherPtr->getName()+"."+Twine(i), - MI); - uint64_t EltOffset; - Type *OtherTy = AI->getAllocatedType(); - if (StructType *ST = dyn_cast<StructType>(OtherTy)) { - EltOffset = DL.getStructLayout(ST)->getElementOffset(i); - } else { - Type *EltTy = cast<SequentialType>(OtherTy)->getElementType(); - EltOffset = DL.getTypeAllocSize(EltTy) * i; - } - - // The alignment of the other pointer is the guaranteed alignment of the - // element, which is affected by both the known alignment of the whole - // mem intrinsic and the alignment of the element. If the alignment of - // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the - // known alignment is just 4 bytes. - OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset); - } - - AllocaInst *EltPtr = NewElts[i]; - Type *EltTy = EltPtr->getAllocatedType(); - - // If we got down to a scalar, insert a load or store as appropriate. - if (EltTy->isSingleValueType()) { - if (isa<MemTransferInst>(MI)) { - if (SROADest) { - // From Other to Alloca. - Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI); - new StoreInst(Elt, EltPtr, MI); - } else { - // From Alloca to Other. - Value *Elt = new LoadInst(EltPtr, "tmp", MI); - new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI); - } - continue; - } - assert(isa<MemSetInst>(MI)); - - // If the stored element is zero (common case), just store a null - // constant. - Constant *StoreVal; - if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) { - if (CI->isZero()) { - StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0> - } else { - // If EltTy is a vector type, get the element type. - Type *ValTy = EltTy->getScalarType(); - - // Construct an integer with the right value. - unsigned EltSize = DL.getTypeSizeInBits(ValTy); - APInt OneVal(EltSize, CI->getZExtValue()); - APInt TotalVal(OneVal); - // Set each byte. - for (unsigned i = 0; 8*i < EltSize; ++i) { - TotalVal = TotalVal.shl(8); - TotalVal |= OneVal; - } - - // Convert the integer value to the appropriate type. - StoreVal = ConstantInt::get(CI->getContext(), TotalVal); - if (ValTy->isPointerTy()) - StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy); - else if (ValTy->isFloatingPointTy()) - StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy); - assert(StoreVal->getType() == ValTy && "Type mismatch!"); - - // If the requested value was a vector constant, create it. - if (EltTy->isVectorTy()) { - unsigned NumElts = cast<VectorType>(EltTy)->getNumElements(); - StoreVal = ConstantVector::getSplat(NumElts, StoreVal); - } - } - new StoreInst(StoreVal, EltPtr, MI); - continue; - } - // Otherwise, if we're storing a byte variable, use a memset call for - // this element. - } - - unsigned EltSize = DL.getTypeAllocSize(EltTy); - if (!EltSize) - continue; - - IRBuilder<> Builder(MI); - - // Finally, insert the meminst for this element. - if (isa<MemSetInst>(MI)) { - Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize, - MI->isVolatile()); - } else { - assert(isa<MemTransferInst>(MI)); - Value *Dst = SROADest ? EltPtr : OtherElt; // Dest ptr - Value *Src = SROADest ? OtherElt : EltPtr; // Src ptr - - if (isa<MemCpyInst>(MI)) - Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile()); - else - Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile()); - } - } - DeadInsts.push_back(MI); -} - -/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that -/// overwrites the entire allocation. Extract out the pieces of the stored -/// integer and store them individually. -void -SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI, - SmallVectorImpl<AllocaInst *> &NewElts) { - // Extract each element out of the integer according to its structure offset - // and store the element value to the individual alloca. - Value *SrcVal = SI->getOperand(0); - Type *AllocaEltTy = AI->getAllocatedType(); - const DataLayout &DL = SI->getModule()->getDataLayout(); - uint64_t AllocaSizeBits = DL.getTypeAllocSizeInBits(AllocaEltTy); - - IRBuilder<> Builder(SI); - - // Handle tail padding by extending the operand - if (DL.getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits) - SrcVal = Builder.CreateZExt(SrcVal, - IntegerType::get(SI->getContext(), AllocaSizeBits)); - - DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI - << '\n'); - - // There are two forms here: AI could be an array or struct. Both cases - // have different ways to compute the element offset. - if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) { - const StructLayout *Layout = DL.getStructLayout(EltSTy); - - for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { - // Get the number of bits to shift SrcVal to get the value. - Type *FieldTy = EltSTy->getElementType(i); - uint64_t Shift = Layout->getElementOffsetInBits(i); - - if (DL.isBigEndian()) - Shift = AllocaSizeBits - Shift - DL.getTypeAllocSizeInBits(FieldTy); - - Value *EltVal = SrcVal; - if (Shift) { - Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift); - EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt"); - } - - // Truncate down to an integer of the right size. - uint64_t FieldSizeBits = DL.getTypeSizeInBits(FieldTy); - - // Ignore zero sized fields like {}, they obviously contain no data. - if (FieldSizeBits == 0) continue; - - if (FieldSizeBits != AllocaSizeBits) - EltVal = Builder.CreateTrunc(EltVal, - IntegerType::get(SI->getContext(), FieldSizeBits)); - Value *DestField = NewElts[i]; - if (EltVal->getType() == FieldTy) { - // Storing to an integer field of this size, just do it. - } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) { - // Bitcast to the right element type (for fp/vector values). - EltVal = Builder.CreateBitCast(EltVal, FieldTy); - } else { - // Otherwise, bitcast the dest pointer (for aggregates). - DestField = Builder.CreateBitCast(DestField, - PointerType::getUnqual(EltVal->getType())); - } - new StoreInst(EltVal, DestField, SI); - } - - } else { - ArrayType *ATy = cast<ArrayType>(AllocaEltTy); - Type *ArrayEltTy = ATy->getElementType(); - uint64_t ElementOffset = DL.getTypeAllocSizeInBits(ArrayEltTy); - uint64_t ElementSizeBits = DL.getTypeSizeInBits(ArrayEltTy); - - uint64_t Shift; - - if (DL.isBigEndian()) - Shift = AllocaSizeBits-ElementOffset; - else - Shift = 0; - - for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { - // Ignore zero sized fields like {}, they obviously contain no data. - if (ElementSizeBits == 0) continue; - - Value *EltVal = SrcVal; - if (Shift) { - Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift); - EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt"); - } - - // Truncate down to an integer of the right size. - if (ElementSizeBits != AllocaSizeBits) - EltVal = Builder.CreateTrunc(EltVal, - IntegerType::get(SI->getContext(), - ElementSizeBits)); - Value *DestField = NewElts[i]; - if (EltVal->getType() == ArrayEltTy) { - // Storing to an integer field of this size, just do it. - } else if (ArrayEltTy->isFloatingPointTy() || - ArrayEltTy->isVectorTy()) { - // Bitcast to the right element type (for fp/vector values). - EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy); - } else { - // Otherwise, bitcast the dest pointer (for aggregates). - DestField = Builder.CreateBitCast(DestField, - PointerType::getUnqual(EltVal->getType())); - } - new StoreInst(EltVal, DestField, SI); - - if (DL.isBigEndian()) - Shift -= ElementOffset; - else - Shift += ElementOffset; - } - } - - DeadInsts.push_back(SI); -} - -/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to -/// an integer. Load the individual pieces to form the aggregate value. -void -SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI, - SmallVectorImpl<AllocaInst *> &NewElts) { - // Extract each element out of the NewElts according to its structure offset - // and form the result value. - Type *AllocaEltTy = AI->getAllocatedType(); - const DataLayout &DL = LI->getModule()->getDataLayout(); - uint64_t AllocaSizeBits = DL.getTypeAllocSizeInBits(AllocaEltTy); - - DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI - << '\n'); - - // There are two forms here: AI could be an array or struct. Both cases - // have different ways to compute the element offset. - const StructLayout *Layout = nullptr; - uint64_t ArrayEltBitOffset = 0; - if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) { - Layout = DL.getStructLayout(EltSTy); - } else { - Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType(); - ArrayEltBitOffset = DL.getTypeAllocSizeInBits(ArrayEltTy); - } - - Value *ResultVal = - Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits)); - - for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { - // Load the value from the alloca. If the NewElt is an aggregate, cast - // the pointer to an integer of the same size before doing the load. - Value *SrcField = NewElts[i]; - Type *FieldTy = NewElts[i]->getAllocatedType(); - uint64_t FieldSizeBits = DL.getTypeSizeInBits(FieldTy); - - // Ignore zero sized fields like {}, they obviously contain no data. - if (FieldSizeBits == 0) continue; - - IntegerType *FieldIntTy = IntegerType::get(LI->getContext(), - FieldSizeBits); - if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() && - !FieldTy->isVectorTy()) - SrcField = new BitCastInst(SrcField, - PointerType::getUnqual(FieldIntTy), - "", LI); - SrcField = new LoadInst(SrcField, "sroa.load.elt", LI); - - // If SrcField is a fp or vector of the right size but that isn't an - // integer type, bitcast to an integer so we can shift it. - if (SrcField->getType() != FieldIntTy) - SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI); - - // Zero extend the field to be the same size as the final alloca so that - // we can shift and insert it. - if (SrcField->getType() != ResultVal->getType()) - SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI); - - // Determine the number of bits to shift SrcField. - uint64_t Shift; - if (Layout) // Struct case. - Shift = Layout->getElementOffsetInBits(i); - else // Array case. - Shift = i*ArrayEltBitOffset; - - if (DL.isBigEndian()) - Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth(); - - if (Shift) { - Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift); - SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI); - } - - // Don't create an 'or x, 0' on the first iteration. - if (!isa<Constant>(ResultVal) || - !cast<Constant>(ResultVal)->isNullValue()) - ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI); - else - ResultVal = SrcField; - } - - // Handle tail padding by truncating the result - if (DL.getTypeSizeInBits(LI->getType()) != AllocaSizeBits) - ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI); - - LI->replaceAllUsesWith(ResultVal); - DeadInsts.push_back(LI); -} - -/// HasPadding - Return true if the specified type has any structure or -/// alignment padding in between the elements that would be split apart -/// by SROA; return false otherwise. -static bool HasPadding(Type *Ty, const DataLayout &DL) { - if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { - Ty = ATy->getElementType(); - return DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty); - } - - // SROA currently handles only Arrays and Structs. - StructType *STy = cast<StructType>(Ty); - const StructLayout *SL = DL.getStructLayout(STy); - unsigned PrevFieldBitOffset = 0; - for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { - unsigned FieldBitOffset = SL->getElementOffsetInBits(i); - - // Check to see if there is any padding between this element and the - // previous one. - if (i) { - unsigned PrevFieldEnd = - PrevFieldBitOffset+DL.getTypeSizeInBits(STy->getElementType(i-1)); - if (PrevFieldEnd < FieldBitOffset) - return true; - } - PrevFieldBitOffset = FieldBitOffset; - } - // Check for tail padding. - if (unsigned EltCount = STy->getNumElements()) { - unsigned PrevFieldEnd = PrevFieldBitOffset + - DL.getTypeSizeInBits(STy->getElementType(EltCount-1)); - if (PrevFieldEnd < SL->getSizeInBits()) - return true; - } - return false; -} - -/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of -/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe, -/// or 1 if safe after canonicalization has been performed. -bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) { - // Loop over the use list of the alloca. We can only transform it if all of - // the users are safe to transform. - AllocaInfo Info(AI); - - isSafeForScalarRepl(AI, 0, Info); - if (Info.isUnsafe) { - DEBUG(dbgs() << "Cannot transform: " << *AI << '\n'); - return false; - } - - const DataLayout &DL = AI->getModule()->getDataLayout(); - - // Okay, we know all the users are promotable. If the aggregate is a memcpy - // source and destination, we have to be careful. In particular, the memcpy - // could be moving around elements that live in structure padding of the LLVM - // types, but may actually be used. In these cases, we refuse to promote the - // struct. - if (Info.isMemCpySrc && Info.isMemCpyDst && - HasPadding(AI->getAllocatedType(), DL)) - return false; - - // If the alloca never has an access to just *part* of it, but is accessed - // via loads and stores, then we should use ConvertToScalarInfo to promote - // the alloca instead of promoting each piece at a time and inserting fission - // and fusion code. - if (!Info.hasSubelementAccess && Info.hasALoadOrStore) { - // If the struct/array just has one element, use basic SRoA. - if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) { - if (ST->getNumElements() > 1) return false; - } else { - if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1) - return false; - } - } - - return true; -} |