summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms')
-rw-r--r--llvm/lib/Transforms/IPO/ArgumentPromotion.cpp31
-rw-r--r--llvm/lib/Transforms/IPO/ConstantMerge.cpp24
-rw-r--r--llvm/lib/Transforms/IPO/GlobalOpt.cpp19
-rw-r--r--llvm/lib/Transforms/IPO/LowerBitSets.cpp21
-rw-r--r--llvm/lib/Transforms/IPO/MergeFunctions.cpp53
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp88
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp14
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp64
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp135
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp48
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineInternal.h20
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp99
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp26
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp5
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp36
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp25
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp148
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp4
-rw-r--r--llvm/lib/Transforms/InstCombine/InstructionCombining.cpp180
-rw-r--r--llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp52
-rw-r--r--llvm/lib/Transforms/Instrumentation/BoundsChecking.cpp23
-rw-r--r--llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp18
-rw-r--r--llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp54
-rw-r--r--llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp55
-rw-r--r--llvm/lib/Transforms/ObjCARC/DependencyAnalysis.cpp16
-rw-r--r--llvm/lib/Transforms/ObjCARC/ObjCARC.h5
-rw-r--r--llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.cpp6
-rw-r--r--llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp8
-rw-r--r--llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.cpp28
-rw-r--r--llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.h5
-rw-r--r--llvm/lib/Transforms/ObjCARC/ProvenanceAnalysisEvaluator.cpp4
-rw-r--r--llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp7
-rw-r--r--llvm/lib/Transforms/Scalar/BDCE.cpp31
-rw-r--r--llvm/lib/Transforms/Scalar/ConstantProp.cpp3
-rw-r--r--llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp6
-rw-r--r--llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp57
-rw-r--r--llvm/lib/Transforms/Scalar/EarlyCSE.cpp14
-rw-r--r--llvm/lib/Transforms/Scalar/GVN.cpp130
-rw-r--r--llvm/lib/Transforms/Scalar/IndVarSimplify.cpp34
-rw-r--r--llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp9
-rw-r--r--llvm/lib/Transforms/Scalar/JumpThreading.cpp12
-rw-r--r--llvm/lib/Transforms/Scalar/LICM.cpp77
-rw-r--r--llvm/lib/Transforms/Scalar/LoadCombine.cpp30
-rw-r--r--llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp10
-rw-r--r--llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp2
-rw-r--r--llvm/lib/Transforms/Scalar/LoopRerollPass.cpp27
-rw-r--r--llvm/lib/Transforms/Scalar/LoopRotation.cpp7
-rw-r--r--llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp7
-rw-r--r--llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp5
-rw-r--r--llvm/lib/Transforms/Scalar/LoopUnswitch.cpp4
-rw-r--r--llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp83
-rw-r--r--llvm/lib/Transforms/Scalar/SCCP.cpp2
-rw-r--r--llvm/lib/Transforms/Scalar/SROA.cpp82
-rw-r--r--llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp189
-rw-r--r--llvm/lib/Transforms/Scalar/Scalarizer.cpp23
-rw-r--r--llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp56
-rw-r--r--llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp17
-rw-r--r--llvm/lib/Transforms/Scalar/Sink.cpp4
-rw-r--r--llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp7
-rw-r--r--llvm/lib/Transforms/Utils/BuildLibCalls.cpp127
-rw-r--r--llvm/lib/Transforms/Utils/CloneFunction.cpp30
-rw-r--r--llvm/lib/Transforms/Utils/InlineFunction.cpp22
-rw-r--r--llvm/lib/Transforms/Utils/Local.cpp20
-rw-r--r--llvm/lib/Transforms/Utils/LoopSimplify.cpp20
-rw-r--r--llvm/lib/Transforms/Utils/LoopUnroll.cpp6
-rw-r--r--llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp4
-rw-r--r--llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp5
-rw-r--r--llvm/lib/Transforms/Utils/SSAUpdater.cpp4
-rw-r--r--llvm/lib/Transforms/Utils/SimplifyCFG.cpp264
-rw-r--r--llvm/lib/Transforms/Utils/SimplifyInstructions.cpp2
-rw-r--r--llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp176
-rw-r--r--llvm/lib/Transforms/Vectorize/BBVectorize.cpp24
-rw-r--r--llvm/lib/Transforms/Vectorize/LoopVectorize.cpp116
-rw-r--r--llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp94
74 files changed, 1482 insertions, 1681 deletions
diff --git a/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp b/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
index 52cca0f2a2e..a0687738b16 100644
--- a/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
+++ b/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
@@ -69,16 +69,15 @@ namespace {
bool runOnSCC(CallGraphSCC &SCC) override;
static char ID; // Pass identification, replacement for typeid
explicit ArgPromotion(unsigned maxElements = 3)
- : CallGraphSCCPass(ID), DL(nullptr), maxElements(maxElements) {
+ : CallGraphSCCPass(ID), maxElements(maxElements) {
initializeArgPromotionPass(*PassRegistry::getPassRegistry());
}
/// A vector used to hold the indices of a single GEP instruction
typedef std::vector<uint64_t> IndicesVector;
- const DataLayout *DL;
private:
- bool isDenselyPacked(Type *type);
+ bool isDenselyPacked(Type *type, const DataLayout &DL);
bool canPaddingBeAccessed(Argument *Arg);
CallGraphNode *PromoteArguments(CallGraphNode *CGN);
bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
@@ -125,7 +124,7 @@ bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
}
/// \brief Checks if a type could have padding bytes.
-bool ArgPromotion::isDenselyPacked(Type *type) {
+bool ArgPromotion::isDenselyPacked(Type *type, const DataLayout &DL) {
// There is no size information, so be conservative.
if (!type->isSized())
@@ -133,7 +132,7 @@ bool ArgPromotion::isDenselyPacked(Type *type) {
// If the alloc size is not equal to the storage size, then there are padding
// bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
- if (!DL || DL->getTypeSizeInBits(type) != DL->getTypeAllocSizeInBits(type))
+ if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
return false;
if (!isa<CompositeType>(type))
@@ -141,19 +140,20 @@ bool ArgPromotion::isDenselyPacked(Type *type) {
// For homogenous sequential types, check for padding within members.
if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
- return isa<PointerType>(seqTy) || isDenselyPacked(seqTy->getElementType());
+ return isa<PointerType>(seqTy) ||
+ isDenselyPacked(seqTy->getElementType(), DL);
// Check for padding within and between elements of a struct.
StructType *StructTy = cast<StructType>(type);
- const StructLayout *Layout = DL->getStructLayout(StructTy);
+ const StructLayout *Layout = DL.getStructLayout(StructTy);
uint64_t StartPos = 0;
for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
Type *ElTy = StructTy->getElementType(i);
- if (!isDenselyPacked(ElTy))
+ if (!isDenselyPacked(ElTy, DL))
return false;
if (StartPos != Layout->getElementOffsetInBits(i))
return false;
- StartPos += DL->getTypeAllocSizeInBits(ElTy);
+ StartPos += DL.getTypeAllocSizeInBits(ElTy);
}
return true;
@@ -207,8 +207,6 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
// Make sure that it is local to this module.
if (!F || !F->hasLocalLinkage()) return nullptr;
- DL = &F->getParent()->getDataLayout();
-
// First check: see if there are any pointer arguments! If not, quick exit.
SmallVector<Argument*, 16> PointerArgs;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
@@ -235,6 +233,7 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
// IR, while in the callee the classification is determined dynamically based
// on the number of registers consumed so far.
if (F->isVarArg()) return nullptr;
+ const DataLayout &DL = F->getParent()->getDataLayout();
// Check to see which arguments are promotable. If an argument is promotable,
// add it to ArgsToPromote.
@@ -249,8 +248,8 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
// packed or if we can prove the padding bytes are never accessed. This does
// not apply to inalloca.
bool isSafeToPromote =
- PtrArg->hasByValAttr() &&
- (isDenselyPacked(AgTy) || !canPaddingBeAccessed(PtrArg));
+ PtrArg->hasByValAttr() &&
+ (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
if (isSafeToPromote) {
if (StructType *STy = dyn_cast<StructType>(AgTy)) {
if (maxElements > 0 && STy->getNumElements() > maxElements) {
@@ -309,9 +308,9 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
/// AllCallersPassInValidPointerForArgument - Return true if we can prove that
/// all callees pass in a valid pointer for the specified function argument.
-static bool AllCallersPassInValidPointerForArgument(Argument *Arg,
- const DataLayout *DL) {
+static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
Function *Callee = Arg->getParent();
+ const DataLayout &DL = Callee->getParent()->getDataLayout();
unsigned ArgNo = Arg->getArgNo();
@@ -429,7 +428,7 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
GEPIndicesSet ToPromote;
// If the pointer is always valid, any load with first index 0 is valid.
- if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg, DL))
+ if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg))
SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
// First, iterate the entry block and mark loads of (geps of) arguments as
diff --git a/llvm/lib/Transforms/IPO/ConstantMerge.cpp b/llvm/lib/Transforms/IPO/ConstantMerge.cpp
index 98077af2f54..8ce7646621f 100644
--- a/llvm/lib/Transforms/IPO/ConstantMerge.cpp
+++ b/llvm/lib/Transforms/IPO/ConstantMerge.cpp
@@ -52,7 +52,6 @@ namespace {
// alignment to a concrete value.
unsigned getAlignment(GlobalVariable *GV) const;
- const DataLayout *DL;
};
}
@@ -89,31 +88,22 @@ static bool IsBetterCanonical(const GlobalVariable &A,
return A.hasUnnamedAddr();
}
-bool ConstantMerge::hasKnownAlignment(GlobalVariable *GV) const {
- return DL || GV->getAlignment() != 0;
-}
-
unsigned ConstantMerge::getAlignment(GlobalVariable *GV) const {
unsigned Align = GV->getAlignment();
if (Align)
return Align;
- if (DL)
- return DL->getPreferredAlignment(GV);
- return 0;
+ return GV->getParent()->getDataLayout().getPreferredAlignment(GV);
}
bool ConstantMerge::runOnModule(Module &M) {
- DL = &M.getDataLayout();
// Find all the globals that are marked "used". These cannot be merged.
SmallPtrSet<const GlobalValue*, 8> UsedGlobals;
FindUsedValues(M.getGlobalVariable("llvm.used"), UsedGlobals);
FindUsedValues(M.getGlobalVariable("llvm.compiler.used"), UsedGlobals);
-
- // Map unique <constants, has-unknown-alignment> pairs to globals. We don't
- // want to merge globals of unknown alignment with those of explicit
- // alignment. If we have DataLayout, we always know the alignment.
- DenseMap<PointerIntPair<Constant*, 1, bool>, GlobalVariable*> CMap;
+
+ // Map unique constants to globals.
+ DenseMap<Constant *, GlobalVariable *> CMap;
// Replacements - This vector contains a list of replacements to perform.
SmallVector<std::pair<GlobalVariable*, GlobalVariable*>, 32> Replacements;
@@ -155,8 +145,7 @@ bool ConstantMerge::runOnModule(Module &M) {
Constant *Init = GV->getInitializer();
// Check to see if the initializer is already known.
- PointerIntPair<Constant*, 1, bool> Pair(Init, hasKnownAlignment(GV));
- GlobalVariable *&Slot = CMap[Pair];
+ GlobalVariable *&Slot = CMap[Init];
// If this is the first constant we find or if the old one is local,
// replace with the current one. If the current is externally visible
@@ -187,8 +176,7 @@ bool ConstantMerge::runOnModule(Module &M) {
Constant *Init = GV->getInitializer();
// Check to see if the initializer is already known.
- PointerIntPair<Constant*, 1, bool> Pair(Init, hasKnownAlignment(GV));
- GlobalVariable *Slot = CMap[Pair];
+ GlobalVariable *Slot = CMap[Init];
if (!Slot || Slot == GV)
continue;
diff --git a/llvm/lib/Transforms/IPO/GlobalOpt.cpp b/llvm/lib/Transforms/IPO/GlobalOpt.cpp
index 8f6f999e393..c62eeec41f8 100644
--- a/llvm/lib/Transforms/IPO/GlobalOpt.cpp
+++ b/llvm/lib/Transforms/IPO/GlobalOpt.cpp
@@ -86,7 +86,6 @@ namespace {
const GlobalStatus &GS);
bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
- // const DataLayout *DL;
TargetLibraryInfo *TLI;
SmallSet<const Comdat *, 8> NotDiscardableComdats;
};
@@ -319,7 +318,7 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
Constant *SubInit = nullptr;
if (!isa<ConstantExpr>(GEP->getOperand(0))) {
ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
- ConstantFoldInstruction(GEP, &DL, TLI));
+ ConstantFoldInstruction(GEP, DL, TLI));
if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
@@ -806,7 +805,7 @@ static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
TargetLibraryInfo *TLI) {
for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
if (Instruction *I = dyn_cast<Instruction>(*UI++))
- if (Constant *NewC = ConstantFoldInstruction(I, &DL, TLI)) {
+ if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
I->replaceAllUsesWith(NewC);
// Advance UI to the next non-I use to avoid invalidating it!
@@ -1490,7 +1489,7 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
// This eliminates dynamic allocation, avoids an indirection accessing the
// data, and exposes the resultant global to further GlobalOpt.
// We cannot optimize the malloc if we cannot determine malloc array size.
- Value *NElems = getMallocArraySize(CI, &DL, TLI, true);
+ Value *NElems = getMallocArraySize(CI, DL, TLI, true);
if (!NElems)
return false;
@@ -1544,7 +1543,7 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
CI = cast<CallInst>(Malloc);
}
- GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, &DL, TLI, true),
+ GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true),
DL, TLI);
return true;
}
@@ -1948,7 +1947,7 @@ bool GlobalOpt::OptimizeGlobalVars(Module &M) {
if (GV->hasInitializer())
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
auto &DL = M.getDataLayout();
- Constant *New = ConstantFoldConstantExpression(CE, &DL, TLI);
+ Constant *New = ConstantFoldConstantExpression(CE, DL, TLI);
if (New && New != CE)
GV->setInitializer(New);
}
@@ -2296,7 +2295,7 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
Constant *Ptr = getVal(SI->getOperand(1));
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
- Ptr = ConstantFoldConstantExpression(CE, &DL, TLI);
+ Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
DEBUG(dbgs() << "; To: " << *Ptr << "\n");
}
if (!isSimpleEnoughPointerToCommit(Ptr)) {
@@ -2341,7 +2340,7 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
- Ptr = ConstantFoldConstantExpression(CE, &DL, TLI);
+ Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
// If we can't improve the situation by introspecting NewTy,
// we have to give up.
@@ -2416,7 +2415,7 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
Constant *Ptr = getVal(LI->getOperand(0));
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
- Ptr = ConstantFoldConstantExpression(CE, &DL, TLI);
+ Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
DEBUG(dbgs() << "Found a constant pointer expression, constant "
"folding: " << *Ptr << "\n");
}
@@ -2600,7 +2599,7 @@ bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
if (!CurInst->use_empty()) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
- InstResult = ConstantFoldConstantExpression(CE, &DL, TLI);
+ InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
setVal(CurInst, InstResult);
}
diff --git a/llvm/lib/Transforms/IPO/LowerBitSets.cpp b/llvm/lib/Transforms/IPO/LowerBitSets.cpp
index 85a2ced85c5..9eb5cdba0e5 100644
--- a/llvm/lib/Transforms/IPO/LowerBitSets.cpp
+++ b/llvm/lib/Transforms/IPO/LowerBitSets.cpp
@@ -52,7 +52,7 @@ bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
}
bool BitSetInfo::containsValue(
- const DataLayout *DL,
+ const DataLayout &DL,
const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout, Value *V,
uint64_t COffset) const {
if (auto GV = dyn_cast<GlobalVariable>(V)) {
@@ -63,8 +63,8 @@ bool BitSetInfo::containsValue(
}
if (auto GEP = dyn_cast<GEPOperator>(V)) {
- APInt APOffset(DL->getPointerSizeInBits(0), 0);
- bool Result = GEP->accumulateConstantOffset(*DL, APOffset);
+ APInt APOffset(DL.getPointerSizeInBits(0), 0);
+ bool Result = GEP->accumulateConstantOffset(DL, APOffset);
if (!Result)
return false;
COffset += APOffset.getZExtValue();
@@ -186,7 +186,6 @@ struct LowerBitSets : public ModulePass {
Module *M;
- const DataLayout *DL;
IntegerType *Int1Ty;
IntegerType *Int8Ty;
IntegerType *Int32Ty;
@@ -234,14 +233,14 @@ ModulePass *llvm::createLowerBitSetsPass() { return new LowerBitSets; }
bool LowerBitSets::doInitialization(Module &Mod) {
M = &Mod;
- DL = &Mod.getDataLayout();
+ const DataLayout &DL = Mod.getDataLayout();
Int1Ty = Type::getInt1Ty(M->getContext());
Int8Ty = Type::getInt8Ty(M->getContext());
Int32Ty = Type::getInt32Ty(M->getContext());
Int32PtrTy = PointerType::getUnqual(Int32Ty);
Int64Ty = Type::getInt64Ty(M->getContext());
- IntPtrTy = DL->getIntPtrType(M->getContext(), 0);
+ IntPtrTy = DL.getIntPtrType(M->getContext(), 0);
BitSetNM = M->getNamedMetadata("llvm.bitsets");
@@ -396,6 +395,7 @@ Value *LowerBitSets::lowerBitSetCall(
GlobalVariable *CombinedGlobal,
const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout) {
Value *Ptr = CI->getArgOperand(0);
+ const DataLayout &DL = M->getDataLayout();
if (BSI.containsValue(DL, GlobalLayout, Ptr))
return ConstantInt::getTrue(CombinedGlobal->getParent()->getContext());
@@ -430,8 +430,8 @@ Value *LowerBitSets::lowerBitSetCall(
Value *OffsetSHR =
B.CreateLShr(PtrOffset, ConstantInt::get(IntPtrTy, BSI.AlignLog2));
Value *OffsetSHL = B.CreateShl(
- PtrOffset, ConstantInt::get(IntPtrTy, DL->getPointerSizeInBits(0) -
- BSI.AlignLog2));
+ PtrOffset,
+ ConstantInt::get(IntPtrTy, DL.getPointerSizeInBits(0) - BSI.AlignLog2));
BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);
}
@@ -466,9 +466,10 @@ void LowerBitSets::buildBitSetsFromGlobals(
const std::vector<GlobalVariable *> &Globals) {
// Build a new global with the combined contents of the referenced globals.
std::vector<Constant *> GlobalInits;
+ const DataLayout &DL = M->getDataLayout();
for (GlobalVariable *G : Globals) {
GlobalInits.push_back(G->getInitializer());
- uint64_t InitSize = DL->getTypeAllocSize(G->getInitializer()->getType());
+ uint64_t InitSize = DL.getTypeAllocSize(G->getInitializer()->getType());
// Compute the amount of padding required to align the next element to the
// next power of 2.
@@ -490,7 +491,7 @@ void LowerBitSets::buildBitSetsFromGlobals(
GlobalValue::PrivateLinkage, NewInit);
const StructLayout *CombinedGlobalLayout =
- DL->getStructLayout(cast<StructType>(NewInit->getType()));
+ DL.getStructLayout(cast<StructType>(NewInit->getType()));
// Compute the offsets of the original globals within the new global.
DenseMap<GlobalVariable *, uint64_t> GlobalLayout;
diff --git a/llvm/lib/Transforms/IPO/MergeFunctions.cpp b/llvm/lib/Transforms/IPO/MergeFunctions.cpp
index 71c53efb584..596674d6816 100644
--- a/llvm/lib/Transforms/IPO/MergeFunctions.cpp
+++ b/llvm/lib/Transforms/IPO/MergeFunctions.cpp
@@ -127,9 +127,8 @@ namespace {
/// side of claiming that two functions are different).
class FunctionComparator {
public:
- FunctionComparator(const DataLayout *DL, const Function *F1,
- const Function *F2)
- : FnL(F1), FnR(F2), DL(DL) {}
+ FunctionComparator(const Function *F1, const Function *F2)
+ : FnL(F1), FnR(F2) {}
/// Test whether the two functions have equivalent behaviour.
int compare();
@@ -292,8 +291,7 @@ private:
/// Parts to be compared for each comparison stage,
/// most significant stage first:
/// 1. Address space. As numbers.
- /// 2. Constant offset, (if "DataLayout *DL" field is not NULL,
- /// using GEPOperator::accumulateConstantOffset method).
+ /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method).
/// 3. Pointer operand type (using cmpType method).
/// 4. Number of operands.
/// 5. Compare operands, using cmpValues method.
@@ -354,8 +352,6 @@ private:
// The two functions undergoing comparison.
const Function *FnL, *FnR;
- const DataLayout *DL;
-
/// Assign serial numbers to values from left function, and values from
/// right function.
/// Explanation:
@@ -394,14 +390,13 @@ private:
class FunctionNode {
AssertingVH<Function> F;
- const DataLayout *DL;
public:
- FunctionNode(Function *F, const DataLayout *DL) : F(F), DL(DL) {}
+ FunctionNode(Function *F) : F(F) {}
Function *getFunc() const { return F; }
void release() { F = 0; }
bool operator<(const FunctionNode &RHS) const {
- return (FunctionComparator(DL, F, RHS.getFunc()).compare()) == -1;
+ return (FunctionComparator(F, RHS.getFunc()).compare()) == -1;
}
};
}
@@ -620,10 +615,11 @@ int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
PointerType *PTyL = dyn_cast<PointerType>(TyL);
PointerType *PTyR = dyn_cast<PointerType>(TyR);
- if (DL) {
- if (PTyL && PTyL->getAddressSpace() == 0) TyL = DL->getIntPtrType(TyL);
- if (PTyR && PTyR->getAddressSpace() == 0) TyR = DL->getIntPtrType(TyR);
- }
+ const DataLayout &DL = FnL->getParent()->getDataLayout();
+ if (PTyL && PTyL->getAddressSpace() == 0)
+ TyL = DL.getIntPtrType(TyL);
+ if (PTyR && PTyR->getAddressSpace() == 0)
+ TyR = DL.getIntPtrType(TyR);
if (TyL == TyR)
return 0;
@@ -855,13 +851,12 @@ int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
// When we have target data, we can reduce the GEP down to the value in bytes
// added to the address.
- if (DL) {
- unsigned BitWidth = DL->getPointerSizeInBits(ASL);
- APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
- if (GEPL->accumulateConstantOffset(*DL, OffsetL) &&
- GEPR->accumulateConstantOffset(*DL, OffsetR))
- return cmpAPInts(OffsetL, OffsetR);
- }
+ const DataLayout &DL = FnL->getParent()->getDataLayout();
+ unsigned BitWidth = DL.getPointerSizeInBits(ASL);
+ APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
+ if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
+ GEPR->accumulateConstantOffset(DL, OffsetR))
+ return cmpAPInts(OffsetL, OffsetR);
if (int Res = cmpNumbers((uint64_t)GEPL->getPointerOperand()->getType(),
(uint64_t)GEPR->getPointerOperand()->getType()))
@@ -1122,9 +1117,6 @@ private:
/// to modify it.
FnTreeType FnTree;
- /// DataLayout for more accurate GEP comparisons. May be NULL.
- const DataLayout *DL;
-
/// Whether or not the target supports global aliases.
bool HasGlobalAliases;
};
@@ -1152,8 +1144,8 @@ bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
Function *F1 = cast<Function>(*I);
Function *F2 = cast<Function>(*J);
- int Res1 = FunctionComparator(DL, F1, F2).compare();
- int Res2 = FunctionComparator(DL, F2, F1).compare();
+ int Res1 = FunctionComparator(F1, F2).compare();
+ int Res2 = FunctionComparator(F2, F1).compare();
// If F1 <= F2, then F2 >= F1, otherwise report failure.
if (Res1 != -Res2) {
@@ -1174,8 +1166,8 @@ bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
continue;
Function *F3 = cast<Function>(*K);
- int Res3 = FunctionComparator(DL, F1, F3).compare();
- int Res4 = FunctionComparator(DL, F2, F3).compare();
+ int Res3 = FunctionComparator(F1, F3).compare();
+ int Res4 = FunctionComparator(F2, F3).compare();
bool Transitive = true;
@@ -1212,7 +1204,6 @@ bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
bool MergeFunctions::runOnModule(Module &M) {
bool Changed = false;
- DL = &M.getDataLayout();
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
@@ -1419,7 +1410,7 @@ void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
// that was already inserted.
bool MergeFunctions::insert(Function *NewFunction) {
std::pair<FnTreeType::iterator, bool> Result =
- FnTree.insert(FunctionNode(NewFunction, DL));
+ FnTree.insert(FunctionNode(NewFunction));
if (Result.second) {
DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n');
@@ -1456,7 +1447,7 @@ bool MergeFunctions::insert(Function *NewFunction) {
void MergeFunctions::remove(Function *F) {
// We need to make sure we remove F, not a function "equal" to F per the
// function equality comparator.
- FnTreeType::iterator found = FnTree.find(FunctionNode(F, DL));
+ FnTreeType::iterator found = FnTree.find(FunctionNode(F));
size_t Erased = 0;
if (found != FnTree.end() && found->getFunc() == F) {
Erased = 1;
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
index 752f79da985..c608f84bc7b 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
@@ -891,7 +891,7 @@ static bool checkRippleForAdd(const APInt &Op0KnownZero,
/// This basically requires proving that the add in the original type would not
/// overflow to change the sign bit or have a carry out.
bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
- Instruction *CxtI) {
+ Instruction &CxtI) {
// There are different heuristics we can use for this. Here are some simple
// ones.
@@ -909,18 +909,18 @@ bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
//
// Since the carry into the most significant position is always equal to
// the carry out of the addition, there is no signed overflow.
- if (ComputeNumSignBits(LHS, 0, CxtI) > 1 &&
- ComputeNumSignBits(RHS, 0, CxtI) > 1)
+ if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
+ ComputeNumSignBits(RHS, 0, &CxtI) > 1)
return true;
unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
APInt LHSKnownZero(BitWidth, 0);
APInt LHSKnownOne(BitWidth, 0);
- computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, CxtI);
+ computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
APInt RHSKnownZero(BitWidth, 0);
APInt RHSKnownOne(BitWidth, 0);
- computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, CxtI);
+ computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
// Addition of two 2's compliment numbers having opposite signs will never
// overflow.
@@ -943,21 +943,21 @@ bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
/// overflow to change the sign bit or have a carry out.
/// TODO: Handle this for Vectors.
bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
- Instruction *CxtI) {
+ Instruction &CxtI) {
// If LHS and RHS each have at least two sign bits, the subtraction
// cannot overflow.
- if (ComputeNumSignBits(LHS, 0, CxtI) > 1 &&
- ComputeNumSignBits(RHS, 0, CxtI) > 1)
+ if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
+ ComputeNumSignBits(RHS, 0, &CxtI) > 1)
return true;
unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
APInt LHSKnownZero(BitWidth, 0);
APInt LHSKnownOne(BitWidth, 0);
- computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, CxtI);
+ computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
APInt RHSKnownZero(BitWidth, 0);
APInt RHSKnownOne(BitWidth, 0);
- computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, CxtI);
+ computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
// Subtraction of two 2's compliment numbers having identical signs will
// never overflow.
@@ -972,12 +972,14 @@ bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
/// \brief Return true if we can prove that:
/// (sub LHS, RHS) === (sub nuw LHS, RHS)
bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
- Instruction *CxtI) {
+ Instruction &CxtI) {
// If the LHS is negative and the RHS is non-negative, no unsigned wrap.
bool LHSKnownNonNegative, LHSKnownNegative;
bool RHSKnownNonNegative, RHSKnownNegative;
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0, CxtI);
- ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0, CxtI);
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0,
+ &CxtI);
+ ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0,
+ &CxtI);
if (LHSKnownNegative && RHSKnownNonNegative)
return true;
@@ -1046,15 +1048,15 @@ static Value *checkForNegativeOperand(BinaryOperator &I,
}
Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
- bool Changed = SimplifyAssociativeOrCommutative(I);
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ bool Changed = SimplifyAssociativeOrCommutative(I);
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- if (Value *V = SimplifyVectorOp(I))
- return ReplaceInstUsesWith(I, V);
+ if (Value *V = SimplifyVectorOp(I))
+ return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
- I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
- return ReplaceInstUsesWith(I, V);
+ if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
+ I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
+ return ReplaceInstUsesWith(I, V);
// (A*B)+(A*C) -> A*(B+C) etc
if (Value *V = SimplifyUsingDistributiveLaws(I))
@@ -1243,7 +1245,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
- WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, &I)) {
+ WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
// Insert the new, smaller add.
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
CI, "addconv");
@@ -1256,10 +1258,11 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// Only do this if x/y have the same type, if at last one of them has a
// single use (so we don't increase the number of sexts), and if the
// integer add will not overflow.
- if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
+ if (LHSConv->getOperand(0)->getType() ==
+ RHSConv->getOperand(0)->getType() &&
(LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
- RHSConv->getOperand(0), &I)) {
+ RHSConv->getOperand(0), I)) {
// Insert the new integer add.
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0), "addconv");
@@ -1307,7 +1310,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// TODO(jingyue): Consider WillNotOverflowSignedAdd and
// WillNotOverflowUnsignedAdd to reduce the number of invocations of
// computeKnownBits.
- if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, &I)) {
+ if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) {
Changed = true;
I.setHasNoSignedWrap(true);
}
@@ -1371,7 +1374,7 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
- WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, &I)) {
+ WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
// Insert the new integer add.
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
CI, "addconv");
@@ -1384,10 +1387,11 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
// Only do this if x/y have the same type, if at last one of them has a
// single use (so we don't increase the number of int->fp conversions),
// and if the integer add will not overflow.
- if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
+ if (LHSConv->getOperand(0)->getType() ==
+ RHSConv->getOperand(0)->getType() &&
(LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
- RHSConv->getOperand(0), &I)) {
+ RHSConv->getOperand(0), I)) {
// Insert the new integer add.
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0),"addconv");
@@ -1436,8 +1440,6 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
///
Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
Type *Ty) {
- assert(DL && "Must have target data info for this");
-
// If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
// this.
bool Swapped = false;
@@ -1662,26 +1664,24 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
// Optimize pointer differences into the same array into a size. Consider:
// &A[10] - &A[0]: we should compile this to "10".
- if (DL) {
- Value *LHSOp, *RHSOp;
- if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
- match(Op1, m_PtrToInt(m_Value(RHSOp))))
- if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
- return ReplaceInstUsesWith(I, Res);
-
- // trunc(p)-trunc(q) -> trunc(p-q)
- if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
- match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
- if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
- return ReplaceInstUsesWith(I, Res);
- }
+ Value *LHSOp, *RHSOp;
+ if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
+ match(Op1, m_PtrToInt(m_Value(RHSOp))))
+ if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
+ return ReplaceInstUsesWith(I, Res);
+
+ // trunc(p)-trunc(q) -> trunc(p-q)
+ if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
+ match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
+ if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
+ return ReplaceInstUsesWith(I, Res);
bool Changed = false;
- if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, &I)) {
+ if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) {
Changed = true;
I.setHasNoSignedWrap(true);
}
- if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, &I)) {
+ if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) {
Changed = true;
I.setHasNoUnsignedWrap(true);
}
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
index 863eeafe3b9..3273c661553 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -1709,15 +1709,17 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
Value *Mask = nullptr;
Value *Masked = nullptr;
if (LAnd->getOperand(0) == RAnd->getOperand(0) &&
- isKnownToBeAPowerOfTwo(LAnd->getOperand(1), false, 0, AC, CxtI, DT) &&
- isKnownToBeAPowerOfTwo(RAnd->getOperand(1), false, 0, AC, CxtI, DT)) {
+ isKnownToBeAPowerOfTwo(LAnd->getOperand(1), DL, false, 0, AC, CxtI,
+ DT) &&
+ isKnownToBeAPowerOfTwo(RAnd->getOperand(1), DL, false, 0, AC, CxtI,
+ DT)) {
Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1));
Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask);
} else if (LAnd->getOperand(1) == RAnd->getOperand(1) &&
- isKnownToBeAPowerOfTwo(LAnd->getOperand(0), false, 0, AC, CxtI,
- DT) &&
- isKnownToBeAPowerOfTwo(RAnd->getOperand(0), false, 0, AC, CxtI,
- DT)) {
+ isKnownToBeAPowerOfTwo(LAnd->getOperand(0), DL, false, 0, AC,
+ CxtI, DT) &&
+ isKnownToBeAPowerOfTwo(RAnd->getOperand(0), DL, false, 0, AC,
+ CxtI, DT)) {
Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0));
Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask);
}
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp b/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
index 05e71628da9..a32ccabe4a7 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
@@ -15,7 +15,6 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/IR/CallSite.h"
-#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Statepoint.h"
@@ -61,8 +60,8 @@ static Type *reduceToSingleValueType(Type *T) {
}
Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
- unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, AC, MI, DT);
- unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, AC, MI, DT);
+ unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, AC, DT);
+ unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, AC, DT);
unsigned MinAlign = std::min(DstAlign, SrcAlign);
unsigned CopyAlign = MI->getAlignment();
@@ -108,7 +107,7 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
if (StrippedDest != MI->getArgOperand(0)) {
Type *SrcETy = cast<PointerType>(StrippedDest->getType())
->getElementType();
- if (DL && SrcETy->isSized() && DL->getTypeStoreSize(SrcETy) == Size) {
+ if (SrcETy->isSized() && DL.getTypeStoreSize(SrcETy) == Size) {
// The SrcETy might be something like {{{double}}} or [1 x double]. Rip
// down through these levels if so.
SrcETy = reduceToSingleValueType(SrcETy);
@@ -156,7 +155,7 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
}
Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
- unsigned Alignment = getKnownAlignment(MI->getDest(), DL, AC, MI, DT);
+ unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, AC, DT);
if (MI->getAlignment() < Alignment) {
MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
Alignment, false));
@@ -386,7 +385,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// can prove that it will never overflow.
if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow) {
Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
- if (WillNotOverflowSignedAdd(LHS, RHS, II)) {
+ if (WillNotOverflowSignedAdd(LHS, RHS, *II)) {
return CreateOverflowTuple(II, Builder->CreateNSWAdd(LHS, RHS), false);
}
}
@@ -407,11 +406,11 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
}
}
if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
- if (WillNotOverflowSignedSub(LHS, RHS, II)) {
+ if (WillNotOverflowSignedSub(LHS, RHS, *II)) {
return CreateOverflowTuple(II, Builder->CreateNSWSub(LHS, RHS), false);
}
} else {
- if (WillNotOverflowUnsignedSub(LHS, RHS, II)) {
+ if (WillNotOverflowUnsignedSub(LHS, RHS, *II)) {
return CreateOverflowTuple(II, Builder->CreateNUWSub(LHS, RHS), false);
}
}
@@ -452,7 +451,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
}
if (II->getIntrinsicID() == Intrinsic::smul_with_overflow) {
Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
- if (WillNotOverflowSignedMul(LHS, RHS, II)) {
+ if (WillNotOverflowSignedMul(LHS, RHS, *II)) {
return CreateOverflowTuple(II, Builder->CreateNSWMul(LHS, RHS), false);
}
}
@@ -544,7 +543,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::ppc_altivec_lvx:
case Intrinsic::ppc_altivec_lvxl:
// Turn PPC lvx -> load if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, AC, II, DT) >=
+ if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
16) {
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
PointerType::getUnqual(II->getType()));
@@ -561,7 +560,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::ppc_altivec_stvx:
case Intrinsic::ppc_altivec_stvxl:
// Turn stvx -> store if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, AC, II, DT) >=
+ if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
16) {
Type *OpPtrTy =
PointerType::getUnqual(II->getArgOperand(0)->getType());
@@ -578,7 +577,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
}
case Intrinsic::ppc_qpx_qvlfs:
// Turn PPC QPX qvlfs -> load if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, AC, II, DT) >=
+ if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
16) {
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
PointerType::getUnqual(II->getType()));
@@ -587,7 +586,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
break;
case Intrinsic::ppc_qpx_qvlfd:
// Turn PPC QPX qvlfd -> load if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, AC, II, DT) >=
+ if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, AC, DT) >=
32) {
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
PointerType::getUnqual(II->getType()));
@@ -596,7 +595,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
break;
case Intrinsic::ppc_qpx_qvstfs:
// Turn PPC QPX qvstfs -> store if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, AC, II, DT) >=
+ if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
16) {
Type *OpPtrTy =
PointerType::getUnqual(II->getArgOperand(0)->getType());
@@ -606,7 +605,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
break;
case Intrinsic::ppc_qpx_qvstfd:
// Turn PPC QPX qvstfd -> store if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, AC, II, DT) >=
+ if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, AC, DT) >=
32) {
Type *OpPtrTy =
PointerType::getUnqual(II->getArgOperand(0)->getType());
@@ -618,7 +617,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::x86_sse2_storeu_pd:
case Intrinsic::x86_sse2_storeu_dq:
// Turn X86 storeu -> store if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, AC, II, DT) >=
+ if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
16) {
Type *OpPtrTy =
PointerType::getUnqual(II->getArgOperand(1)->getType());
@@ -735,9 +734,8 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
unsigned LowHalfElts = VWidth / 2;
APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
APInt UndefElts(VWidth, 0);
- if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
- InputDemandedElts,
- UndefElts)) {
+ if (Value *TmpV = SimplifyDemandedVectorElts(
+ II->getArgOperand(0), InputDemandedElts, UndefElts)) {
II->setArgOperand(0, TmpV);
return II;
}
@@ -945,12 +943,12 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
unsigned Idx =
cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
Idx &= 31; // Match the hardware behavior.
- if (DL && DL->isLittleEndian())
+ if (DL.isLittleEndian())
Idx = 31 - Idx;
if (!ExtractedElts[Idx]) {
- Value *Op0ToUse = (DL && DL->isLittleEndian()) ? Op1 : Op0;
- Value *Op1ToUse = (DL && DL->isLittleEndian()) ? Op0 : Op1;
+ Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
+ Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
ExtractedElts[Idx] =
Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
Builder->getInt32(Idx&15));
@@ -979,7 +977,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::arm_neon_vst2lane:
case Intrinsic::arm_neon_vst3lane:
case Intrinsic::arm_neon_vst4lane: {
- unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, AC, II, DT);
+ unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, AC, DT);
unsigned AlignArg = II->getNumArgOperands() - 1;
ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
@@ -1118,7 +1116,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
RHS->getType()->isPointerTy() &&
cast<Constant>(RHS)->isNullValue()) {
LoadInst* LI = cast<LoadInst>(LHS);
- if (isValidAssumeForContext(II, LI, DL, DT)) {
+ if (isValidAssumeForContext(II, LI, DT)) {
MDNode *MD = MDNode::get(II->getContext(), None);
LI->setMetadata(LLVMContext::MD_nonnull, MD);
return EraseInstFromFunction(*II);
@@ -1192,8 +1190,8 @@ Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
/// isSafeToEliminateVarargsCast - If this cast does not affect the value
/// passed through the varargs area, we can eliminate the use of the cast.
static bool isSafeToEliminateVarargsCast(const CallSite CS,
- const CastInst * const CI,
- const DataLayout * const DL,
+ const DataLayout &DL,
+ const CastInst *const CI,
const int ix) {
if (!CI->isLosslessCast())
return false;
@@ -1217,7 +1215,7 @@ static bool isSafeToEliminateVarargsCast(const CallSite CS,
Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
if (!SrcTy->isSized() || !DstTy->isSized())
return false;
- if (!DL || DL->getTypeAllocSize(SrcTy) != DL->getTypeAllocSize(DstTy))
+ if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
return false;
return true;
}
@@ -1226,7 +1224,7 @@ static bool isSafeToEliminateVarargsCast(const CallSite CS,
// Currently we're only working with the checking functions, memcpy_chk,
// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
// strcat_chk and strncat_chk.
-Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const DataLayout *DL) {
+Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
if (!CI->getCalledFunction()) return nullptr;
auto InstCombineRAUW = [this](Instruction *From, Value *With) {
@@ -1391,7 +1389,7 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
E = CS.arg_end(); I != E; ++I, ++ix) {
CastInst *CI = dyn_cast<CastInst>(*I);
- if (CI && isSafeToEliminateVarargsCast(CS, CI, DL, ix)) {
+ if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
*I = CI->getOperand(0);
Changed = true;
}
@@ -1408,7 +1406,7 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
// this. None of these calls are seen as possibly dead so go ahead and
// delete the instruction now.
if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
- Instruction *I = tryOptimizeCall(CI, DL);
+ Instruction *I = tryOptimizeCall(CI);
// If we changed something return the result, etc. Otherwise let
// the fallthrough check.
if (I) return EraseInstFromFunction(*I);
@@ -1512,12 +1510,12 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
Attribute::ByVal)) {
PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
- if (!ParamPTy || !ParamPTy->getElementType()->isSized() || !DL)
+ if (!ParamPTy || !ParamPTy->getElementType()->isSized())
return false;
Type *CurElTy = ActTy->getPointerElementType();
- if (DL->getTypeAllocSize(CurElTy) !=
- DL->getTypeAllocSize(ParamPTy->getElementType()))
+ if (DL.getTypeAllocSize(CurElTy) !=
+ DL.getTypeAllocSize(ParamPTy->getElementType()))
return false;
}
}
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp b/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
index 3e2b71945a9..23dbe59087e 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -80,9 +80,6 @@ static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
/// try to eliminate the cast by moving the type information into the alloc.
Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
AllocaInst &AI) {
- // This requires DataLayout to get the alloca alignment and size information.
- if (!DL) return nullptr;
-
PointerType *PTy = cast<PointerType>(CI.getType());
BuilderTy AllocaBuilder(*Builder);
@@ -93,8 +90,8 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
Type *CastElTy = PTy->getElementType();
if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
- unsigned AllocElTyAlign = DL->getABITypeAlignment(AllocElTy);
- unsigned CastElTyAlign = DL->getABITypeAlignment(CastElTy);
+ unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
+ unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
if (CastElTyAlign < AllocElTyAlign) return nullptr;
// If the allocation has multiple uses, only promote it if we are strictly
@@ -102,14 +99,14 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
// same, we open the door to infinite loops of various kinds.
if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
- uint64_t AllocElTySize = DL->getTypeAllocSize(AllocElTy);
- uint64_t CastElTySize = DL->getTypeAllocSize(CastElTy);
+ uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
+ uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
// If the allocation has multiple uses, only promote it if we're not
// shrinking the amount of memory being allocated.
- uint64_t AllocElTyStoreSize = DL->getTypeStoreSize(AllocElTy);
- uint64_t CastElTyStoreSize = DL->getTypeStoreSize(CastElTy);
+ uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
+ uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
// See if we can satisfy the modulus by pulling a scale out of the array
@@ -215,7 +212,8 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
PHINode *OPN = cast<PHINode>(I);
PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
- Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
+ Value *V =
+ EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
NPN->addIncoming(V, OPN->getIncomingBlock(i));
}
Res = NPN;
@@ -234,25 +232,22 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
/// This function is a wrapper around CastInst::isEliminableCastPair. It
/// simply extracts arguments and returns what that function returns.
static Instruction::CastOps
-isEliminableCastPair(
- const CastInst *CI, ///< The first cast instruction
- unsigned opcode, ///< The opcode of the second cast instruction
- Type *DstTy, ///< The target type for the second cast instruction
- const DataLayout *DL ///< The target data for pointer size
-) {
-
+isEliminableCastPair(const CastInst *CI, ///< First cast instruction
+ unsigned opcode, ///< Opcode for the second cast
+ Type *DstTy, ///< Target type for the second cast
+ const DataLayout &DL) {
Type *SrcTy = CI->getOperand(0)->getType(); // A from above
Type *MidTy = CI->getType(); // B from above
// Get the opcodes of the two Cast instructions
Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
Instruction::CastOps secondOp = Instruction::CastOps(opcode);
- Type *SrcIntPtrTy = DL && SrcTy->isPtrOrPtrVectorTy() ?
- DL->getIntPtrType(SrcTy) : nullptr;
- Type *MidIntPtrTy = DL && MidTy->isPtrOrPtrVectorTy() ?
- DL->getIntPtrType(MidTy) : nullptr;
- Type *DstIntPtrTy = DL && DstTy->isPtrOrPtrVectorTy() ?
- DL->getIntPtrType(DstTy) : nullptr;
+ Type *SrcIntPtrTy =
+ SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
+ Type *MidIntPtrTy =
+ MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
+ Type *DstIntPtrTy =
+ DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
DstTy, SrcIntPtrTy, MidIntPtrTy,
DstIntPtrTy);
@@ -298,7 +293,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
// eliminate it now.
if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
if (Instruction::CastOps opc =
- isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
+ isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
// The first cast (CSrc) is eliminable so we need to fix up or replace
// the second cast (CI). CSrc will then have a good chance of being dead.
return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
@@ -314,8 +309,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
if (isa<PHINode>(Src)) {
// We don't do this if this would create a PHI node with an illegal type if
// it is currently legal.
- if (!Src->getType()->isIntegerTy() ||
- !CI.getType()->isIntegerTy() ||
+ if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
ShouldChangeType(CI.getType(), Src->getType()))
if (Instruction *NV = FoldOpIntoPhi(CI))
return NV;
@@ -1419,18 +1413,15 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
// If the source integer type is not the intptr_t type for this target, do a
// trunc or zext to the intptr_t type, then inttoptr of it. This allows the
// cast to be exposed to other transforms.
-
- if (DL) {
- unsigned AS = CI.getAddressSpace();
- if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
- DL->getPointerSizeInBits(AS)) {
- Type *Ty = DL->getIntPtrType(CI.getContext(), AS);
- if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
- Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
-
- Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
- return new IntToPtrInst(P, CI.getType());
- }
+ unsigned AS = CI.getAddressSpace();
+ if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
+ DL.getPointerSizeInBits(AS)) {
+ Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
+ if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
+ Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
+
+ Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
+ return new IntToPtrInst(P, CI.getType());
}
if (Instruction *I = commonCastTransforms(CI))
@@ -1460,25 +1451,19 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
return &CI;
}
- if (!DL)
- return commonCastTransforms(CI);
-
// If the GEP has a single use, and the base pointer is a bitcast, and the
// GEP computes a constant offset, see if we can convert these three
// instructions into fewer. This typically happens with unions and other
// non-type-safe code.
unsigned AS = GEP->getPointerAddressSpace();
- unsigned OffsetBits = DL->getPointerSizeInBits(AS);
+ unsigned OffsetBits = DL.getPointerSizeInBits(AS);
APInt Offset(OffsetBits, 0);
BitCastInst *BCI = dyn_cast<BitCastInst>(GEP->getOperand(0));
- if (GEP->hasOneUse() &&
- BCI &&
- GEP->accumulateConstantOffset(*DL, Offset)) {
+ if (GEP->hasOneUse() && BCI && GEP->accumulateConstantOffset(DL, Offset)) {
// Get the base pointer input of the bitcast, and the type it points to.
Value *OrigBase = BCI->getOperand(0);
SmallVector<Value*, 8> NewIndices;
- if (FindElementAtOffset(OrigBase->getType(),
- Offset.getSExtValue(),
+ if (FindElementAtOffset(OrigBase->getType(), Offset.getSExtValue(),
NewIndices)) {
// If we were able to index down into an element, create the GEP
// and bitcast the result. This eliminates one bitcast, potentially
@@ -1504,16 +1489,13 @@ Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
// do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
// to be exposed to other transforms.
- if (!DL)
- return commonPointerCastTransforms(CI);
-
Type *Ty = CI.getType();
unsigned AS = CI.getPointerAddressSpace();
- if (Ty->getScalarSizeInBits() == DL->getPointerSizeInBits(AS))
+ if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
return commonPointerCastTransforms(CI);
- Type *PtrTy = DL->getIntPtrType(CI.getContext(), AS);
+ Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
if (Ty->isVectorTy()) // Handle vectors of pointers.
PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
@@ -1597,8 +1579,8 @@ static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
/// This returns false if the pattern can't be matched or true if it can,
/// filling in Elements with the elements found here.
static bool CollectInsertionElements(Value *V, unsigned Shift,
- SmallVectorImpl<Value*> &Elements,
- Type *VecEltTy, InstCombiner &IC) {
+ SmallVectorImpl<Value *> &Elements,
+ Type *VecEltTy, bool isBigEndian) {
assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
"Shift should be a multiple of the element type size");
@@ -1614,7 +1596,7 @@ static bool CollectInsertionElements(Value *V, unsigned Shift,
return true;
unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
- if (IC.getDataLayout()->isBigEndian())
+ if (isBigEndian)
ElementIndex = Elements.size() - ElementIndex - 1;
// Fail if multiple elements are inserted into this slot.
@@ -1634,7 +1616,7 @@ static bool CollectInsertionElements(Value *V, unsigned Shift,
// it to the right type so it gets properly inserted.
if (NumElts == 1)
return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
- Shift, Elements, VecEltTy, IC);
+ Shift, Elements, VecEltTy, isBigEndian);
// Okay, this is a constant that covers multiple elements. Slice it up into
// pieces and insert each element-sized piece into the vector.
@@ -1649,7 +1631,8 @@ static bool CollectInsertionElements(Value *V, unsigned Shift,
Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
ShiftI));
Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
- if (!CollectInsertionElements(Piece, ShiftI, Elements, VecEltTy, IC))
+ if (!CollectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
+ isBigEndian))
return false;
}
return true;
@@ -1662,28 +1645,28 @@ static bool CollectInsertionElements(Value *V, unsigned Shift,
switch (I->getOpcode()) {
default: return false; // Unhandled case.
case Instruction::BitCast:
- return CollectInsertionElements(I->getOperand(0), Shift,
- Elements, VecEltTy, IC);
+ return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
+ isBigEndian);
case Instruction::ZExt:
if (!isMultipleOfTypeSize(
I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
VecEltTy))
return false;
- return CollectInsertionElements(I->getOperand(0), Shift,
- Elements, VecEltTy, IC);
+ return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
+ isBigEndian);
case Instruction::Or:
- return CollectInsertionElements(I->getOperand(0), Shift,
- Elements, VecEltTy, IC) &&
- CollectInsertionElements(I->getOperand(1), Shift,
- Elements, VecEltTy, IC);
+ return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
+ isBigEndian) &&
+ CollectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
+ isBigEndian);
case Instruction::Shl: {
// Must be shifting by a constant that is a multiple of the element size.
ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
if (!CI) return false;
Shift += CI->getZExtValue();
if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
- return CollectInsertionElements(I->getOperand(0), Shift,
- Elements, VecEltTy, IC);
+ return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
+ isBigEndian);
}
}
@@ -1706,15 +1689,13 @@ static bool CollectInsertionElements(Value *V, unsigned Shift,
/// Into two insertelements that do "buildvector{%inc, %inc5}".
static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
InstCombiner &IC) {
- // We need to know the target byte order to perform this optimization.
- if (!IC.getDataLayout()) return nullptr;
-
VectorType *DestVecTy = cast<VectorType>(CI.getType());
Value *IntInput = CI.getOperand(0);
SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
if (!CollectInsertionElements(IntInput, 0, Elements,
- DestVecTy->getElementType(), IC))
+ DestVecTy->getElementType(),
+ IC.getDataLayout().isBigEndian()))
return nullptr;
// If we succeeded, we know that all of the element are specified by Elements
@@ -1734,10 +1715,8 @@ static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
/// bitcast. The various long double bitcasts can't get in here.
-static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
- // We need to know the target byte order to perform this optimization.
- if (!IC.getDataLayout()) return nullptr;
-
+static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI, InstCombiner &IC,
+ const DataLayout &DL) {
Value *Src = CI.getOperand(0);
Type *DestTy = CI.getType();
@@ -1760,7 +1739,7 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
}
unsigned Elt = 0;
- if (IC.getDataLayout()->isBigEndian())
+ if (DL.isBigEndian())
Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1;
return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
}
@@ -1784,7 +1763,7 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
}
unsigned Elt = ShAmt->getZExtValue() / DestWidth;
- if (IC.getDataLayout()->isBigEndian())
+ if (DL.isBigEndian())
Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt;
return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
}
@@ -1839,7 +1818,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
// Try to optimize int -> float bitcasts.
if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
- if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
+ if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this, DL))
return I;
if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp b/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
index f48d89b426b..3434a62d9e1 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -229,10 +229,6 @@ static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
Instruction *InstCombiner::
FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
CmpInst &ICI, ConstantInt *AndCst) {
- // We need TD information to know the pointer size unless this is inbounds.
- if (!GEP->isInBounds() && !DL)
- return nullptr;
-
Constant *Init = GV->getInitializer();
if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
return nullptr;
@@ -303,7 +299,6 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
// the array, this will fully represent all the comparison results.
uint64_t MagicBitvector = 0;
-
// Scan the array and see if one of our patterns matches.
Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
@@ -398,7 +393,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
// index down like the GEP would do implicitly. We don't have to do this for
// an inbounds GEP because the index can't be out of range.
if (!GEP->isInBounds()) {
- Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
+ Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
Idx = Builder->CreateTrunc(Idx, IntPtrTy);
@@ -487,10 +482,8 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
// - Default to i32
if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
Ty = Idx->getType();
- else if (DL)
- Ty = DL->getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
- else if (ArrayElementCount <= 32)
- Ty = Type::getInt32Ty(Init->getContext());
+ else
+ Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
if (Ty) {
Value *V = Builder->CreateIntCast(Idx, Ty, false);
@@ -514,8 +507,8 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
///
/// If we can't emit an optimized form for this expression, this returns null.
///
-static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
- const DataLayout &DL = *IC.getDataLayout();
+static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
+ const DataLayout &DL) {
gep_type_iterator GTI = gep_type_begin(GEP);
// Check to see if this gep only has a single variable index. If so, and if
@@ -628,12 +621,12 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
RHS = RHS->stripPointerCasts();
Value *PtrBase = GEPLHS->getOperand(0);
- if (DL && PtrBase == RHS && GEPLHS->isInBounds()) {
+ if (PtrBase == RHS && GEPLHS->isInBounds()) {
// ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
// This transformation (ignoring the base and scales) is valid because we
// know pointers can't overflow since the gep is inbounds. See if we can
// output an optimized form.
- Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
+ Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL);
// If not, synthesize the offset the hard way.
if (!Offset)
@@ -661,11 +654,11 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
// If we're comparing GEPs with two base pointers that only differ in type
// and both GEPs have only constant indices or just one use, then fold
// the compare with the adjusted indices.
- if (DL && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
+ if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
(GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
(GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
PtrBase->stripPointerCasts() ==
- GEPRHS->getOperand(0)->stripPointerCasts()) {
+ GEPRHS->getOperand(0)->stripPointerCasts()) {
Value *LOffset = EmitGEPOffset(GEPLHS);
Value *ROffset = EmitGEPOffset(GEPRHS);
@@ -733,9 +726,7 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
// Only lower this if the icmp is the only user of the GEP or if we expect
// the result to fold to a constant!
- if (DL &&
- GEPsInBounds &&
- (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
+ if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
(isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
// ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
Value *L = EmitGEPOffset(GEPLHS);
@@ -1928,8 +1919,8 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
// Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
// integer type is the same size as the pointer type.
- if (DL && LHSCI->getOpcode() == Instruction::PtrToInt &&
- DL->getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
+ if (LHSCI->getOpcode() == Instruction::PtrToInt &&
+ DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
Value *RHSOp = nullptr;
if (PtrToIntOperator *RHSC = dyn_cast<PtrToIntOperator>(ICI.getOperand(1))) {
Value *RHSCIOp = RHSC->getOperand(0);
@@ -2660,8 +2651,8 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
unsigned BitWidth = 0;
if (Ty->isIntOrIntVectorTy())
BitWidth = Ty->getScalarSizeInBits();
- else if (DL) // Pointers require DL info to get their size.
- BitWidth = DL->getTypeSizeInBits(Ty->getScalarType());
+ else // Get pointer size.
+ BitWidth = DL.getTypeSizeInBits(Ty->getScalarType());
bool isSignBit = false;
@@ -2774,8 +2765,8 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
Op0KnownZero, Op0KnownOne, 0))
return &I;
if (SimplifyDemandedBits(I.getOperandUse(1),
- APInt::getAllOnesValue(BitWidth),
- Op1KnownZero, Op1KnownOne, 0))
+ APInt::getAllOnesValue(BitWidth), Op1KnownZero,
+ Op1KnownOne, 0))
return &I;
// Given the known and unknown bits, compute a range that the LHS could be
@@ -3094,9 +3085,8 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
}
case Instruction::IntToPtr:
// icmp pred inttoptr(X), null -> icmp pred X, 0
- if (RHSC->isNullValue() && DL &&
- DL->getIntPtrType(RHSC->getType()) ==
- LHSI->getOperand(0)->getType())
+ if (RHSC->isNullValue() &&
+ DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
Constant::getNullValue(LHSI->getOperand(0)->getType()));
break;
@@ -3428,7 +3418,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// if A is a power of 2.
if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
match(Op1, m_Zero()) &&
- isKnownToBeAPowerOfTwo(A, false, 0, AC, &I, DT) && I.isEquality())
+ isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality())
return new ICmpInst(I.getInversePredicate(),
Builder->CreateAnd(A, B),
Op1);
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineInternal.h b/llvm/lib/Transforms/InstCombine/InstCombineInternal.h
index 2fd53180b75..8c784ab1e68 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineInternal.h
+++ b/llvm/lib/Transforms/InstCombine/InstCombineInternal.h
@@ -158,10 +158,10 @@ private:
AssumptionCache *AC;
TargetLibraryInfo *TLI;
DominatorTree *DT;
+ const DataLayout &DL;
// Optional analyses. When non-null, these can both be used to do better
// combining and will be updated to reflect any changes.
- const DataLayout *DL;
LoopInfo *LI;
bool MadeIRChange;
@@ -169,7 +169,7 @@ private:
public:
InstCombiner(InstCombineWorklist &Worklist, BuilderTy *Builder,
bool MinimizeSize, AssumptionCache *AC, TargetLibraryInfo *TLI,
- DominatorTree *DT, const DataLayout *DL, LoopInfo *LI)
+ DominatorTree *DT, const DataLayout &DL, LoopInfo *LI)
: Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
AC(AC), TLI(TLI), DT(DT), DL(DL), LI(LI), MadeIRChange(false) {}
@@ -180,7 +180,7 @@ public:
AssumptionCache *getAssumptionCache() const { return AC; }
- const DataLayout *getDataLayout() const { return DL; }
+ const DataLayout &getDataLayout() const { return DL; }
DominatorTree *getDominatorTree() const { return DT; }
@@ -330,17 +330,17 @@ private:
Type *Ty);
Instruction *visitCallSite(CallSite CS);
- Instruction *tryOptimizeCall(CallInst *CI, const DataLayout *DL);
+ Instruction *tryOptimizeCall(CallInst *CI);
bool transformConstExprCastCall(CallSite CS);
Instruction *transformCallThroughTrampoline(CallSite CS,
IntrinsicInst *Tramp);
Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
bool DoXform = true);
Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
- bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS, Instruction *CxtI);
- bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction *CxtI);
- bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction *CxtI);
- bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction *CxtI);
+ bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS, Instruction &CxtI);
+ bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction &CxtI);
+ bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction &CxtI);
+ bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction &CxtI);
Value *EmitGEPOffset(User *GEP);
Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
@@ -423,7 +423,7 @@ public:
}
void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- unsigned Depth = 0, Instruction *CxtI = nullptr) const {
+ unsigned Depth, Instruction *CxtI) const {
return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
DT);
}
@@ -468,7 +468,7 @@ private:
/// bits.
Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero,
APInt &KnownOne, unsigned Depth,
- Instruction *CxtI = nullptr);
+ Instruction *CxtI);
bool SimplifyDemandedBits(Use &U, APInt DemandedMask, APInt &KnownZero,
APInt &KnownOne, unsigned Depth = 0);
/// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
index b9eb986b2da..3813d8dd0cc 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
@@ -167,14 +167,11 @@ isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
// Ensure that the alloca array size argument has type intptr_t, so that
// any casting is exposed early.
- if (DL) {
- Type *IntPtrTy = DL->getIntPtrType(AI.getType());
- if (AI.getArraySize()->getType() != IntPtrTy) {
- Value *V = Builder->CreateIntCast(AI.getArraySize(),
- IntPtrTy, false);
- AI.setOperand(0, V);
- return &AI;
- }
+ Type *IntPtrTy = DL.getIntPtrType(AI.getType());
+ if (AI.getArraySize()->getType() != IntPtrTy) {
+ Value *V = Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false);
+ AI.setOperand(0, V);
+ return &AI;
}
// Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
@@ -194,9 +191,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
// Now that I is pointing to the first non-allocation-inst in the block,
// insert our getelementptr instruction...
//
- Type *IdxTy = DL
- ? DL->getIntPtrType(AI.getType())
- : Type::getInt64Ty(AI.getContext());
+ Type *IdxTy = DL.getIntPtrType(AI.getType());
Value *NullIdx = Constant::getNullValue(IdxTy);
Value *Idx[2] = { NullIdx, NullIdx };
Instruction *GEP =
@@ -211,15 +206,15 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
}
}
- if (DL && AI.getAllocatedType()->isSized()) {
+ if (AI.getAllocatedType()->isSized()) {
// If the alignment is 0 (unspecified), assign it the preferred alignment.
if (AI.getAlignment() == 0)
- AI.setAlignment(DL->getPrefTypeAlignment(AI.getAllocatedType()));
+ AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
// Move all alloca's of zero byte objects to the entry block and merge them
// together. Note that we only do this for alloca's, because malloc should
// allocate and return a unique pointer, even for a zero byte allocation.
- if (DL->getTypeAllocSize(AI.getAllocatedType()) == 0) {
+ if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
// For a zero sized alloca there is no point in doing an array allocation.
// This is helpful if the array size is a complicated expression not used
// elsewhere.
@@ -237,7 +232,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
// dominance as the array size was forced to a constant earlier already.
AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
- DL->getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
+ DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
AI.moveBefore(FirstInst);
return &AI;
}
@@ -246,7 +241,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
// assign it the preferred alignment.
if (EntryAI->getAlignment() == 0)
EntryAI->setAlignment(
- DL->getPrefTypeAlignment(EntryAI->getAllocatedType()));
+ DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
// Replace this zero-sized alloca with the one at the start of the entry
// block after ensuring that the address will be aligned enough for both
// types.
@@ -270,7 +265,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
SmallVector<Instruction *, 4> ToDelete;
if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
unsigned SourceAlign = getOrEnforceKnownAlignment(
- Copy->getSource(), AI.getAlignment(), DL, AC, &AI, DT);
+ Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT);
if (AI.getAlignment() <= SourceAlign) {
DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
@@ -439,22 +434,22 @@ static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
return nullptr;
Type *Ty = LI.getType();
+ const DataLayout &DL = IC.getDataLayout();
// Try to canonicalize loads which are only ever stored to operate over
// integers instead of any other type. We only do this when the loaded type
// is sized and has a size exactly the same as its store size and the store
// size is a legal integer type.
- const DataLayout *DL = IC.getDataLayout();
- if (!Ty->isIntegerTy() && Ty->isSized() && DL &&
- DL->isLegalInteger(DL->getTypeStoreSizeInBits(Ty)) &&
- DL->getTypeStoreSizeInBits(Ty) == DL->getTypeSizeInBits(Ty)) {
+ if (!Ty->isIntegerTy() && Ty->isSized() &&
+ DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
+ DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) {
if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) {
auto *SI = dyn_cast<StoreInst>(U);
return SI && SI->getPointerOperand() != &LI;
})) {
LoadInst *NewLoad = combineLoadToNewType(
IC, LI,
- Type::getIntNTy(LI.getContext(), DL->getTypeStoreSizeInBits(Ty)));
+ Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
// Replace all the stores with stores of the newly loaded value.
for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
auto *SI = cast<StoreInst>(*UI++);
@@ -489,7 +484,7 @@ static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
//
// FIXME: This should probably live in ValueTracking (or similar).
static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
- const DataLayout *DL) {
+ const DataLayout &DL) {
SmallPtrSet<Value *, 4> Visited;
SmallVector<Value *, 4> Worklist(1, V);
@@ -529,7 +524,7 @@ static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
if (!CS)
return false;
- uint64_t TypeSize = DL->getTypeAllocSize(AI->getAllocatedType());
+ uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
// Make sure that, even if the multiplication below would wrap as an
// uint64_t, we still do the right thing.
if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
@@ -541,7 +536,7 @@ static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
return false;
- uint64_t InitSize = DL->getTypeAllocSize(GV->getType()->getElementType());
+ uint64_t InitSize = DL.getTypeAllocSize(GV->getType()->getElementType());
if (InitSize > MaxSize)
return false;
continue;
@@ -570,8 +565,7 @@ static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
// offsets those indices implied.
static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
Instruction *MemI, unsigned &Idx) {
- const DataLayout *DL = IC.getDataLayout();
- if (GEPI->getNumOperands() < 2 || !DL)
+ if (GEPI->getNumOperands() < 2)
return false;
// Find the first non-zero index of a GEP. If all indices are zero, return
@@ -603,7 +597,8 @@ static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
GetElementPtrInst::getIndexedType(GEPI->getOperand(0)->getType(), Ops);
if (!AllocTy || !AllocTy->isSized())
return false;
- uint64_t TyAllocSize = DL->getTypeAllocSize(AllocTy);
+ const DataLayout &DL = IC.getDataLayout();
+ uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
// If there are more indices after the one we might replace with a zero, make
// sure they're all non-negative. If any of them are negative, the overall
@@ -665,18 +660,16 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
return Res;
// Attempt to improve the alignment.
- if (DL) {
- unsigned KnownAlign = getOrEnforceKnownAlignment(
- Op, DL->getPrefTypeAlignment(LI.getType()), DL, AC, &LI, DT);
- unsigned LoadAlign = LI.getAlignment();
- unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
- DL->getABITypeAlignment(LI.getType());
-
- if (KnownAlign > EffectiveLoadAlign)
- LI.setAlignment(KnownAlign);
- else if (LoadAlign == 0)
- LI.setAlignment(EffectiveLoadAlign);
- }
+ unsigned KnownAlign = getOrEnforceKnownAlignment(
+ Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT);
+ unsigned LoadAlign = LI.getAlignment();
+ unsigned EffectiveLoadAlign =
+ LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
+
+ if (KnownAlign > EffectiveLoadAlign)
+ LI.setAlignment(KnownAlign);
+ else if (LoadAlign == 0)
+ LI.setAlignment(EffectiveLoadAlign);
// Replace GEP indices if possible.
if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
@@ -738,8 +731,8 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
// load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
unsigned Align = LI.getAlignment();
- if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, DL) &&
- isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, DL)) {
+ if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align) &&
+ isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align)) {
LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
SI->getOperand(1)->getName()+".val");
LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
@@ -845,18 +838,16 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
return EraseInstFromFunction(SI);
// Attempt to improve the alignment.
- if (DL) {
- unsigned KnownAlign = getOrEnforceKnownAlignment(
- Ptr, DL->getPrefTypeAlignment(Val->getType()), DL, AC, &SI, DT);
- unsigned StoreAlign = SI.getAlignment();
- unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
- DL->getABITypeAlignment(Val->getType());
-
- if (KnownAlign > EffectiveStoreAlign)
- SI.setAlignment(KnownAlign);
- else if (StoreAlign == 0)
- SI.setAlignment(EffectiveStoreAlign);
- }
+ unsigned KnownAlign = getOrEnforceKnownAlignment(
+ Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT);
+ unsigned StoreAlign = SI.getAlignment();
+ unsigned EffectiveStoreAlign =
+ StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
+
+ if (KnownAlign > EffectiveStoreAlign)
+ SI.setAlignment(KnownAlign);
+ else if (StoreAlign == 0)
+ SI.setAlignment(EffectiveStoreAlign);
// Replace GEP indices if possible.
if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
index 40aa7c5f454..35513f1ed31 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -26,7 +26,7 @@ using namespace PatternMatch;
/// where it is known to be non-zero. If this allows us to simplify the
/// computation, do so and return the new operand, otherwise return null.
static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
- Instruction *CxtI) {
+ Instruction &CxtI) {
// If V has multiple uses, then we would have to do more analysis to determine
// if this is safe. For example, the use could be in dynamically unreached
// code.
@@ -47,8 +47,8 @@ static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
// inexact. Similarly for <<.
if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
if (I->isLogicalShift() &&
- isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0,
- IC.getAssumptionCache(), CxtI,
+ isKnownToBeAPowerOfTwo(I->getOperand(0), IC.getDataLayout(), false, 0,
+ IC.getAssumptionCache(), &CxtI,
IC.getDominatorTree())) {
// We know that this is an exact/nuw shift and that the input is a
// non-zero context as well.
@@ -126,7 +126,7 @@ static Constant *getLogBase2Vector(ConstantDataVector *CV) {
/// \brief Return true if we can prove that:
/// (mul LHS, RHS) === (mul nsw LHS, RHS)
bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS,
- Instruction *CxtI) {
+ Instruction &CxtI) {
// Multiplying n * m significant bits yields a result of n + m significant
// bits. If the total number of significant bits does not exceed the
// result bit width (minus 1), there is no overflow.
@@ -137,8 +137,8 @@ bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS,
// Note that underestimating the number of sign bits gives a more
// conservative answer.
- unsigned SignBits = ComputeNumSignBits(LHS, 0, CxtI) +
- ComputeNumSignBits(RHS, 0, CxtI);
+ unsigned SignBits =
+ ComputeNumSignBits(LHS, 0, &CxtI) + ComputeNumSignBits(RHS, 0, &CxtI);
// First handle the easy case: if we have enough sign bits there's
// definitely no overflow.
@@ -157,8 +157,8 @@ bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS,
// For simplicity we just check if at least one side is not negative.
bool LHSNonNegative, LHSNegative;
bool RHSNonNegative, RHSNegative;
- ComputeSignBit(LHS, LHSNonNegative, LHSNegative, /*Depth=*/0, CxtI);
- ComputeSignBit(RHS, RHSNonNegative, RHSNegative, /*Depth=*/0, CxtI);
+ ComputeSignBit(LHS, LHSNonNegative, LHSNegative, /*Depth=*/0, &CxtI);
+ ComputeSignBit(RHS, RHSNonNegative, RHSNegative, /*Depth=*/0, &CxtI);
if (LHSNonNegative || RHSNonNegative)
return true;
}
@@ -375,7 +375,7 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
}
}
- if (!I.hasNoSignedWrap() && WillNotOverflowSignedMul(Op0, Op1, &I)) {
+ if (!I.hasNoSignedWrap() && WillNotOverflowSignedMul(Op0, Op1, I)) {
Changed = true;
I.setHasNoSignedWrap(true);
}
@@ -780,7 +780,7 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// The RHS is known non-zero.
- if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, &I)) {
+ if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
I.setOperand(1, V);
return &I;
}
@@ -1155,7 +1155,7 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
return BO;
}
- if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, AC, &I, DT)) {
+ if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, AC, &I, DT)) {
// X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
// Safe because the only negative value (1 << Y) can take on is
// INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
@@ -1338,7 +1338,7 @@ Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// The RHS is known non-zero.
- if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, &I)) {
+ if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
I.setOperand(1, V);
return &I;
}
@@ -1385,7 +1385,7 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) {
I.getType());
// X urem Y -> X and Y-1, where Y is a power of 2,
- if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, AC, &I, DT)) {
+ if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, AC, &I, DT)) {
Constant *N1 = Constant::getAllOnesValue(I.getType());
Value *Add = Builder->CreateAdd(Op1, N1);
return BinaryOperator::CreateAnd(Op0, Add);
diff --git a/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp b/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
index 0e73db8c240..76f8927dd8a 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
@@ -15,7 +15,6 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/IR/DataLayout.h"
using namespace llvm;
#define DEBUG_TYPE "instcombine"
@@ -891,8 +890,8 @@ Instruction *InstCombiner::visitPHINode(PHINode &PN) {
// it is only used by trunc or trunc(lshr) operations. If so, we split the
// PHI into the various pieces being extracted. This sort of thing is
// introduced when SROA promotes an aggregate to a single large integer type.
- if (PN.getType()->isIntegerTy() && DL &&
- !DL->isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
+ if (PN.getType()->isIntegerTy() &&
+ !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
return Res;
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp b/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
index 02f1e75f1b8..b28611f3604 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
@@ -312,9 +312,9 @@ Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
/// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
/// replaced with RepOp.
static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
- const DataLayout *TD,
const TargetLibraryInfo *TLI,
- DominatorTree *DT, AssumptionCache *AC) {
+ const DataLayout &DL, DominatorTree *DT,
+ AssumptionCache *AC) {
// Trivial replacement.
if (V == Op)
return RepOp;
@@ -326,18 +326,18 @@ static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
// If this is a binary operator, try to simplify it with the replaced op.
if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
if (B->getOperand(0) == Op)
- return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI);
+ return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), DL, TLI);
if (B->getOperand(1) == Op)
- return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI);
+ return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, DL, TLI);
}
// Same for CmpInsts.
if (CmpInst *C = dyn_cast<CmpInst>(I)) {
if (C->getOperand(0) == Op)
- return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD,
+ return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), DL,
TLI, DT, AC);
if (C->getOperand(1) == Op)
- return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD,
+ return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, DL,
TLI, DT, AC);
}
@@ -361,14 +361,14 @@ static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
if (ConstOps.size() == I->getNumOperands()) {
if (CmpInst *C = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
- ConstOps[1], TD, TLI);
+ ConstOps[1], DL, TLI);
if (LoadInst *LI = dyn_cast<LoadInst>(I))
if (!LI->isVolatile())
- return ConstantFoldLoadFromConstPtr(ConstOps[0], TD);
+ return ConstantFoldLoadFromConstPtr(ConstOps[0], DL);
- return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
- ConstOps, TD, TLI);
+ return ConstantFoldInstOperands(I->getOpcode(), I->getType(), ConstOps,
+ DL, TLI);
}
}
@@ -635,25 +635,25 @@ Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
// arms of the select. See if substituting this value into the arm and
// simplifying the result yields the same value as the other arm.
if (Pred == ICmpInst::ICMP_EQ) {
- if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI, DT, AC) ==
+ if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TLI, DL, DT, AC) ==
TrueVal ||
- SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI, DT, AC) ==
+ SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TLI, DL, DT, AC) ==
TrueVal)
return ReplaceInstUsesWith(SI, FalseVal);
- if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI, DT, AC) ==
+ if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TLI, DL, DT, AC) ==
FalseVal ||
- SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI, DT, AC) ==
+ SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TLI, DL, DT, AC) ==
FalseVal)
return ReplaceInstUsesWith(SI, FalseVal);
} else if (Pred == ICmpInst::ICMP_NE) {
- if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI, DT, AC) ==
+ if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TLI, DL, DT, AC) ==
FalseVal ||
- SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI, DT, AC) ==
+ SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TLI, DL, DT, AC) ==
FalseVal)
return ReplaceInstUsesWith(SI, TrueVal);
- if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI, DT, AC) ==
+ if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TLI, DL, DT, AC) ==
TrueVal ||
- SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI, DT, AC) ==
+ SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TLI, DL, DT, AC) ==
TrueVal)
return ReplaceInstUsesWith(SI, TrueVal);
}
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp b/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
index b4976e0983c..a414ec600ab 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
@@ -187,7 +187,7 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
/// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
/// this value inserts the new computation that produces the shifted value.
static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
- InstCombiner &IC) {
+ InstCombiner &IC, const DataLayout &DL) {
// We can always evaluate constants shifted.
if (Constant *C = dyn_cast<Constant>(V)) {
if (isLeftShift)
@@ -196,8 +196,7 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
V = IC.Builder->CreateLShr(C, NumBits);
// If we got a constantexpr back, try to simplify it with TD info.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- V = ConstantFoldConstantExpression(CE, IC.getDataLayout(),
- IC.getTargetLibraryInfo());
+ V = ConstantFoldConstantExpression(CE, DL, IC.getTargetLibraryInfo());
return V;
}
@@ -210,8 +209,10 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
case Instruction::Or:
case Instruction::Xor:
// Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
- I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC));
- I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
+ I->setOperand(
+ 0, GetShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
+ I->setOperand(
+ 1, GetShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
return I;
case Instruction::Shl: {
@@ -297,8 +298,10 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
}
case Instruction::Select:
- I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
- I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC));
+ I->setOperand(
+ 1, GetShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
+ I->setOperand(
+ 2, GetShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
return I;
case Instruction::PHI: {
// We can change a phi if we can change all operands. Note that we never
@@ -306,8 +309,8 @@ static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
// instructions with a single use.
PHINode *PN = cast<PHINode>(I);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i),
- NumBits, isLeftShift, IC));
+ PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i), NumBits,
+ isLeftShift, IC, DL));
return PN;
}
}
@@ -337,8 +340,8 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
" to eliminate shift:\n IN: " << *Op0 << "\n SH: " << I <<"\n");
- return ReplaceInstUsesWith(I,
- GetShiftedValue(Op0, COp1->getZExtValue(), isLeftShift, *this));
+ return ReplaceInstUsesWith(
+ I, GetShiftedValue(Op0, COp1->getZExtValue(), isLeftShift, *this, DL));
}
// See if we can simplify any instructions used by the instruction whose sole
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp b/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
index c5603aaced5..cd391d0385e 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
@@ -13,7 +13,6 @@
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
-#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
@@ -70,8 +69,8 @@ bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
- Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
- KnownZero, KnownOne, 0, &Inst);
+ Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne,
+ 0, &Inst);
if (!V) return false;
if (V == &Inst) return true;
ReplaceInstUsesWith(Inst, V);
@@ -84,9 +83,9 @@ bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
APInt &KnownZero, APInt &KnownOne,
unsigned Depth) {
- Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
- KnownZero, KnownOne, Depth,
- dyn_cast<Instruction>(U.getUser()));
+ Value *NewVal =
+ SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero, KnownOne, Depth,
+ dyn_cast<Instruction>(U.getUser()));
if (!NewVal) return false;
U = NewVal;
return true;
@@ -122,15 +121,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
assert(Depth <= 6 && "Limit Search Depth");
uint32_t BitWidth = DemandedMask.getBitWidth();
Type *VTy = V->getType();
- assert((DL || !VTy->isPointerTy()) &&
- "SimplifyDemandedBits needs to know bit widths!");
- assert((!DL || DL->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
- (!VTy->isIntOrIntVectorTy() ||
- VTy->getScalarSizeInBits() == BitWidth) &&
- KnownZero.getBitWidth() == BitWidth &&
- KnownOne.getBitWidth() == BitWidth &&
- "Value *V, DemandedMask, KnownZero and KnownOne "
- "must have same BitWidth");
+ assert(
+ (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
+ KnownZero.getBitWidth() == BitWidth &&
+ KnownOne.getBitWidth() == BitWidth &&
+ "Value *V, DemandedMask, KnownZero and KnownOne "
+ "must have same BitWidth");
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
// We know all of the bits for a constant!
KnownOne = CI->getValue() & DemandedMask;
@@ -174,9 +170,9 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// this instruction has a simpler value in that context.
if (I->getOpcode() == Instruction::And) {
// If either the LHS or the RHS are Zero, the result is zero.
- computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1,
+ computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
CxtI);
- computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1,
+ computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
CxtI);
// If all of the demanded bits are known 1 on one side, return the other.
@@ -198,9 +194,9 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// only bits from X or Y are demanded.
// If either the LHS or the RHS are One, the result is One.
- computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1,
+ computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
CxtI);
- computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1,
+ computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
CxtI);
// If all of the demanded bits are known zero on one side, return the
@@ -225,9 +221,9 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// We can simplify (X^Y) -> X or Y in the user's context if we know that
// only bits from X or Y are demanded.
- computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1,
+ computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
CxtI);
- computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1,
+ computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
CxtI);
// If all of the demanded bits are known zero on one side, return the
@@ -256,10 +252,10 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
break;
case Instruction::And:
// If either the LHS or the RHS are Zero, the result is zero.
- if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
- RHSKnownZero, RHSKnownOne, Depth+1) ||
+ if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
+ RHSKnownOne, Depth + 1) ||
SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
- LHSKnownZero, LHSKnownOne, Depth+1))
+ LHSKnownZero, LHSKnownOne, Depth + 1))
return I;
assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
@@ -294,10 +290,10 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
break;
case Instruction::Or:
// If either the LHS or the RHS are One, the result is One.
- if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
- RHSKnownZero, RHSKnownOne, Depth+1) ||
+ if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
+ RHSKnownOne, Depth + 1) ||
SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
- LHSKnownZero, LHSKnownOne, Depth+1))
+ LHSKnownZero, LHSKnownOne, Depth + 1))
return I;
assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
@@ -336,10 +332,10 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
KnownOne = RHSKnownOne | LHSKnownOne;
break;
case Instruction::Xor: {
- if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
- RHSKnownZero, RHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
- LHSKnownZero, LHSKnownOne, Depth+1))
+ if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
+ RHSKnownOne, Depth + 1) ||
+ SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, LHSKnownZero,
+ LHSKnownOne, Depth + 1))
return I;
assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
@@ -423,10 +419,10 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
break;
}
case Instruction::Select:
- if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
- RHSKnownZero, RHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
- LHSKnownZero, LHSKnownOne, Depth+1))
+ if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, RHSKnownZero,
+ RHSKnownOne, Depth + 1) ||
+ SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, LHSKnownZero,
+ LHSKnownOne, Depth + 1))
return I;
assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
@@ -445,8 +441,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
DemandedMask = DemandedMask.zext(truncBf);
KnownZero = KnownZero.zext(truncBf);
KnownOne = KnownOne.zext(truncBf);
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
- KnownZero, KnownOne, Depth+1))
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
+ KnownOne, Depth + 1))
return I;
DemandedMask = DemandedMask.trunc(BitWidth);
KnownZero = KnownZero.trunc(BitWidth);
@@ -471,8 +467,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// Don't touch a vector-to-scalar bitcast.
return nullptr;
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
- KnownZero, KnownOne, Depth+1))
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
+ KnownOne, Depth + 1))
return I;
assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
break;
@@ -483,8 +479,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
DemandedMask = DemandedMask.trunc(SrcBitWidth);
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
- KnownZero, KnownOne, Depth+1))
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
+ KnownOne, Depth + 1))
return I;
DemandedMask = DemandedMask.zext(BitWidth);
KnownZero = KnownZero.zext(BitWidth);
@@ -510,8 +506,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
- if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
- KnownZero, KnownOne, Depth+1))
+ if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, KnownZero,
+ KnownOne, Depth + 1))
return I;
InputDemandedBits = InputDemandedBits.zext(BitWidth);
KnownZero = KnownZero.zext(BitWidth);
@@ -552,7 +548,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// Find information about known zero/one bits in the input.
if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
- LHSKnownZero, LHSKnownOne, Depth+1))
+ LHSKnownZero, LHSKnownOne, Depth + 1))
return I;
// If the RHS of the add has bits set that can't affect the input, reduce
@@ -602,9 +598,9 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// significant bit and all those below it.
APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
- LHSKnownZero, LHSKnownOne, Depth+1) ||
+ LHSKnownZero, LHSKnownOne, Depth + 1) ||
SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
- LHSKnownZero, LHSKnownOne, Depth+1))
+ LHSKnownZero, LHSKnownOne, Depth + 1))
return I;
}
}
@@ -619,9 +615,9 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
uint32_t NLZ = DemandedMask.countLeadingZeros();
APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
- LHSKnownZero, LHSKnownOne, Depth+1) ||
+ LHSKnownZero, LHSKnownOne, Depth + 1) ||
SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
- LHSKnownZero, LHSKnownOne, Depth+1))
+ LHSKnownZero, LHSKnownOne, Depth + 1))
return I;
}
@@ -662,8 +658,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
else if (IOp->hasNoUnsignedWrap())
DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
- KnownZero, KnownOne, Depth+1))
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
+ KnownOne, Depth + 1))
return I;
assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
KnownZero <<= ShiftAmt;
@@ -686,8 +682,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if (cast<LShrOperator>(I)->isExact())
DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
- KnownZero, KnownOne, Depth+1))
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
+ KnownOne, Depth + 1))
return I;
assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
@@ -731,8 +727,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if (cast<AShrOperator>(I)->isExact())
DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
- KnownZero, KnownOne, Depth+1))
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
+ KnownOne, Depth + 1))
return I;
assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
// Compute the new bits that are at the top now.
@@ -772,8 +768,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
APInt LowBits = RA - 1;
APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
- if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
- LHSKnownZero, LHSKnownOne, Depth+1))
+ if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, LHSKnownZero,
+ LHSKnownOne, Depth + 1))
return I;
// The low bits of LHS are unchanged by the srem.
@@ -798,7 +794,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// remainder is zero.
if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1,
+ computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
CxtI);
// If it's known zero, our sign bit is also zero.
if (LHSKnownZero.isNegative())
@@ -808,10 +804,10 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
case Instruction::URem: {
APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
APInt AllOnes = APInt::getAllOnesValue(BitWidth);
- if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
- KnownZero2, KnownOne2, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
- KnownZero2, KnownOne2, Depth+1))
+ if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, KnownZero2,
+ KnownOne2, Depth + 1) ||
+ SimplifyDemandedBits(I->getOperandUse(1), AllOnes, KnownZero2,
+ KnownOne2, Depth + 1))
return I;
unsigned Leaders = KnownZero2.countLeadingOnes();
@@ -1051,7 +1047,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
// Note that we can't propagate undef elt info, because we don't know
// which elt is getting updated.
TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
- UndefElts2, Depth+1);
+ UndefElts2, Depth + 1);
if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
break;
}
@@ -1069,7 +1065,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
APInt DemandedElts2 = DemandedElts;
DemandedElts2.clearBit(IdxNo);
TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
- UndefElts, Depth+1);
+ UndefElts, Depth + 1);
if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
// The inserted element is defined.
@@ -1097,12 +1093,12 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
APInt UndefElts4(LHSVWidth, 0);
TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
- UndefElts4, Depth+1);
+ UndefElts4, Depth + 1);
if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
APInt UndefElts3(LHSVWidth, 0);
TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
- UndefElts3, Depth+1);
+ UndefElts3, Depth + 1);
if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
bool NewUndefElts = false;
@@ -1152,12 +1148,12 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
}
}
- TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded,
- UndefElts, Depth+1);
+ TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
+ Depth + 1);
if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
- UndefElts2, Depth+1);
+ UndefElts2, Depth + 1);
if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
// Output elements are undefined if both are undefined.
@@ -1204,7 +1200,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
// div/rem demand all inputs, because they don't want divide by zero.
TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
- UndefElts2, Depth+1);
+ UndefElts2, Depth + 1);
if (TmpV) {
I->setOperand(0, TmpV);
MadeChange = true;
@@ -1238,11 +1234,11 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
case Instruction::Sub:
case Instruction::Mul:
// div/rem demand all inputs, because they don't want divide by zero.
- TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
- UndefElts, Depth+1);
+ TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
+ Depth + 1);
if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
- UndefElts2, Depth+1);
+ UndefElts2, Depth + 1);
if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
// Output elements are undefined if both are undefined. Consider things
@@ -1251,8 +1247,8 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
break;
case Instruction::FPTrunc:
case Instruction::FPExt:
- TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
- UndefElts, Depth+1);
+ TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
+ Depth + 1);
if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
break;
@@ -1273,10 +1269,10 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
case Intrinsic::x86_sse2_min_sd:
case Intrinsic::x86_sse2_max_sd:
TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
- UndefElts, Depth+1);
+ UndefElts, Depth + 1);
if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
- UndefElts2, Depth+1);
+ UndefElts2, Depth + 1);
if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
// If only the low elt is demanded and this is a scalarizable intrinsic,
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp b/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
index e07efb57235..ae2e8a33fbb 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
@@ -202,8 +202,8 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
APInt UndefElts(VectorWidth, 0);
APInt DemandedMask(VectorWidth, 0);
DemandedMask.setBit(IndexVal);
- if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
- DemandedMask, UndefElts)) {
+ if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask,
+ UndefElts)) {
EI.setOperand(0, V);
return &EI;
}
diff --git a/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp b/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
index 0b8b074a589..9e8b5774517 100644
--- a/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -75,7 +75,7 @@ STATISTIC(NumFactor , "Number of factorizations");
STATISTIC(NumReassoc , "Number of reassociations");
Value *InstCombiner::EmitGEPOffset(User *GEP) {
- return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
+ return llvm::EmitGEPOffset(Builder, DL, GEP);
}
/// ShouldChangeType - Return true if it is desirable to convert a computation
@@ -84,13 +84,10 @@ Value *InstCombiner::EmitGEPOffset(User *GEP) {
bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
assert(From->isIntegerTy() && To->isIntegerTy());
- // If we don't have DL, we don't know if the source/dest are legal.
- if (!DL) return false;
-
unsigned FromWidth = From->getPrimitiveSizeInBits();
unsigned ToWidth = To->getPrimitiveSizeInBits();
- bool FromLegal = DL->isLegalInteger(FromWidth);
- bool ToLegal = DL->isLegalInteger(ToWidth);
+ bool FromLegal = DL.isLegalInteger(FromWidth);
+ bool ToLegal = DL.isLegalInteger(ToWidth);
// If this is a legal integer from type, and the result would be an illegal
// type, don't do the transformation.
@@ -445,7 +442,7 @@ getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
/// This tries to simplify binary operations by factorizing out common terms
/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
- const DataLayout *DL, BinaryOperator &I,
+ const DataLayout &DL, BinaryOperator &I,
Instruction::BinaryOps InnerOpcode, Value *A,
Value *B, Value *C, Value *D) {
@@ -872,12 +869,9 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
/// will land us at the specified offset. If so, fill them into NewIndices and
/// return the resultant element type, otherwise return null.
Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
- SmallVectorImpl<Value*> &NewIndices) {
+ SmallVectorImpl<Value *> &NewIndices) {
assert(PtrTy->isPtrOrPtrVectorTy());
- if (!DL)
- return nullptr;
-
Type *Ty = PtrTy->getPointerElementType();
if (!Ty->isSized())
return nullptr;
@@ -885,9 +879,9 @@ Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
// Start with the index over the outer type. Note that the type size
// might be zero (even if the offset isn't zero) if the indexed type
// is something like [0 x {int, int}]
- Type *IntPtrTy = DL->getIntPtrType(PtrTy);
+ Type *IntPtrTy = DL.getIntPtrType(PtrTy);
int64_t FirstIdx = 0;
- if (int64_t TySize = DL->getTypeAllocSize(Ty)) {
+ if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
FirstIdx = Offset/TySize;
Offset -= FirstIdx*TySize;
@@ -905,11 +899,11 @@ Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
// Index into the types. If we fail, set OrigBase to null.
while (Offset) {
// Indexing into tail padding between struct/array elements.
- if (uint64_t(Offset*8) >= DL->getTypeSizeInBits(Ty))
+ if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
return nullptr;
if (StructType *STy = dyn_cast<StructType>(Ty)) {
- const StructLayout *SL = DL->getStructLayout(STy);
+ const StructLayout *SL = DL.getStructLayout(STy);
assert(Offset < (int64_t)SL->getSizeInBytes() &&
"Offset must stay within the indexed type");
@@ -920,7 +914,7 @@ Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
Offset -= SL->getElementOffset(Elt);
Ty = STy->getElementType(Elt);
} else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
- uint64_t EltSize = DL->getTypeAllocSize(AT->getElementType());
+ uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
assert(EltSize && "Cannot index into a zero-sized array");
NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
Offset %= EltSize;
@@ -1214,7 +1208,8 @@ Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
// It may not be safe to reorder shuffles and things like div, urem, etc.
// because we may trap when executing those ops on unknown vector elements.
// See PR20059.
- if (!isSafeToSpeculativelyExecute(&Inst, DL)) return nullptr;
+ if (!isSafeToSpeculativelyExecute(&Inst))
+ return nullptr;
unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
@@ -1300,37 +1295,37 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Eliminate unneeded casts for indices, and replace indices which displace
// by multiples of a zero size type with zero.
- if (DL) {
- bool MadeChange = false;
- Type *IntPtrTy = DL->getIntPtrType(GEP.getPointerOperandType());
-
- gep_type_iterator GTI = gep_type_begin(GEP);
- for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
- I != E; ++I, ++GTI) {
- // Skip indices into struct types.
- SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
- if (!SeqTy) continue;
-
- // If the element type has zero size then any index over it is equivalent
- // to an index of zero, so replace it with zero if it is not zero already.
- if (SeqTy->getElementType()->isSized() &&
- DL->getTypeAllocSize(SeqTy->getElementType()) == 0)
- if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
- *I = Constant::getNullValue(IntPtrTy);
- MadeChange = true;
- }
+ bool MadeChange = false;
+ Type *IntPtrTy = DL.getIntPtrType(GEP.getPointerOperandType());
+
+ gep_type_iterator GTI = gep_type_begin(GEP);
+ for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
+ ++I, ++GTI) {
+ // Skip indices into struct types.
+ SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
+ if (!SeqTy)
+ continue;
- Type *IndexTy = (*I)->getType();
- if (IndexTy != IntPtrTy) {
- // If we are using a wider index than needed for this platform, shrink
- // it to what we need. If narrower, sign-extend it to what we need.
- // This explicit cast can make subsequent optimizations more obvious.
- *I = Builder->CreateIntCast(*I, IntPtrTy, true);
+ // If the element type has zero size then any index over it is equivalent
+ // to an index of zero, so replace it with zero if it is not zero already.
+ if (SeqTy->getElementType()->isSized() &&
+ DL.getTypeAllocSize(SeqTy->getElementType()) == 0)
+ if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
+ *I = Constant::getNullValue(IntPtrTy);
MadeChange = true;
}
+
+ Type *IndexTy = (*I)->getType();
+ if (IndexTy != IntPtrTy) {
+ // If we are using a wider index than needed for this platform, shrink
+ // it to what we need. If narrower, sign-extend it to what we need.
+ // This explicit cast can make subsequent optimizations more obvious.
+ *I = Builder->CreateIntCast(*I, IntPtrTy, true);
+ MadeChange = true;
}
- if (MadeChange) return &GEP;
}
+ if (MadeChange)
+ return &GEP;
// Check to see if the inputs to the PHI node are getelementptr instructions.
if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
@@ -1487,13 +1482,13 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
}
- if (DL && GEP.getNumIndices() == 1) {
+ if (GEP.getNumIndices() == 1) {
unsigned AS = GEP.getPointerAddressSpace();
if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
- DL->getPointerSizeInBits(AS)) {
+ DL.getPointerSizeInBits(AS)) {
Type *PtrTy = GEP.getPointerOperandType();
Type *Ty = PtrTy->getPointerElementType();
- uint64_t TyAllocSize = DL->getTypeAllocSize(Ty);
+ uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
bool Matched = false;
uint64_t C;
@@ -1612,10 +1607,10 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Type *SrcElTy = StrippedPtrTy->getElementType();
Type *ResElTy = PtrOp->getType()->getPointerElementType();
- if (DL && SrcElTy->isArrayTy() &&
- DL->getTypeAllocSize(SrcElTy->getArrayElementType()) ==
- DL->getTypeAllocSize(ResElTy)) {
- Type *IdxType = DL->getIntPtrType(GEP.getType());
+ if (SrcElTy->isArrayTy() &&
+ DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
+ DL.getTypeAllocSize(ResElTy)) {
+ Type *IdxType = DL.getIntPtrType(GEP.getType());
Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
Value *NewGEP = GEP.isInBounds() ?
Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
@@ -1630,11 +1625,11 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// %V = mul i64 %N, 4
// %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
// into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
- if (DL && ResElTy->isSized() && SrcElTy->isSized()) {
+ if (ResElTy->isSized() && SrcElTy->isSized()) {
// Check that changing the type amounts to dividing the index by a scale
// factor.
- uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
- uint64_t SrcSize = DL->getTypeAllocSize(SrcElTy);
+ uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
+ uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
if (ResSize && SrcSize % ResSize == 0) {
Value *Idx = GEP.getOperand(1);
unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
@@ -1642,7 +1637,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Earlier transforms ensure that the index has type IntPtrType, which
// considerably simplifies the logic by eliminating implicit casts.
- assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
+ assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
"Index not cast to pointer width?");
bool NSW;
@@ -1665,13 +1660,12 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
// (where tmp = 8*tmp2) into:
// getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
- if (DL && ResElTy->isSized() && SrcElTy->isSized() &&
- SrcElTy->isArrayTy()) {
+ if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
// Check that changing to the array element type amounts to dividing the
// index by a scale factor.
- uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
- uint64_t ArrayEltSize
- = DL->getTypeAllocSize(SrcElTy->getArrayElementType());
+ uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
+ uint64_t ArrayEltSize =
+ DL.getTypeAllocSize(SrcElTy->getArrayElementType());
if (ResSize && ArrayEltSize % ResSize == 0) {
Value *Idx = GEP.getOperand(1);
unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
@@ -1679,7 +1673,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Earlier transforms ensure that the index has type IntPtrType, which
// considerably simplifies the logic by eliminating implicit casts.
- assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
+ assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
"Index not cast to pointer width?");
bool NSW;
@@ -1688,9 +1682,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// If the multiplication NewIdx * Scale may overflow then the new
// GEP may not be "inbounds".
Value *Off[2] = {
- Constant::getNullValue(DL->getIntPtrType(GEP.getType())),
- NewIdx
- };
+ Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
+ NewIdx};
Value *NewGEP = GEP.isInBounds() && NSW ?
Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
@@ -1704,9 +1697,6 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
}
}
- if (!DL)
- return nullptr;
-
// addrspacecast between types is canonicalized as a bitcast, then an
// addrspacecast. To take advantage of the below bitcast + struct GEP, look
// through the addrspacecast.
@@ -1727,10 +1717,10 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
Value *Operand = BCI->getOperand(0);
PointerType *OpType = cast<PointerType>(Operand->getType());
- unsigned OffsetBits = DL->getPointerTypeSizeInBits(GEP.getType());
+ unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
APInt Offset(OffsetBits, 0);
if (!isa<BitCastInst>(Operand) &&
- GEP.accumulateConstantOffset(*DL, Offset)) {
+ GEP.accumulateConstantOffset(DL, Offset)) {
// If this GEP instruction doesn't move the pointer, just replace the GEP
// with a bitcast of the real input to the dest type.
@@ -2051,7 +2041,7 @@ Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
Value *Cond = SI.getCondition();
unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(Cond, KnownZero, KnownOne);
+ computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI);
unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
@@ -2070,8 +2060,7 @@ Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
// x86 generates redundant zero-extenstion instructions if the operand is
// truncated to i8 or i16.
bool TruncCond = false;
- if (DL && BitWidth > NewWidth &&
- NewWidth >= DL->getLargestLegalIntTypeSize()) {
+ if (BitWidth > NewWidth && NewWidth >= DL.getLargestLegalIntTypeSize()) {
TruncCond = true;
IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
Builder->SetInsertPoint(&SI);
@@ -2632,7 +2621,7 @@ bool InstCombiner::run() {
}
// Instruction isn't dead, see if we can constant propagate it.
- if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
+ if (!I->use_empty() && isa<Constant>(I->getOperand(0))) {
if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
@@ -2643,6 +2632,7 @@ bool InstCombiner::run() {
MadeIRChange = true;
continue;
}
+ }
// See if we can trivially sink this instruction to a successor basic block.
if (I->hasOneUse()) {
@@ -2756,10 +2746,9 @@ bool InstCombiner::run() {
/// many instructions are dead or constant). Additionally, if we find a branch
/// whose condition is a known constant, we only visit the reachable successors.
///
-static bool AddReachableCodeToWorklist(BasicBlock *BB,
- SmallPtrSetImpl<BasicBlock*> &Visited,
+static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
+ SmallPtrSetImpl<BasicBlock *> &Visited,
InstCombineWorklist &ICWorklist,
- const DataLayout *DL,
const TargetLibraryInfo *TLI) {
bool MadeIRChange = false;
SmallVector<BasicBlock*, 256> Worklist;
@@ -2797,23 +2786,22 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB,
continue;
}
- if (DL) {
- // See if we can constant fold its operands.
- for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
- i != e; ++i) {
- ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
- if (CE == nullptr) continue;
+ // See if we can constant fold its operands.
+ for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e;
+ ++i) {
+ ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
+ if (CE == nullptr)
+ continue;
- Constant*& FoldRes = FoldedConstants[CE];
- if (!FoldRes)
- FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
- if (!FoldRes)
- FoldRes = CE;
+ Constant *&FoldRes = FoldedConstants[CE];
+ if (!FoldRes)
+ FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
+ if (!FoldRes)
+ FoldRes = CE;
- if (FoldRes != CE) {
- *i = FoldRes;
- MadeIRChange = true;
- }
+ if (FoldRes != CE) {
+ *i = FoldRes;
+ MadeIRChange = true;
}
}
@@ -2867,7 +2855,7 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB,
///
/// This also does basic constant propagation and other forward fixing to make
/// the combiner itself run much faster.
-static bool prepareICWorklistFromFunction(Function &F, const DataLayout *DL,
+static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
TargetLibraryInfo *TLI,
InstCombineWorklist &ICWorklist) {
bool MadeIRChange = false;
@@ -2877,7 +2865,7 @@ static bool prepareICWorklistFromFunction(Function &F, const DataLayout *DL,
// track of which blocks we visit.
SmallPtrSet<BasicBlock *, 64> Visited;
MadeIRChange |=
- AddReachableCodeToWorklist(F.begin(), Visited, ICWorklist, DL, TLI);
+ AddReachableCodeToWorklist(F.begin(), DL, Visited, ICWorklist, TLI);
// Do a quick scan over the function. If we find any blocks that are
// unreachable, remove any instructions inside of them. This prevents
@@ -2916,12 +2904,12 @@ combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
DominatorTree &DT, LoopInfo *LI = nullptr) {
// Minimizing size?
bool MinimizeSize = F.hasFnAttribute(Attribute::MinSize);
- const DataLayout &DL = F.getParent()->getDataLayout();
+ auto &DL = F.getParent()->getDataLayout();
/// Builder - This is an IRBuilder that automatically inserts new
/// instructions into the worklist when they are created.
IRBuilder<true, TargetFolder, InstCombineIRInserter> Builder(
- F.getContext(), TargetFolder(&DL), InstCombineIRInserter(Worklist, &AC));
+ F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC));
// Lower dbg.declare intrinsics otherwise their value may be clobbered
// by instcombiner.
@@ -2935,10 +2923,10 @@ combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
<< F.getName() << "\n");
bool Changed = false;
- if (prepareICWorklistFromFunction(F, &DL, &TLI, Worklist))
+ if (prepareICWorklistFromFunction(F, DL, &TLI, Worklist))
Changed = true;
- InstCombiner IC(Worklist, &Builder, MinimizeSize, &AC, &TLI, &DT, &DL, LI);
+ InstCombiner IC(Worklist, &Builder, MinimizeSize, &AC, &TLI, &DT, DL, LI);
if (IC.run())
Changed = true;
diff --git a/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp b/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
index 6dc621a8806..e2d7a6de4e1 100644
--- a/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
+++ b/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
@@ -396,7 +396,8 @@ struct AddressSanitizer : public FunctionPass {
}
uint64_t getAllocaSizeInBytes(AllocaInst *AI) const {
Type *Ty = AI->getAllocatedType();
- uint64_t SizeInBytes = DL->getTypeAllocSize(Ty);
+ uint64_t SizeInBytes =
+ AI->getModule()->getDataLayout().getTypeAllocSize(Ty);
return SizeInBytes;
}
/// Check if we want (and can) handle this alloca.
@@ -407,7 +408,7 @@ struct AddressSanitizer : public FunctionPass {
uint64_t *TypeSize,
unsigned *Alignment) const;
void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
- bool UseCalls);
+ bool UseCalls, const DataLayout &DL);
void instrumentPointerComparisonOrSubtraction(Instruction *I);
void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
Value *Addr, uint32_t TypeSize, bool IsWrite,
@@ -435,7 +436,6 @@ struct AddressSanitizer : public FunctionPass {
uint64_t TypeSize) const;
LLVMContext *C;
- const DataLayout *DL;
Triple TargetTriple;
int LongSize;
Type *IntptrTy;
@@ -478,7 +478,6 @@ class AddressSanitizerModule : public ModulePass {
GlobalsMetadata GlobalsMD;
Type *IntptrTy;
LLVMContext *C;
- const DataLayout *DL;
Triple TargetTriple;
ShadowMapping Mapping;
Function *AsanPoisonGlobals;
@@ -605,8 +604,9 @@ struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
// Right shift for BigEndian and left shift for LittleEndian.
Value *shiftAllocaMagic(Value *Val, IRBuilder<> &IRB, Value *Shift) {
- return ASan.DL->isLittleEndian() ? IRB.CreateShl(Val, Shift)
- : IRB.CreateLShr(Val, Shift);
+ auto &DL = F.getParent()->getDataLayout();
+ return DL.isLittleEndian() ? IRB.CreateShl(Val, Shift)
+ : IRB.CreateLShr(Val, Shift);
}
// Compute PartialRzMagic for dynamic alloca call. Since we don't know the
@@ -818,29 +818,29 @@ Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
if (I->getMetadata("nosanitize")) return nullptr;
Value *PtrOperand = nullptr;
+ const DataLayout &DL = I->getModule()->getDataLayout();
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (!ClInstrumentReads) return nullptr;
*IsWrite = false;
- *TypeSize = DL->getTypeStoreSizeInBits(LI->getType());
+ *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
*Alignment = LI->getAlignment();
PtrOperand = LI->getPointerOperand();
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
if (!ClInstrumentWrites) return nullptr;
*IsWrite = true;
- *TypeSize = DL->getTypeStoreSizeInBits(SI->getValueOperand()->getType());
+ *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
*Alignment = SI->getAlignment();
PtrOperand = SI->getPointerOperand();
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
if (!ClInstrumentAtomics) return nullptr;
*IsWrite = true;
- *TypeSize = DL->getTypeStoreSizeInBits(RMW->getValOperand()->getType());
+ *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
*Alignment = 0;
PtrOperand = RMW->getPointerOperand();
} else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
if (!ClInstrumentAtomics) return nullptr;
*IsWrite = true;
- *TypeSize =
- DL->getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
+ *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
*Alignment = 0;
PtrOperand = XCHG->getPointerOperand();
}
@@ -896,7 +896,8 @@ void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
}
void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
- Instruction *I, bool UseCalls) {
+ Instruction *I, bool UseCalls,
+ const DataLayout &DL) {
bool IsWrite = false;
unsigned Alignment = 0;
uint64_t TypeSize = 0;
@@ -906,8 +907,7 @@ void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
if (ClOpt && ClOptGlobals) {
// If initialization order checking is disabled, a simple access to a
// dynamically initialized global is always valid.
- GlobalVariable *G =
- dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, nullptr));
+ GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
if (G != NULL && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
NumOptimizedAccessesToGlobalVar++;
@@ -917,7 +917,7 @@ void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
if (ClOpt && ClOptStack) {
// A direct inbounds access to a stack variable is always valid.
- if (isa<AllocaInst>(GetUnderlyingObject(Addr, nullptr)) &&
+ if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
NumOptimizedAccessesToStackVar++;
return;
@@ -1221,6 +1221,7 @@ bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
GlobalVariable *ModuleName = createPrivateGlobalForString(
M, M.getModuleIdentifier(), /*AllowMerging*/ false);
+ auto &DL = M.getDataLayout();
for (size_t i = 0; i < n; i++) {
static const uint64_t kMaxGlobalRedzone = 1 << 18;
GlobalVariable *G = GlobalsToChange[i];
@@ -1234,7 +1235,7 @@ bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
PointerType *PtrTy = cast<PointerType>(G->getType());
Type *Ty = PtrTy->getElementType();
- uint64_t SizeInBytes = DL->getTypeAllocSize(Ty);
+ uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
uint64_t MinRZ = MinRedzoneSizeForGlobal();
// MinRZ <= RZ <= kMaxGlobalRedzone
// and trying to make RZ to be ~ 1/4 of SizeInBytes.
@@ -1320,9 +1321,8 @@ bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
}
bool AddressSanitizerModule::runOnModule(Module &M) {
- DL = &M.getDataLayout();
C = &(M.getContext());
- int LongSize = DL->getPointerSizeInBits();
+ int LongSize = M.getDataLayout().getPointerSizeInBits();
IntptrTy = Type::getIntNTy(*C, LongSize);
TargetTriple = Triple(M.getTargetTriple());
Mapping = getShadowMapping(TargetTriple, LongSize);
@@ -1396,12 +1396,11 @@ void AddressSanitizer::initializeCallbacks(Module &M) {
// virtual
bool AddressSanitizer::doInitialization(Module &M) {
// Initialize the private fields. No one has accessed them before.
- DL = &M.getDataLayout();
GlobalsMD.init(M);
C = &(M.getContext());
- LongSize = DL->getPointerSizeInBits();
+ LongSize = M.getDataLayout().getPointerSizeInBits();
IntptrTy = Type::getIntNTy(*C, LongSize);
TargetTriple = Triple(M.getTargetTriple());
@@ -1507,6 +1506,7 @@ bool AddressSanitizer::runOnFunction(Function &F) {
const TargetLibraryInfo *TLI =
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
+ const DataLayout &DL = F.getParent()->getDataLayout();
ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(),
/*RoundToAlign=*/true);
@@ -1516,7 +1516,8 @@ bool AddressSanitizer::runOnFunction(Function &F) {
if (ClDebugMin < 0 || ClDebugMax < 0 ||
(NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
- instrumentMop(ObjSizeVis, Inst, UseCalls);
+ instrumentMop(ObjSizeVis, Inst, UseCalls,
+ F.getParent()->getDataLayout());
else
instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
}
@@ -1588,7 +1589,7 @@ void FunctionStackPoisoner::poisonRedZones(ArrayRef<uint8_t> ShadowBytes,
for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) {
uint64_t Val = 0;
for (size_t j = 0; j < LargeStoreSizeInBytes; j++) {
- if (ASan.DL->isLittleEndian())
+ if (F.getParent()->getDataLayout().isLittleEndian())
Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
else
Val = (Val << 8) | ShadowBytes[i + j];
@@ -1932,14 +1933,14 @@ Value *FunctionStackPoisoner::computePartialRzMagic(Value *PartialSize,
Value *Shift = IRB.CreateAnd(PartialSize, IRB.getInt32(~7));
unsigned Val1Int = kAsanAllocaPartialVal1;
unsigned Val2Int = kAsanAllocaPartialVal2;
- if (!ASan.DL->isLittleEndian()) {
+ if (!F.getParent()->getDataLayout().isLittleEndian()) {
Val1Int = sys::getSwappedBytes(Val1Int);
Val2Int = sys::getSwappedBytes(Val2Int);
}
Value *Val1 = shiftAllocaMagic(IRB.getInt32(Val1Int), IRB, Shift);
Value *PartialBits = IRB.CreateAnd(PartialSize, IRB.getInt32(7));
// For BigEndian get 0x000000YZ -> 0xYZ000000.
- if (ASan.DL->isBigEndian())
+ if (F.getParent()->getDataLayout().isBigEndian())
PartialBits = IRB.CreateShl(PartialBits, IRB.getInt32(24));
Value *Val2 = IRB.getInt32(Val2Int);
Value *Cond =
@@ -1973,7 +1974,8 @@ void FunctionStackPoisoner::handleDynamicAllocaCall(
// redzones, and OldSize is number of allocated blocks with
// ElementSize size, get allocated memory size in bytes by
// OldSize * ElementSize.
- unsigned ElementSize = ASan.DL->getTypeAllocSize(AI->getAllocatedType());
+ unsigned ElementSize =
+ F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
Value *OldSize = IRB.CreateMul(AI->getArraySize(),
ConstantInt::get(IntptrTy, ElementSize));
diff --git a/llvm/lib/Transforms/Instrumentation/BoundsChecking.cpp b/llvm/lib/Transforms/Instrumentation/BoundsChecking.cpp
index 241e172bb69..978ef38b518 100644
--- a/llvm/lib/Transforms/Instrumentation/BoundsChecking.cpp
+++ b/llvm/lib/Transforms/Instrumentation/BoundsChecking.cpp
@@ -53,7 +53,6 @@ namespace {
}
private:
- const DataLayout *DL;
const TargetLibraryInfo *TLI;
ObjectSizeOffsetEvaluator *ObjSizeEval;
BuilderTy *Builder;
@@ -62,7 +61,7 @@ namespace {
BasicBlock *getTrapBB();
void emitBranchToTrap(Value *Cmp = nullptr);
- bool instrument(Value *Ptr, Value *Val);
+ bool instrument(Value *Ptr, Value *Val, const DataLayout &DL);
};
}
@@ -124,8 +123,9 @@ void BoundsChecking::emitBranchToTrap(Value *Cmp) {
/// result from the load or the value being stored. It is used to determine the
/// size of memory block that is touched.
/// Returns true if any change was made to the IR, false otherwise.
-bool BoundsChecking::instrument(Value *Ptr, Value *InstVal) {
- uint64_t NeededSize = DL->getTypeStoreSize(InstVal->getType());
+bool BoundsChecking::instrument(Value *Ptr, Value *InstVal,
+ const DataLayout &DL) {
+ uint64_t NeededSize = DL.getTypeStoreSize(InstVal->getType());
DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize)
<< " bytes\n");
@@ -140,7 +140,7 @@ bool BoundsChecking::instrument(Value *Ptr, Value *InstVal) {
Value *Offset = SizeOffset.second;
ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size);
- Type *IntTy = DL->getIntPtrType(Ptr->getType());
+ Type *IntTy = DL.getIntPtrType(Ptr->getType());
Value *NeededSizeVal = ConstantInt::get(IntTy, NeededSize);
// three checks are required to ensure safety:
@@ -164,7 +164,7 @@ bool BoundsChecking::instrument(Value *Ptr, Value *InstVal) {
}
bool BoundsChecking::runOnFunction(Function &F) {
- DL = &F.getParent()->getDataLayout();
+ const DataLayout &DL = F.getParent()->getDataLayout();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
TrapBB = nullptr;
@@ -191,13 +191,16 @@ bool BoundsChecking::runOnFunction(Function &F) {
Builder->SetInsertPoint(Inst);
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- MadeChange |= instrument(LI->getPointerOperand(), LI);
+ MadeChange |= instrument(LI->getPointerOperand(), LI, DL);
} else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- MadeChange |= instrument(SI->getPointerOperand(), SI->getValueOperand());
+ MadeChange |=
+ instrument(SI->getPointerOperand(), SI->getValueOperand(), DL);
} else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) {
- MadeChange |= instrument(AI->getPointerOperand(),AI->getCompareOperand());
+ MadeChange |=
+ instrument(AI->getPointerOperand(), AI->getCompareOperand(), DL);
} else if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(Inst)) {
- MadeChange |= instrument(AI->getPointerOperand(), AI->getValOperand());
+ MadeChange |=
+ instrument(AI->getPointerOperand(), AI->getValOperand(), DL);
} else {
llvm_unreachable("unknown Instruction type");
}
diff --git a/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp b/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
index 65da9d9cdd9..b3925ee152f 100644
--- a/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
+++ b/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
@@ -217,7 +217,6 @@ class DataFlowSanitizer : public ModulePass {
WK_Custom
};
- const DataLayout *DL;
Module *Mod;
LLVMContext *Ctx;
IntegerType *ShadowTy;
@@ -422,13 +421,13 @@ bool DataFlowSanitizer::doInitialization(Module &M) {
bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
TargetTriple.getArch() == llvm::Triple::mips64el;
- DL = &M.getDataLayout();
+ const DataLayout &DL = M.getDataLayout();
Mod = &M;
Ctx = &M.getContext();
ShadowTy = IntegerType::get(*Ctx, ShadowWidth);
ShadowPtrTy = PointerType::getUnqual(ShadowTy);
- IntptrTy = DL->getIntPtrType(*Ctx);
+ IntptrTy = DL.getIntPtrType(*Ctx);
ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
if (IsX86_64)
@@ -1050,7 +1049,7 @@ Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
SmallVector<Value *, 2> Objs;
- GetUnderlyingObjects(Addr, Objs, DFS.DL);
+ GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout());
bool AllConstants = true;
for (SmallVector<Value *, 2>::iterator i = Objs.begin(), e = Objs.end();
i != e; ++i) {
@@ -1151,7 +1150,8 @@ Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
}
void DFSanVisitor::visitLoadInst(LoadInst &LI) {
- uint64_t Size = DFSF.DFS.DL->getTypeStoreSize(LI.getType());
+ auto &DL = LI.getModule()->getDataLayout();
+ uint64_t Size = DL.getTypeStoreSize(LI.getType());
if (Size == 0) {
DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow);
return;
@@ -1161,7 +1161,7 @@ void DFSanVisitor::visitLoadInst(LoadInst &LI) {
if (ClPreserveAlignment) {
Align = LI.getAlignment();
if (Align == 0)
- Align = DFSF.DFS.DL->getABITypeAlignment(LI.getType());
+ Align = DL.getABITypeAlignment(LI.getType());
} else {
Align = 1;
}
@@ -1229,8 +1229,8 @@ void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
}
void DFSanVisitor::visitStoreInst(StoreInst &SI) {
- uint64_t Size =
- DFSF.DFS.DL->getTypeStoreSize(SI.getValueOperand()->getType());
+ auto &DL = SI.getModule()->getDataLayout();
+ uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType());
if (Size == 0)
return;
@@ -1238,7 +1238,7 @@ void DFSanVisitor::visitStoreInst(StoreInst &SI) {
if (ClPreserveAlignment) {
Align = SI.getAlignment();
if (Align == 0)
- Align = DFSF.DFS.DL->getABITypeAlignment(SI.getValueOperand()->getType());
+ Align = DL.getABITypeAlignment(SI.getValueOperand()->getType());
} else {
Align = 1;
}
diff --git a/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp b/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
index 7ec6695a35f..c2aa1e2f772 100644
--- a/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
+++ b/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
@@ -274,7 +274,6 @@ class MemorySanitizer : public FunctionPass {
MemorySanitizer(int TrackOrigins = 0)
: FunctionPass(ID),
TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
- DL(nullptr),
WarningFn(nullptr) {}
const char *getPassName() const override { return "MemorySanitizer"; }
bool runOnFunction(Function &F) override;
@@ -287,7 +286,6 @@ class MemorySanitizer : public FunctionPass {
/// \brief Track origins (allocation points) of uninitialized values.
int TrackOrigins;
- const DataLayout *DL;
LLVMContext *C;
Type *IntptrTy;
Type *OriginTy;
@@ -449,7 +447,7 @@ void MemorySanitizer::initializeCallbacks(Module &M) {
///
/// inserts a call to __msan_init to the module's constructor list.
bool MemorySanitizer::doInitialization(Module &M) {
- DL = &M.getDataLayout();
+ auto &DL = M.getDataLayout();
Triple TargetTriple(M.getTargetTriple());
switch (TargetTriple.getOS()) {
@@ -601,7 +599,8 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
}
Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
- unsigned IntptrSize = MS.DL->getTypeStoreSize(MS.IntptrTy);
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
if (IntptrSize == kOriginSize) return Origin;
assert(IntptrSize == kOriginSize * 2);
Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
@@ -611,8 +610,9 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
/// \brief Fill memory range with the given origin value.
void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
unsigned Size, unsigned Alignment) {
- unsigned IntptrAlignment = MS.DL->getABITypeAlignment(MS.IntptrTy);
- unsigned IntptrSize = MS.DL->getTypeStoreSize(MS.IntptrTy);
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy);
+ unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
assert(IntptrAlignment >= kMinOriginAlignment);
assert(IntptrSize >= kOriginSize);
@@ -640,8 +640,9 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
unsigned Alignment, bool AsCall) {
+ const DataLayout &DL = F.getParent()->getDataLayout();
unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
- unsigned StoreSize = MS.DL->getTypeStoreSize(Shadow->getType());
+ unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
if (isa<StructType>(Shadow->getType())) {
paintOrigin(IRB, updateOrigin(Origin, IRB),
getOriginPtr(Addr, IRB, Alignment), StoreSize,
@@ -658,7 +659,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
}
unsigned TypeSizeInBits =
- MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
+ DL.getTypeSizeInBits(ConvertedShadow->getType());
unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
if (AsCall && SizeIndex < kNumberOfAccessSizes) {
Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
@@ -728,8 +729,9 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
return;
}
- unsigned TypeSizeInBits =
- MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
+ const DataLayout &DL = OrigIns->getModule()->getDataLayout();
+
+ unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
if (AsCall && SizeIndex < kNumberOfAccessSizes) {
Value *Fn = MS.MaybeWarningFn[SizeIndex];
@@ -769,7 +771,6 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
/// \brief Add MemorySanitizer instrumentation to a function.
bool runOnFunction() {
MS.initializeCallbacks(*F.getParent());
- if (!MS.DL) return false;
// In the presence of unreachable blocks, we may see Phi nodes with
// incoming nodes from such blocks. Since InstVisitor skips unreachable
@@ -825,8 +826,9 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
// This may return weird-sized types like i1.
if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
return IT;
+ const DataLayout &DL = F.getParent()->getDataLayout();
if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
- uint32_t EltSize = MS.DL->getTypeSizeInBits(VT->getElementType());
+ uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
return VectorType::get(IntegerType::get(*MS.C, EltSize),
VT->getNumElements());
}
@@ -842,7 +844,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
return Res;
}
- uint32_t TypeSize = MS.DL->getTypeSizeInBits(OrigTy);
+ uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
return IntegerType::get(*MS.C, TypeSize);
}
@@ -1035,14 +1037,16 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
Function *F = A->getParent();
IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
unsigned ArgOffset = 0;
+ const DataLayout &DL = F->getParent()->getDataLayout();
for (auto &FArg : F->args()) {
if (!FArg.getType()->isSized()) {
DEBUG(dbgs() << "Arg is not sized\n");
continue;
}
- unsigned Size = FArg.hasByValAttr()
- ? MS.DL->getTypeAllocSize(FArg.getType()->getPointerElementType())
- : MS.DL->getTypeAllocSize(FArg.getType());
+ unsigned Size =
+ FArg.hasByValAttr()
+ ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
+ : DL.getTypeAllocSize(FArg.getType());
if (A == &FArg) {
bool Overflow = ArgOffset + Size > kParamTLSSize;
Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
@@ -1053,7 +1057,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
unsigned ArgAlign = FArg.getParamAlignment();
if (ArgAlign == 0) {
Type *EltType = A->getType()->getPointerElementType();
- ArgAlign = MS.DL->getABITypeAlignment(EltType);
+ ArgAlign = DL.getABITypeAlignment(EltType);
}
if (Overflow) {
// ParamTLS overflow.
@@ -2424,10 +2428,11 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
" Shadow: " << *ArgShadow << "\n");
bool ArgIsInitialized = false;
+ const DataLayout &DL = F.getParent()->getDataLayout();
if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
assert(A->getType()->isPointerTy() &&
"ByVal argument is not a pointer!");
- Size = MS.DL->getTypeAllocSize(A->getType()->getPointerElementType());
+ Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
if (ArgOffset + Size > kParamTLSSize) break;
unsigned ParamAlignment = CS.getParamAlignment(i + 1);
unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
@@ -2435,7 +2440,7 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
Size, Alignment);
} else {
- Size = MS.DL->getTypeAllocSize(A->getType());
+ Size = DL.getTypeAllocSize(A->getType());
if (ArgOffset + Size > kParamTLSSize) break;
Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
kShadowTLSAlignment);
@@ -2528,7 +2533,8 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
setShadow(&I, getCleanShadow(&I));
setOrigin(&I, getCleanOrigin());
IRBuilder<> IRB(I.getNextNode());
- uint64_t Size = MS.DL->getTypeAllocSize(I.getAllocatedType());
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ uint64_t Size = DL.getTypeAllocSize(I.getAllocatedType());
if (PoisonStack && ClPoisonStackWithCall) {
IRB.CreateCall2(MS.MsanPoisonStackFn,
IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
@@ -2720,6 +2726,7 @@ struct VarArgAMD64Helper : public VarArgHelper {
unsigned GpOffset = 0;
unsigned FpOffset = AMD64GpEndOffset;
unsigned OverflowOffset = AMD64FpEndOffset;
+ const DataLayout &DL = F.getParent()->getDataLayout();
for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
ArgIt != End; ++ArgIt) {
Value *A = *ArgIt;
@@ -2729,7 +2736,7 @@ struct VarArgAMD64Helper : public VarArgHelper {
// ByVal arguments always go to the overflow area.
assert(A->getType()->isPointerTy());
Type *RealTy = A->getType()->getPointerElementType();
- uint64_t ArgSize = MS.DL->getTypeAllocSize(RealTy);
+ uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
OverflowOffset += RoundUpToAlignment(ArgSize, 8);
IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
@@ -2751,7 +2758,7 @@ struct VarArgAMD64Helper : public VarArgHelper {
FpOffset += 16;
break;
case AK_Memory:
- uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType());
+ uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
OverflowOffset += RoundUpToAlignment(ArgSize, 8);
}
@@ -2859,11 +2866,12 @@ struct VarArgMIPS64Helper : public VarArgHelper {
void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
unsigned VAArgOffset = 0;
+ const DataLayout &DL = F.getParent()->getDataLayout();
for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 1, End = CS.arg_end();
ArgIt != End; ++ArgIt) {
Value *A = *ArgIt;
Value *Base;
- uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType());
+ uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
#if defined(__MIPSEB__) || defined(MIPSEB)
// Adjusting the shadow for argument with size < 8 to match the placement
// of bits in big endian system
diff --git a/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp b/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
index 6b50ce9513b..d7cb47890e8 100644
--- a/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
+++ b/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
@@ -76,7 +76,7 @@ namespace {
/// ThreadSanitizer: instrument the code in module to find races.
struct ThreadSanitizer : public FunctionPass {
- ThreadSanitizer() : FunctionPass(ID), DL(nullptr) {}
+ ThreadSanitizer() : FunctionPass(ID) {}
const char *getPassName() const override;
bool runOnFunction(Function &F) override;
bool doInitialization(Module &M) override;
@@ -84,15 +84,15 @@ struct ThreadSanitizer : public FunctionPass {
private:
void initializeCallbacks(Module &M);
- bool instrumentLoadOrStore(Instruction *I);
- bool instrumentAtomic(Instruction *I);
+ bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
+ bool instrumentAtomic(Instruction *I, const DataLayout &DL);
bool instrumentMemIntrinsic(Instruction *I);
- void chooseInstructionsToInstrument(SmallVectorImpl<Instruction*> &Local,
- SmallVectorImpl<Instruction*> &All);
+ void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
+ SmallVectorImpl<Instruction *> &All,
+ const DataLayout &DL);
bool addrPointsToConstantData(Value *Addr);
- int getMemoryAccessFuncIndex(Value *Addr);
+ int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
- const DataLayout *DL;
Type *IntptrTy;
IntegerType *OrdTy;
// Callbacks to run-time library are computed in doInitialization.
@@ -230,7 +230,7 @@ void ThreadSanitizer::initializeCallbacks(Module &M) {
}
bool ThreadSanitizer::doInitialization(Module &M) {
- DL = &M.getDataLayout();
+ const DataLayout &DL = M.getDataLayout();
// Always insert a call to __tsan_init into the module's CTORs.
IRBuilder<> IRB(M.getContext());
@@ -282,8 +282,8 @@ bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
// 'Local' is a vector of insns within the same BB (no calls between).
// 'All' is a vector of insns that will be instrumented.
void ThreadSanitizer::chooseInstructionsToInstrument(
- SmallVectorImpl<Instruction*> &Local,
- SmallVectorImpl<Instruction*> &All) {
+ SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All,
+ const DataLayout &DL) {
SmallSet<Value*, 8> WriteTargets;
// Iterate from the end.
for (SmallVectorImpl<Instruction*>::reverse_iterator It = Local.rbegin(),
@@ -307,7 +307,7 @@ void ThreadSanitizer::chooseInstructionsToInstrument(
Value *Addr = isa<StoreInst>(*I)
? cast<StoreInst>(I)->getPointerOperand()
: cast<LoadInst>(I)->getPointerOperand();
- if (isa<AllocaInst>(GetUnderlyingObject(Addr, nullptr)) &&
+ if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
!PointerMayBeCaptured(Addr, true, true)) {
// The variable is addressable but not captured, so it cannot be
// referenced from a different thread and participate in a data race
@@ -335,7 +335,6 @@ static bool isAtomic(Instruction *I) {
}
bool ThreadSanitizer::runOnFunction(Function &F) {
- if (!DL) return false;
initializeCallbacks(*F.getParent());
SmallVector<Instruction*, 8> RetVec;
SmallVector<Instruction*, 8> AllLoadsAndStores;
@@ -345,6 +344,7 @@ bool ThreadSanitizer::runOnFunction(Function &F) {
bool Res = false;
bool HasCalls = false;
bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
+ const DataLayout &DL = F.getParent()->getDataLayout();
// Traverse all instructions, collect loads/stores/returns, check for calls.
for (auto &BB : F) {
@@ -359,10 +359,11 @@ bool ThreadSanitizer::runOnFunction(Function &F) {
if (isa<MemIntrinsic>(Inst))
MemIntrinCalls.push_back(&Inst);
HasCalls = true;
- chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
+ chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
+ DL);
}
}
- chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
+ chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
}
// We have collected all loads and stores.
@@ -372,14 +373,14 @@ bool ThreadSanitizer::runOnFunction(Function &F) {
// Instrument memory accesses only if we want to report bugs in the function.
if (ClInstrumentMemoryAccesses && SanitizeFunction)
for (auto Inst : AllLoadsAndStores) {
- Res |= instrumentLoadOrStore(Inst);
+ Res |= instrumentLoadOrStore(Inst, DL);
}
// Instrument atomic memory accesses in any case (they can be used to
// implement synchronization).
if (ClInstrumentAtomics)
for (auto Inst : AtomicAccesses) {
- Res |= instrumentAtomic(Inst);
+ Res |= instrumentAtomic(Inst, DL);
}
if (ClInstrumentMemIntrinsics && SanitizeFunction)
@@ -403,13 +404,14 @@ bool ThreadSanitizer::runOnFunction(Function &F) {
return Res;
}
-bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) {
+bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I,
+ const DataLayout &DL) {
IRBuilder<> IRB(I);
bool IsWrite = isa<StoreInst>(*I);
Value *Addr = IsWrite
? cast<StoreInst>(I)->getPointerOperand()
: cast<LoadInst>(I)->getPointerOperand();
- int Idx = getMemoryAccessFuncIndex(Addr);
+ int Idx = getMemoryAccessFuncIndex(Addr, DL);
if (Idx < 0)
return false;
if (IsWrite && isVtableAccess(I)) {
@@ -440,7 +442,7 @@ bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) {
? cast<StoreInst>(I)->getAlignment()
: cast<LoadInst>(I)->getAlignment();
Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
- const uint32_t TypeSize = DL->getTypeStoreSizeInBits(OrigTy);
+ const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
Value *OnAccessFunc = nullptr;
if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0)
OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
@@ -501,11 +503,11 @@ bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
// The following page contains more background information:
// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
-bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
+bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
IRBuilder<> IRB(I);
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Value *Addr = LI->getPointerOperand();
- int Idx = getMemoryAccessFuncIndex(Addr);
+ int Idx = getMemoryAccessFuncIndex(Addr, DL);
if (Idx < 0)
return false;
const size_t ByteSize = 1 << Idx;
@@ -519,7 +521,7 @@ bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
Value *Addr = SI->getPointerOperand();
- int Idx = getMemoryAccessFuncIndex(Addr);
+ int Idx = getMemoryAccessFuncIndex(Addr, DL);
if (Idx < 0)
return false;
const size_t ByteSize = 1 << Idx;
@@ -533,7 +535,7 @@ bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
ReplaceInstWithInst(I, C);
} else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
Value *Addr = RMWI->getPointerOperand();
- int Idx = getMemoryAccessFuncIndex(Addr);
+ int Idx = getMemoryAccessFuncIndex(Addr, DL);
if (Idx < 0)
return false;
Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
@@ -550,7 +552,7 @@ bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
ReplaceInstWithInst(I, C);
} else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
Value *Addr = CASI->getPointerOperand();
- int Idx = getMemoryAccessFuncIndex(Addr);
+ int Idx = getMemoryAccessFuncIndex(Addr, DL);
if (Idx < 0)
return false;
const size_t ByteSize = 1 << Idx;
@@ -580,11 +582,12 @@ bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
return true;
}
-int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr) {
+int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr,
+ const DataLayout &DL) {
Type *OrigPtrTy = Addr->getType();
Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
assert(OrigTy->isSized());
- uint32_t TypeSize = DL->getTypeStoreSizeInBits(OrigTy);
+ uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
if (TypeSize != 8 && TypeSize != 16 &&
TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
NumAccessesWithBadSize++;
diff --git a/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.cpp b/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.cpp
index 4985d0ebfd0..b197c970ed3 100644
--- a/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.cpp
+++ b/llvm/lib/Transforms/ObjCARC/DependencyAnalysis.cpp
@@ -53,10 +53,12 @@ bool llvm::objcarc::CanAlterRefCount(const Instruction *Inst, const Value *Ptr,
if (AliasAnalysis::onlyReadsMemory(MRB))
return false;
if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
+ const DataLayout &DL = Inst->getModule()->getDataLayout();
for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
I != E; ++I) {
const Value *Op = *I;
- if (IsPotentialRetainableObjPtr(Op, *PA.getAA()) && PA.related(Ptr, Op))
+ if (IsPotentialRetainableObjPtr(Op, *PA.getAA()) &&
+ PA.related(Ptr, Op, DL))
return true;
}
return false;
@@ -87,6 +89,8 @@ bool llvm::objcarc::CanUse(const Instruction *Inst, const Value *Ptr,
if (Class == ARCInstKind::Call)
return false;
+ const DataLayout &DL = Inst->getModule()->getDataLayout();
+
// Consider various instructions which may have pointer arguments which are
// not "uses".
if (const ICmpInst *ICI = dyn_cast<ICmpInst>(Inst)) {
@@ -100,24 +104,26 @@ bool llvm::objcarc::CanUse(const Instruction *Inst, const Value *Ptr,
for (ImmutableCallSite::arg_iterator OI = CS.arg_begin(),
OE = CS.arg_end(); OI != OE; ++OI) {
const Value *Op = *OI;
- if (IsPotentialRetainableObjPtr(Op, *PA.getAA()) && PA.related(Ptr, Op))
+ if (IsPotentialRetainableObjPtr(Op, *PA.getAA()) &&
+ PA.related(Ptr, Op, DL))
return true;
}
return false;
} else if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// Special-case stores, because we don't care about the stored value, just
// the store address.
- const Value *Op = GetUnderlyingObjCPtr(SI->getPointerOperand());
+ const Value *Op = GetUnderlyingObjCPtr(SI->getPointerOperand(), DL);
// If we can't tell what the underlying object was, assume there is a
// dependence.
- return IsPotentialRetainableObjPtr(Op, *PA.getAA()) && PA.related(Op, Ptr);
+ return IsPotentialRetainableObjPtr(Op, *PA.getAA()) &&
+ PA.related(Op, Ptr, DL);
}
// Check each operand for a match.
for (User::const_op_iterator OI = Inst->op_begin(), OE = Inst->op_end();
OI != OE; ++OI) {
const Value *Op = *OI;
- if (IsPotentialRetainableObjPtr(Op, *PA.getAA()) && PA.related(Ptr, Op))
+ if (IsPotentialRetainableObjPtr(Op, *PA.getAA()) && PA.related(Ptr, Op, DL))
return true;
}
return false;
diff --git a/llvm/lib/Transforms/ObjCARC/ObjCARC.h b/llvm/lib/Transforms/ObjCARC/ObjCARC.h
index a303036c1c6..1b31e744a3d 100644
--- a/llvm/lib/Transforms/ObjCARC/ObjCARC.h
+++ b/llvm/lib/Transforms/ObjCARC/ObjCARC.h
@@ -72,9 +72,10 @@ static inline bool ModuleHasARC(const Module &M) {
/// \brief This is a wrapper around getUnderlyingObject which also knows how to
/// look through objc_retain and objc_autorelease calls, which we know to return
/// their argument verbatim.
-static inline const Value *GetUnderlyingObjCPtr(const Value *V) {
+static inline const Value *GetUnderlyingObjCPtr(const Value *V,
+ const DataLayout &DL) {
for (;;) {
- V = GetUnderlyingObject(V);
+ V = GetUnderlyingObject(V, DL);
if (!IsForwarding(GetBasicARCInstKind(V)))
break;
V = cast<CallInst>(V)->getArgOperand(0);
diff --git a/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.cpp b/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.cpp
index 5388c2c3713..b1515e38620 100644
--- a/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.cpp
+++ b/llvm/lib/Transforms/ObjCARC/ObjCARCAliasAnalysis.cpp
@@ -74,8 +74,8 @@ ObjCARCAliasAnalysis::alias(const Location &LocA, const Location &LocB) {
// If that failed, climb to the underlying object, including climbing through
// ObjC-specific no-ops, and try making an imprecise alias query.
- const Value *UA = GetUnderlyingObjCPtr(SA);
- const Value *UB = GetUnderlyingObjCPtr(SB);
+ const Value *UA = GetUnderlyingObjCPtr(SA, *DL);
+ const Value *UB = GetUnderlyingObjCPtr(SB, *DL);
if (UA != SA || UB != SB) {
Result = AliasAnalysis::alias(Location(UA), Location(UB));
// We can't use MustAlias or PartialAlias results here because
@@ -104,7 +104,7 @@ ObjCARCAliasAnalysis::pointsToConstantMemory(const Location &Loc,
// If that failed, climb to the underlying object, including climbing through
// ObjC-specific no-ops, and try making an imprecise alias query.
- const Value *U = GetUnderlyingObjCPtr(S);
+ const Value *U = GetUnderlyingObjCPtr(S, *DL);
if (U != S)
return AliasAnalysis::pointsToConstantMemory(Location(U), OrLocal);
diff --git a/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp b/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp
index 272781b88a1..04e19beb53b 100644
--- a/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp
+++ b/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp
@@ -83,13 +83,14 @@ static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
/// This is a wrapper around getUnderlyingObjCPtr along the lines of
/// GetUnderlyingObjects except that it returns early when it sees the first
/// alloca.
-static inline bool AreAnyUnderlyingObjectsAnAlloca(const Value *V) {
+static inline bool AreAnyUnderlyingObjectsAnAlloca(const Value *V,
+ const DataLayout &DL) {
SmallPtrSet<const Value *, 4> Visited;
SmallVector<const Value *, 4> Worklist;
Worklist.push_back(V);
do {
const Value *P = Worklist.pop_back_val();
- P = GetUnderlyingObjCPtr(P);
+ P = GetUnderlyingObjCPtr(P, DL);
if (isa<AllocaInst>(P))
return true;
@@ -1092,7 +1093,8 @@ bool ObjCARCOpt::VisitInstructionBottomUp(
// in the presence of allocas we only unconditionally remove pointers if
// both our retain and our release are KnownSafe.
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- if (AreAnyUnderlyingObjectsAnAlloca(SI->getPointerOperand())) {
+ const DataLayout &DL = BB->getModule()->getDataLayout();
+ if (AreAnyUnderlyingObjectsAnAlloca(SI->getPointerOperand(), DL)) {
auto I = MyStates.findPtrBottomUpState(
GetRCIdentityRoot(SI->getValueOperand()));
if (I != MyStates.bottom_up_ptr_end())
diff --git a/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.cpp b/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.cpp
index 410abfc354a..15ad8dc522f 100644
--- a/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.cpp
+++ b/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.cpp
@@ -32,20 +32,22 @@ using namespace llvm::objcarc;
bool ProvenanceAnalysis::relatedSelect(const SelectInst *A,
const Value *B) {
+ const DataLayout &DL = A->getModule()->getDataLayout();
// If the values are Selects with the same condition, we can do a more precise
// check: just check for relations between the values on corresponding arms.
if (const SelectInst *SB = dyn_cast<SelectInst>(B))
if (A->getCondition() == SB->getCondition())
- return related(A->getTrueValue(), SB->getTrueValue()) ||
- related(A->getFalseValue(), SB->getFalseValue());
+ return related(A->getTrueValue(), SB->getTrueValue(), DL) ||
+ related(A->getFalseValue(), SB->getFalseValue(), DL);
// Check both arms of the Select node individually.
- return related(A->getTrueValue(), B) ||
- related(A->getFalseValue(), B);
+ return related(A->getTrueValue(), B, DL) ||
+ related(A->getFalseValue(), B, DL);
}
bool ProvenanceAnalysis::relatedPHI(const PHINode *A,
const Value *B) {
+ const DataLayout &DL = A->getModule()->getDataLayout();
// If the values are PHIs in the same block, we can do a more precise as well
// as efficient check: just check for relations between the values on
// corresponding edges.
@@ -53,7 +55,7 @@ bool ProvenanceAnalysis::relatedPHI(const PHINode *A,
if (PNB->getParent() == A->getParent()) {
for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i)
if (related(A->getIncomingValue(i),
- PNB->getIncomingValueForBlock(A->getIncomingBlock(i))))
+ PNB->getIncomingValueForBlock(A->getIncomingBlock(i)), DL))
return true;
return false;
}
@@ -62,7 +64,7 @@ bool ProvenanceAnalysis::relatedPHI(const PHINode *A,
SmallPtrSet<const Value *, 4> UniqueSrc;
for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i) {
const Value *PV1 = A->getIncomingValue(i);
- if (UniqueSrc.insert(PV1).second && related(PV1, B))
+ if (UniqueSrc.insert(PV1).second && related(PV1, B, DL))
return true;
}
@@ -103,11 +105,11 @@ static bool IsStoredObjCPointer(const Value *P) {
return false;
}
-bool ProvenanceAnalysis::relatedCheck(const Value *A,
- const Value *B) {
+bool ProvenanceAnalysis::relatedCheck(const Value *A, const Value *B,
+ const DataLayout &DL) {
// Skip past provenance pass-throughs.
- A = GetUnderlyingObjCPtr(A);
- B = GetUnderlyingObjCPtr(B);
+ A = GetUnderlyingObjCPtr(A, DL);
+ B = GetUnderlyingObjCPtr(B, DL);
// Quick check.
if (A == B)
@@ -159,8 +161,8 @@ bool ProvenanceAnalysis::relatedCheck(const Value *A,
return true;
}
-bool ProvenanceAnalysis::related(const Value *A,
- const Value *B) {
+bool ProvenanceAnalysis::related(const Value *A, const Value *B,
+ const DataLayout &DL) {
// Begin by inserting a conservative value into the map. If the insertion
// fails, we have the answer already. If it succeeds, leave it there until we
// compute the real answer to guard against recursive queries.
@@ -170,7 +172,7 @@ bool ProvenanceAnalysis::related(const Value *A,
if (!Pair.second)
return Pair.first->second;
- bool Result = relatedCheck(A, B);
+ bool Result = relatedCheck(A, B, DL);
CachedResults[ValuePairTy(A, B)] = Result;
return Result;
}
diff --git a/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.h b/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.h
index 4b5f4d8575b..0ac41d3ea32 100644
--- a/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.h
+++ b/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysis.h
@@ -30,6 +30,7 @@
namespace llvm {
class Value;
class AliasAnalysis;
+ class DataLayout;
class PHINode;
class SelectInst;
}
@@ -53,7 +54,7 @@ class ProvenanceAnalysis {
typedef DenseMap<ValuePairTy, bool> CachedResultsTy;
CachedResultsTy CachedResults;
- bool relatedCheck(const Value *A, const Value *B);
+ bool relatedCheck(const Value *A, const Value *B, const DataLayout &DL);
bool relatedSelect(const SelectInst *A, const Value *B);
bool relatedPHI(const PHINode *A, const Value *B);
@@ -67,7 +68,7 @@ public:
AliasAnalysis *getAA() const { return AA; }
- bool related(const Value *A, const Value *B);
+ bool related(const Value *A, const Value *B, const DataLayout &DL);
void clear() {
CachedResults.clear();
diff --git a/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysisEvaluator.cpp b/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysisEvaluator.cpp
index d836632dc61..0be75af5201 100644
--- a/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysisEvaluator.cpp
+++ b/llvm/lib/Transforms/ObjCARC/ProvenanceAnalysisEvaluator.cpp
@@ -14,6 +14,7 @@
#include "llvm/Analysis/Passes.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Function.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -65,6 +66,7 @@ bool PAEval::runOnFunction(Function &F) {
ProvenanceAnalysis PA;
PA.setAA(&getAnalysis<AliasAnalysis>());
+ const DataLayout &DL = F.getParent()->getDataLayout();
for (Value *V1 : Values) {
StringRef NameV1 = getName(V1);
@@ -73,7 +75,7 @@ bool PAEval::runOnFunction(Function &F) {
if (NameV1 >= NameV2)
continue;
errs() << NameV1 << " and " << NameV2;
- if (PA.related(V1, V2))
+ if (PA.related(V1, V2, DL))
errs() << " are related.\n";
else
errs() << " are not related.\n";
diff --git a/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp b/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp
index 9b74648ea46..f2c91e5146d 100644
--- a/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp
+++ b/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp
@@ -31,7 +31,6 @@
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@@ -72,7 +71,6 @@ struct AlignmentFromAssumptions : public FunctionPass {
ScalarEvolution *SE;
DominatorTree *DT;
- const DataLayout *DL;
bool extractAlignmentInfo(CallInst *I, Value *&AAPtr, const SCEV *&AlignSCEV,
const SCEV *&OffSCEV);
@@ -317,7 +315,7 @@ bool AlignmentFromAssumptions::processAssumption(CallInst *ACall) {
continue;
if (Instruction *K = dyn_cast<Instruction>(J))
- if (isValidAssumeForContext(ACall, K, DL, DT))
+ if (isValidAssumeForContext(ACall, K, DT))
WorkList.push_back(K);
}
@@ -401,7 +399,7 @@ bool AlignmentFromAssumptions::processAssumption(CallInst *ACall) {
Visited.insert(J);
for (User *UJ : J->users()) {
Instruction *K = cast<Instruction>(UJ);
- if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DL, DT))
+ if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT))
WorkList.push_back(K);
}
}
@@ -414,7 +412,6 @@ bool AlignmentFromAssumptions::runOnFunction(Function &F) {
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
SE = &getAnalysis<ScalarEvolution>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- DL = &F.getParent()->getDataLayout();
NewDestAlignments.clear();
NewSrcAlignments.clear();
diff --git a/llvm/lib/Transforms/Scalar/BDCE.cpp b/llvm/lib/Transforms/Scalar/BDCE.cpp
index 3ae05be3dda..09c605e7673 100644
--- a/llvm/lib/Transforms/Scalar/BDCE.cpp
+++ b/llvm/lib/Transforms/Scalar/BDCE.cpp
@@ -64,7 +64,6 @@ struct BDCE : public FunctionPass {
APInt &KnownZero2, APInt &KnownOne2);
AssumptionCache *AC;
- const DataLayout *DL;
DominatorTree *DT;
};
}
@@ -95,20 +94,21 @@ void BDCE::determineLiveOperandBits(const Instruction *UserI,
// however, want to do this twice, so we cache the result in APInts that live
// in the caller. For the two-relevant-operands case, both operand values are
// provided here.
- auto ComputeKnownBits = [&](unsigned BitWidth, const Value *V1,
- const Value *V2) {
- KnownZero = APInt(BitWidth, 0);
- KnownOne = APInt(BitWidth, 0);
- computeKnownBits(const_cast<Value*>(V1), KnownZero, KnownOne, DL, 0, AC,
- UserI, DT);
-
- if (V2) {
- KnownZero2 = APInt(BitWidth, 0);
- KnownOne2 = APInt(BitWidth, 0);
- computeKnownBits(const_cast<Value*>(V2), KnownZero2, KnownOne2, DL, 0, AC,
- UserI, DT);
- }
- };
+ auto ComputeKnownBits =
+ [&](unsigned BitWidth, const Value *V1, const Value *V2) {
+ const DataLayout &DL = I->getModule()->getDataLayout();
+ KnownZero = APInt(BitWidth, 0);
+ KnownOne = APInt(BitWidth, 0);
+ computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
+ AC, UserI, DT);
+
+ if (V2) {
+ KnownZero2 = APInt(BitWidth, 0);
+ KnownOne2 = APInt(BitWidth, 0);
+ computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
+ 0, AC, UserI, DT);
+ }
+ };
switch (UserI->getOpcode()) {
default: break;
@@ -263,7 +263,6 @@ bool BDCE::runOnFunction(Function& F) {
return false;
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- DL = &F.getParent()->getDataLayout();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
DenseMap<Instruction *, APInt> AliveBits;
diff --git a/llvm/lib/Transforms/Scalar/ConstantProp.cpp b/llvm/lib/Transforms/Scalar/ConstantProp.cpp
index 9355444547b..c974ebb9456 100644
--- a/llvm/lib/Transforms/Scalar/ConstantProp.cpp
+++ b/llvm/lib/Transforms/Scalar/ConstantProp.cpp
@@ -22,7 +22,6 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/IR/Constant.h"
-#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/Pass.h"
@@ -77,7 +76,7 @@ bool ConstantPropagation::runOnFunction(Function &F) {
WorkList.erase(WorkList.begin()); // Get an element from the worklist...
if (!I->use_empty()) // Don't muck with dead instructions...
- if (Constant *C = ConstantFoldInstruction(I, &DL, TLI)) {
+ if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
// Add all of the users of this instruction to the worklist, they might
// be constant propagatable now...
for (User *U : I->users())
diff --git a/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp b/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
index 5a3b5cf34cc..912d527402a 100644
--- a/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
+++ b/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
@@ -19,6 +19,7 @@
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@@ -126,8 +127,9 @@ bool CorrelatedValuePropagation::processPHI(PHINode *P) {
Changed = true;
}
- // FIXME: Provide DL, TLI, DT, AT to SimplifyInstruction.
- if (Value *V = SimplifyInstruction(P)) {
+ // FIXME: Provide TLI, DT, AT to SimplifyInstruction.
+ const DataLayout &DL = BB->getModule()->getDataLayout();
+ if (Value *V = SimplifyInstruction(P, DL)) {
P->replaceAllUsesWith(V);
P->eraseFromParent();
Changed = true;
diff --git a/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp b/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
index c2ce1d54f89..4483f3a9565 100644
--- a/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
+++ b/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
@@ -78,7 +78,8 @@ namespace {
bool HandleFree(CallInst *F);
bool handleEndBlock(BasicBlock &BB);
void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
- SmallSetVector<Value*, 16> &DeadStackObjects);
+ SmallSetVector<Value *, 16> &DeadStackObjects,
+ const DataLayout &DL);
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
@@ -194,18 +195,12 @@ static bool hasMemoryWrite(Instruction *I, const TargetLibraryInfo *TLI) {
/// describe the memory operations for this instruction.
static AliasAnalysis::Location
getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
- const DataLayout *DL = AA.getDataLayout();
if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
return AA.getLocation(SI);
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
// memcpy/memmove/memset.
AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
- // If we don't have target data around, an unknown size in Location means
- // that we should use the size of the pointee type. This isn't valid for
- // memset/memcpy, which writes more than an i8.
- if (Loc.Size == AliasAnalysis::UnknownSize && DL == nullptr)
- return AliasAnalysis::Location();
return Loc;
}
@@ -215,11 +210,6 @@ getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
switch (II->getIntrinsicID()) {
default: return AliasAnalysis::Location(); // Unhandled intrinsic.
case Intrinsic::init_trampoline:
- // If we don't have target data around, an unknown size in Location means
- // that we should use the size of the pointee type. This isn't valid for
- // init.trampoline, which writes more than an i8.
- if (!DL) return AliasAnalysis::Location();
-
// FIXME: We don't know the size of the trampoline, so we can't really
// handle it here.
return AliasAnalysis::Location(II->getArgOperand(0));
@@ -321,9 +311,10 @@ static Value *getStoredPointerOperand(Instruction *I) {
return CS.getArgument(0);
}
-static uint64_t getPointerSize(const Value *V, AliasAnalysis &AA) {
+static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
+ const TargetLibraryInfo *TLI) {
uint64_t Size;
- if (getObjectSize(V, Size, AA.getDataLayout(), AA.getTargetLibraryInfo()))
+ if (getObjectSize(V, Size, DL, TLI))
return Size;
return AliasAnalysis::UnknownSize;
}
@@ -343,10 +334,9 @@ namespace {
/// overwritten by 'Later', or 'OverwriteUnknown' if nothing can be determined
static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
const AliasAnalysis::Location &Earlier,
- AliasAnalysis &AA,
- int64_t &EarlierOff,
- int64_t &LaterOff) {
- const DataLayout *DL = AA.getDataLayout();
+ const DataLayout &DL,
+ const TargetLibraryInfo *TLI,
+ int64_t &EarlierOff, int64_t &LaterOff) {
const Value *P1 = Earlier.Ptr->stripPointerCasts();
const Value *P2 = Later.Ptr->stripPointerCasts();
@@ -367,7 +357,7 @@ static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
// Otherwise, we have to have size information, and the later store has to be
// larger than the earlier one.
if (Later.Size == AliasAnalysis::UnknownSize ||
- Earlier.Size == AliasAnalysis::UnknownSize || DL == nullptr)
+ Earlier.Size == AliasAnalysis::UnknownSize)
return OverwriteUnknown;
// Check to see if the later store is to the entire object (either a global,
@@ -382,7 +372,7 @@ static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
return OverwriteUnknown;
// If the "Later" store is to a recognizable object, get its size.
- uint64_t ObjectSize = getPointerSize(UO2, AA);
+ uint64_t ObjectSize = getPointerSize(UO2, DL, TLI);
if (ObjectSize != AliasAnalysis::UnknownSize)
if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
return OverwriteComplete;
@@ -560,8 +550,10 @@ bool DSE::runOnBasicBlock(BasicBlock &BB) {
if (isRemovable(DepWrite) &&
!isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
int64_t InstWriteOffset, DepWriteOffset;
- OverwriteResult OR = isOverwrite(Loc, DepLoc, *AA,
- DepWriteOffset, InstWriteOffset);
+ const DataLayout &DL = BB.getModule()->getDataLayout();
+ OverwriteResult OR =
+ isOverwrite(Loc, DepLoc, DL, AA->getTargetLibraryInfo(),
+ DepWriteOffset, InstWriteOffset);
if (OR == OverwriteComplete) {
DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: "
<< *DepWrite << "\n KILLER: " << *Inst << '\n');
@@ -655,6 +647,7 @@ bool DSE::HandleFree(CallInst *F) {
AliasAnalysis::Location Loc = AliasAnalysis::Location(F->getOperand(0));
SmallVector<BasicBlock *, 16> Blocks;
Blocks.push_back(F->getParent());
+ const DataLayout &DL = F->getModule()->getDataLayout();
while (!Blocks.empty()) {
BasicBlock *BB = Blocks.pop_back_val();
@@ -668,7 +661,7 @@ bool DSE::HandleFree(CallInst *F) {
break;
Value *DepPointer =
- GetUnderlyingObject(getStoredPointerOperand(Dependency));
+ GetUnderlyingObject(getStoredPointerOperand(Dependency), DL);
// Check for aliasing.
if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
@@ -728,6 +721,8 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
if (AI->hasByValOrInAllocaAttr())
DeadStackObjects.insert(AI);
+ const DataLayout &DL = BB.getModule()->getDataLayout();
+
// Scan the basic block backwards
for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
--BBI;
@@ -736,7 +731,7 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
if (hasMemoryWrite(BBI, TLI) && isRemovable(BBI)) {
// See through pointer-to-pointer bitcasts
SmallVector<Value *, 4> Pointers;
- GetUnderlyingObjects(getStoredPointerOperand(BBI), Pointers);
+ GetUnderlyingObjects(getStoredPointerOperand(BBI), Pointers, DL);
// Stores to stack values are valid candidates for removal.
bool AllDead = true;
@@ -799,8 +794,8 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
// the call is live.
DeadStackObjects.remove_if([&](Value *I) {
// See if the call site touches the value.
- AliasAnalysis::ModRefResult A =
- AA->getModRefInfo(CS, I, getPointerSize(I, *AA));
+ AliasAnalysis::ModRefResult A = AA->getModRefInfo(
+ CS, I, getPointerSize(I, DL, AA->getTargetLibraryInfo()));
return A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref;
});
@@ -835,7 +830,7 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
// Remove any allocas from the DeadPointer set that are loaded, as this
// makes any stores above the access live.
- RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
+ RemoveAccessedObjects(LoadedLoc, DeadStackObjects, DL);
// If all of the allocas were clobbered by the access then we're not going
// to find anything else to process.
@@ -850,8 +845,9 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
/// of the stack objects in the DeadStackObjects set. If so, they become live
/// because the location is being loaded.
void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
- SmallSetVector<Value*, 16> &DeadStackObjects) {
- const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
+ SmallSetVector<Value *, 16> &DeadStackObjects,
+ const DataLayout &DL) {
+ const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL);
// A constant can't be in the dead pointer set.
if (isa<Constant>(UnderlyingPointer))
@@ -867,7 +863,8 @@ void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
// Remove objects that could alias LoadedLoc.
DeadStackObjects.remove_if([&](Value *I) {
// See if the loaded location could alias the stack location.
- AliasAnalysis::Location StackLoc(I, getPointerSize(I, *AA));
+ AliasAnalysis::Location StackLoc(
+ I, getPointerSize(I, DL, AA->getTargetLibraryInfo()));
return !AA->isNoAlias(StackLoc, LoadedLoc);
});
}
diff --git a/llvm/lib/Transforms/Scalar/EarlyCSE.cpp b/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
index 3f8089c5bbf..742721279bf 100644
--- a/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
+++ b/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
@@ -263,7 +263,6 @@ namespace {
class EarlyCSE {
public:
Function &F;
- const DataLayout *DL;
const TargetLibraryInfo &TLI;
const TargetTransformInfo &TTI;
DominatorTree &DT;
@@ -308,11 +307,10 @@ public:
unsigned CurrentGeneration;
/// \brief Set up the EarlyCSE runner for a particular function.
- EarlyCSE(Function &F, const DataLayout *DL, const TargetLibraryInfo &TLI,
+ EarlyCSE(Function &F, const TargetLibraryInfo &TLI,
const TargetTransformInfo &TTI, DominatorTree &DT,
AssumptionCache &AC)
- : F(F), DL(DL), TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {
- }
+ : F(F), TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {}
bool run();
@@ -469,6 +467,7 @@ bool EarlyCSE::processNode(DomTreeNode *Node) {
Instruction *LastStore = nullptr;
bool Changed = false;
+ const DataLayout &DL = BB->getModule()->getDataLayout();
// See if any instructions in the block can be eliminated. If so, do it. If
// not, add them to AvailableValues.
@@ -685,14 +684,12 @@ bool EarlyCSE::run() {
PreservedAnalyses EarlyCSEPass::run(Function &F,
AnalysisManager<Function> *AM) {
- const DataLayout &DL = F.getParent()->getDataLayout();
-
auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
auto &TTI = AM->getResult<TargetIRAnalysis>(F);
auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
auto &AC = AM->getResult<AssumptionAnalysis>(F);
- EarlyCSE CSE(F, &DL, TLI, TTI, DT, AC);
+ EarlyCSE CSE(F, TLI, TTI, DT, AC);
if (!CSE.run())
return PreservedAnalyses::all();
@@ -724,13 +721,12 @@ public:
if (skipOptnoneFunction(F))
return false;
- auto &DL = F.getParent()->getDataLayout();
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- EarlyCSE CSE(F, &DL, TLI, TTI, DT, AC);
+ EarlyCSE CSE(F, TLI, TTI, DT, AC);
return CSE.run();
}
diff --git a/llvm/lib/Transforms/Scalar/GVN.cpp b/llvm/lib/Transforms/Scalar/GVN.cpp
index 2c00d694ab7..4e3bd7f5bb5 100644
--- a/llvm/lib/Transforms/Scalar/GVN.cpp
+++ b/llvm/lib/Transforms/Scalar/GVN.cpp
@@ -584,14 +584,13 @@ namespace {
/// Emit code into this block to adjust the value defined here to the
/// specified type. This handles various coercion cases.
- Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const;
+ Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const;
};
class GVN : public FunctionPass {
bool NoLoads;
MemoryDependenceAnalysis *MD;
DominatorTree *DT;
- const DataLayout *DL;
const TargetLibraryInfo *TLI;
AssumptionCache *AC;
SetVector<BasicBlock *> DeadBlocks;
@@ -630,7 +629,6 @@ namespace {
InstrsToErase.push_back(I);
}
- const DataLayout *getDataLayout() const { return DL; }
DominatorTree &getDominatorTree() const { return *DT; }
AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
MemoryDependenceAnalysis &getMemDep() const { return *MD; }
@@ -956,8 +954,9 @@ static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
return -1;
int64_t StoreOffset = 0, LoadOffset = 0;
- Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&DL);
- Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &DL);
+ Value *StoreBase =
+ GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
+ Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
if (StoreBase != LoadBase)
return -1;
@@ -1021,13 +1020,13 @@ static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
/// This function is called when we have a
/// memdep query of a load that ends up being a clobbering store.
static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
- StoreInst *DepSI,
- const DataLayout &DL) {
+ StoreInst *DepSI) {
// Cannot handle reading from store of first-class aggregate yet.
if (DepSI->getValueOperand()->getType()->isStructTy() ||
DepSI->getValueOperand()->getType()->isArrayTy())
return -1;
+ const DataLayout &DL = DepSI->getModule()->getDataLayout();
Value *StorePtr = DepSI->getPointerOperand();
uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
@@ -1052,11 +1051,11 @@ static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
// then we should widen it!
int64_t LoadOffs = 0;
const Value *LoadBase =
- GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &DL);
+ GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
- unsigned Size = MemoryDependenceAnalysis::
- getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, DL);
+ unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
+ LoadBase, LoadOffs, LoadSize, DepLI);
if (Size == 0) return -1;
return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL);
@@ -1086,7 +1085,7 @@ static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
Constant *Src = dyn_cast<Constant>(MTI->getSource());
if (!Src) return -1;
- GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &DL));
+ GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
if (!GV || !GV->isConstant()) return -1;
// See if the access is within the bounds of the transfer.
@@ -1104,7 +1103,7 @@ static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
- if (ConstantFoldLoadFromConstPtr(Src, &DL))
+ if (ConstantFoldLoadFromConstPtr(Src, DL))
return Offset;
return -1;
}
@@ -1157,7 +1156,7 @@ static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
Type *LoadTy, Instruction *InsertPt,
GVN &gvn) {
- const DataLayout &DL = *gvn.getDataLayout();
+ const DataLayout &DL = SrcVal->getModule()->getDataLayout();
// If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
// widen SrcVal out to a larger load.
unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType());
@@ -1265,7 +1264,7 @@ static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
- return ConstantFoldLoadFromConstPtr(Src, &DL);
+ return ConstantFoldLoadFromConstPtr(Src, DL);
}
@@ -1281,7 +1280,7 @@ static Value *ConstructSSAForLoadSet(LoadInst *LI,
gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
LI->getParent())) {
assert(!ValuesPerBlock[0].isUndefValue() && "Dead BB dominate this block");
- return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
+ return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
}
// Otherwise, we have to construct SSA form.
@@ -1289,8 +1288,6 @@ static Value *ConstructSSAForLoadSet(LoadInst *LI,
SSAUpdater SSAUpdate(&NewPHIs);
SSAUpdate.Initialize(LI->getType(), LI->getName());
- Type *LoadTy = LI->getType();
-
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
const AvailableValueInBlock &AV = ValuesPerBlock[i];
BasicBlock *BB = AV.BB;
@@ -1298,7 +1295,7 @@ static Value *ConstructSSAForLoadSet(LoadInst *LI,
if (SSAUpdate.HasValueForBlock(BB))
continue;
- SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
+ SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
}
// Perform PHI construction.
@@ -1326,16 +1323,16 @@ static Value *ConstructSSAForLoadSet(LoadInst *LI,
return V;
}
-Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
+Value *AvailableValueInBlock::MaterializeAdjustedValue(LoadInst *LI,
+ GVN &gvn) const {
Value *Res;
+ Type *LoadTy = LI->getType();
+ const DataLayout &DL = LI->getModule()->getDataLayout();
if (isSimpleValue()) {
Res = getSimpleValue();
if (Res->getType() != LoadTy) {
- const DataLayout *DL = gvn.getDataLayout();
- assert(DL && "Need target data to handle type mismatch case");
- Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
- *DL);
-
+ Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(), DL);
+
DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " "
<< *getSimpleValue() << '\n'
<< *Res << '\n' << "\n\n\n");
@@ -1353,10 +1350,8 @@ Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) c
<< *Res << '\n' << "\n\n\n");
}
} else if (isMemIntrinValue()) {
- const DataLayout *DL = gvn.getDataLayout();
- assert(DL && "Need target data to handle type mismatch case");
- Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
- LoadTy, BB->getTerminator(), *DL);
+ Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
+ BB->getTerminator(), DL);
DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
<< " " << *getMemIntrinValue() << '\n'
<< *Res << '\n' << "\n\n\n");
@@ -1383,6 +1378,7 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
// dependencies that produce an unknown value for the load (such as a call
// that could potentially clobber the load).
unsigned NumDeps = Deps.size();
+ const DataLayout &DL = LI->getModule()->getDataLayout();
for (unsigned i = 0, e = NumDeps; i != e; ++i) {
BasicBlock *DepBB = Deps[i].getBB();
MemDepResult DepInfo = Deps[i].getResult();
@@ -1409,9 +1405,9 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
// read by the load, we can extract the bits we need for the load from the
// stored value.
if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
- if (DL && Address) {
- int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
- DepSI, *DL);
+ if (Address) {
+ int Offset =
+ AnalyzeLoadFromClobberingStore(LI->getType(), Address, DepSI);
if (Offset != -1) {
ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
DepSI->getValueOperand(),
@@ -1428,9 +1424,9 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
// If this is a clobber and L is the first instruction in its block, then
// we have the first instruction in the entry block.
- if (DepLI != LI && Address && DL) {
- int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(), Address,
- DepLI, *DL);
+ if (DepLI != LI && Address) {
+ int Offset =
+ AnalyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
if (Offset != -1) {
ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
@@ -1443,9 +1439,9 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
// If the clobbering value is a memset/memcpy/memmove, see if we can
// forward a value on from it.
if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
- if (DL && Address) {
+ if (Address) {
int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
- DepMI, *DL);
+ DepMI, DL);
if (Offset != -1) {
ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
Offset));
@@ -1484,8 +1480,8 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
if (S->getValueOperand()->getType() != LI->getType()) {
// If the stored value is larger or equal to the loaded value, we can
// reuse it.
- if (!DL || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
- LI->getType(), *DL)) {
+ if (!CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
+ LI->getType(), DL)) {
UnavailableBlocks.push_back(DepBB);
continue;
}
@@ -1501,7 +1497,7 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
if (LD->getType() != LI->getType()) {
// If the stored value is larger or equal to the loaded value, we can
// reuse it.
- if (!DL || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*DL)) {
+ if (!CanCoerceMustAliasedValueToLoad(LD, LI->getType(), DL)) {
UnavailableBlocks.push_back(DepBB);
continue;
}
@@ -1613,6 +1609,7 @@ bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
// Check if the load can safely be moved to all the unavailable predecessors.
bool CanDoPRE = true;
+ const DataLayout &DL = LI->getModule()->getDataLayout();
SmallVector<Instruction*, 8> NewInsts;
for (auto &PredLoad : PredLoads) {
BasicBlock *UnavailablePred = PredLoad.first;
@@ -1833,10 +1830,11 @@ bool GVN::processLoad(LoadInst *L) {
// ... to a pointer that has been loaded from before...
MemDepResult Dep = MD->getDependency(L);
+ const DataLayout &DL = L->getModule()->getDataLayout();
// If we have a clobber and target data is around, see if this is a clobber
// that we can fix up through code synthesis.
- if (Dep.isClobber() && DL) {
+ if (Dep.isClobber()) {
// Check to see if we have something like this:
// store i32 123, i32* %P
// %A = bitcast i32* %P to i8*
@@ -1849,12 +1847,11 @@ bool GVN::processLoad(LoadInst *L) {
// access code.
Value *AvailVal = nullptr;
if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
- int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
- L->getPointerOperand(),
- DepSI, *DL);
+ int Offset = AnalyzeLoadFromClobberingStore(
+ L->getType(), L->getPointerOperand(), DepSI);
if (Offset != -1)
AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
- L->getType(), L, *DL);
+ L->getType(), L, DL);
}
// Check to see if we have something like this:
@@ -1867,9 +1864,8 @@ bool GVN::processLoad(LoadInst *L) {
if (DepLI == L)
return false;
- int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
- L->getPointerOperand(),
- DepLI, *DL);
+ int Offset = AnalyzeLoadFromClobberingLoad(
+ L->getType(), L->getPointerOperand(), DepLI, DL);
if (Offset != -1)
AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
}
@@ -1877,11 +1873,10 @@ bool GVN::processLoad(LoadInst *L) {
// If the clobbering value is a memset/memcpy/memmove, see if we can forward
// a value on from it.
if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
- int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
- L->getPointerOperand(),
- DepMI, *DL);
+ int Offset = AnalyzeLoadFromClobberingMemInst(
+ L->getType(), L->getPointerOperand(), DepMI, DL);
if (Offset != -1)
- AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *DL);
+ AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, DL);
}
if (AvailVal) {
@@ -1932,17 +1927,13 @@ bool GVN::processLoad(LoadInst *L) {
// actually have the same type. See if we know how to reuse the stored
// value (depending on its type).
if (StoredVal->getType() != L->getType()) {
- if (DL) {
- StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
- L, *DL);
- if (!StoredVal)
- return false;
-
- DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
- << '\n' << *L << "\n\n\n");
- }
- else
+ StoredVal =
+ CoerceAvailableValueToLoadType(StoredVal, L->getType(), L, DL);
+ if (!StoredVal)
return false;
+
+ DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
+ << '\n' << *L << "\n\n\n");
}
// Remove it!
@@ -1961,17 +1952,12 @@ bool GVN::processLoad(LoadInst *L) {
// the same type. See if we know how to reuse the previously loaded value
// (depending on its type).
if (DepLI->getType() != L->getType()) {
- if (DL) {
- AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
- L, *DL);
- if (!AvailableVal)
- return false;
-
- DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
- << "\n" << *L << "\n\n\n");
- }
- else
+ AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L, DL);
+ if (!AvailableVal)
return false;
+
+ DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
+ << "\n" << *L << "\n\n\n");
}
// Remove it!
@@ -2239,6 +2225,7 @@ bool GVN::processInstruction(Instruction *I) {
// to value numbering it. Value numbering often exposes redundancies, for
// example if it determines that %y is equal to %x then the instruction
// "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
+ const DataLayout &DL = I->getModule()->getDataLayout();
if (Value *V = SimplifyInstruction(I, DL, TLI, DT, AC)) {
I->replaceAllUsesWith(V);
if (MD && V->getType()->getScalarType()->isPointerTy())
@@ -2357,7 +2344,6 @@ bool GVN::runOnFunction(Function& F) {
if (!NoLoads)
MD = &getAnalysis<MemoryDependenceAnalysis>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- DL = &F.getParent()->getDataLayout();
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
diff --git a/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp b/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
index 38519ba717c..3abd7aa748f 100644
--- a/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ b/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -73,7 +73,6 @@ namespace {
LoopInfo *LI;
ScalarEvolution *SE;
DominatorTree *DT;
- const DataLayout *DL;
TargetLibraryInfo *TLI;
const TargetTransformInfo *TTI;
@@ -82,8 +81,8 @@ namespace {
public:
static char ID; // Pass identification, replacement for typeid
- IndVarSimplify() : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr),
- DL(nullptr), Changed(false) {
+ IndVarSimplify()
+ : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) {
initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
}
@@ -663,14 +662,14 @@ namespace {
/// extended by this sign or zero extend operation. This is used to determine
/// the final width of the IV before actually widening it.
static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
- const DataLayout *DL, const TargetTransformInfo *TTI) {
+ const TargetTransformInfo *TTI) {
bool IsSigned = Cast->getOpcode() == Instruction::SExt;
if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
return;
Type *Ty = Cast->getType();
uint64_t Width = SE->getTypeSizeInBits(Ty);
- if (DL && !DL->isLegalInteger(Width))
+ if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
return;
// Cast is either an sext or zext up to this point.
@@ -1201,7 +1200,6 @@ PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
namespace {
class IndVarSimplifyVisitor : public IVVisitor {
ScalarEvolution *SE;
- const DataLayout *DL;
const TargetTransformInfo *TTI;
PHINode *IVPhi;
@@ -1209,9 +1207,9 @@ namespace {
WideIVInfo WI;
IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
- const DataLayout *DL, const TargetTransformInfo *TTI,
+ const TargetTransformInfo *TTI,
const DominatorTree *DTree)
- : SE(SCEV), DL(DL), TTI(TTI), IVPhi(IV) {
+ : SE(SCEV), TTI(TTI), IVPhi(IV) {
DT = DTree;
WI.NarrowIV = IVPhi;
if (ReduceLiveIVs)
@@ -1219,9 +1217,7 @@ namespace {
}
// Implement the interface used by simplifyUsersOfIV.
- void visitCast(CastInst *Cast) override {
- visitIVCast(Cast, WI, SE, DL, TTI);
- }
+ void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
};
}
@@ -1255,7 +1251,7 @@ void IndVarSimplify::SimplifyAndExtend(Loop *L,
PHINode *CurrIV = LoopPhis.pop_back_val();
// Information about sign/zero extensions of CurrIV.
- IndVarSimplifyVisitor Visitor(CurrIV, SE, DL, TTI, DT);
+ IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor);
@@ -1521,9 +1517,8 @@ static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
/// This is difficult in general for SCEV because of potential overflow. But we
/// could at least handle constant BECounts.
-static PHINode *
-FindLoopCounter(Loop *L, const SCEV *BECount,
- ScalarEvolution *SE, DominatorTree *DT, const DataLayout *DL) {
+static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
+ ScalarEvolution *SE, DominatorTree *DT) {
uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
Value *Cond =
@@ -1552,7 +1547,8 @@ FindLoopCounter(Loop *L, const SCEV *BECount,
// AR may be wider than BECount. With eq/ne tests overflow is immaterial.
// AR may not be a narrower type, or we may never exit.
uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
- if (PhiWidth < BCWidth || (DL && !DL->isLegalInteger(PhiWidth)))
+ if (PhiWidth < BCWidth ||
+ !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth))
continue;
const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
@@ -1896,11 +1892,11 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
SE = &getAnalysis<ScalarEvolution>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- DL = &L->getHeader()->getModule()->getDataLayout();
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
TLI = TLIP ? &TLIP->getTLI() : nullptr;
auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
DeadInsts.clear();
Changed = false;
@@ -1912,7 +1908,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
// Create a rewriter object which we'll use to transform the code with.
- SCEVExpander Rewriter(*SE, "indvars");
+ SCEVExpander Rewriter(*SE, DL, "indvars");
#ifndef NDEBUG
Rewriter.setDebugType(DEBUG_TYPE);
#endif
@@ -1941,7 +1937,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// If we have a trip count expression, rewrite the loop's exit condition
// using it. We can currently only handle loops with a single exit.
if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
- PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, DL);
+ PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
if (IndVar) {
// Check preconditions for proper SCEVExpander operation. SCEV does not
// express SCEVExpander's dependencies, such as LoopSimplify. Instead any
diff --git a/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp b/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp
index 8559e638ac3..61f3cc50257 100644
--- a/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp
+++ b/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp
@@ -791,9 +791,10 @@ LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BP
"loop variant exit count doesn't make sense!");
assert(!L.contains(LatchExit) && "expected an exit block!");
-
- Value *IndVarStartV = SCEVExpander(SE, "irce").expandCodeFor(
- IndVarStart, IndVarTy, &*Preheader->rbegin());
+ const DataLayout &DL = Preheader->getModule()->getDataLayout();
+ Value *IndVarStartV =
+ SCEVExpander(SE, DL, "irce")
+ .expandCodeFor(IndVarStart, IndVarTy, &*Preheader->rbegin());
IndVarStartV->setName("indvar.start");
LoopStructure Result;
@@ -1132,7 +1133,7 @@ bool LoopConstrainer::run() {
IntegerType *IVTy =
cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
- SCEVExpander Expander(SE, "irce");
+ SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
Instruction *InsertPt = OriginalPreheader->getTerminator();
// It would have been better to make `PreLoop' and `PostLoop'
diff --git a/llvm/lib/Transforms/Scalar/JumpThreading.cpp b/llvm/lib/Transforms/Scalar/JumpThreading.cpp
index db4174d7083..f6e43f26f99 100644
--- a/llvm/lib/Transforms/Scalar/JumpThreading.cpp
+++ b/llvm/lib/Transforms/Scalar/JumpThreading.cpp
@@ -78,7 +78,6 @@ namespace {
/// revectored to the false side of the second if.
///
class JumpThreading : public FunctionPass {
- const DataLayout *DL;
TargetLibraryInfo *TLI;
LazyValueInfo *LVI;
#ifdef NDEBUG
@@ -159,7 +158,6 @@ bool JumpThreading::runOnFunction(Function &F) {
return false;
DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
- DL = &F.getParent()->getDataLayout();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
LVI = &getAnalysis<LazyValueInfo>();
@@ -504,6 +502,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
assert(Preference == WantInteger && "Compares only produce integers");
PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
if (PN && PN->getParent() == BB) {
+ const DataLayout &DL = PN->getModule()->getDataLayout();
// We can do this simplification if any comparisons fold to true or false.
// See if any do.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
@@ -708,7 +707,8 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
// Run constant folding to see if we can reduce the condition to a simple
// constant.
if (Instruction *I = dyn_cast<Instruction>(Condition)) {
- Value *SimpleVal = ConstantFoldInstruction(I, DL, TLI);
+ Value *SimpleVal =
+ ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
if (SimpleVal) {
I->replaceAllUsesWith(SimpleVal);
I->eraseFromParent();
@@ -1520,7 +1520,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
// At this point, the IR is fully up to date and consistent. Do a quick scan
// over the new instructions and zap any that are constants or dead. This
// frequently happens because of phi translation.
- SimplifyInstructionsInBlock(NewBB, DL, TLI);
+ SimplifyInstructionsInBlock(NewBB, TLI);
// Threaded an edge!
++NumThreads;
@@ -1585,7 +1585,6 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
BasicBlock::iterator BI = BB->begin();
for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
-
// Clone the non-phi instructions of BB into PredBB, keeping track of the
// mapping and using it to remap operands in the cloned instructions.
for (; BI != BB->end(); ++BI) {
@@ -1602,7 +1601,8 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
// If this instruction can be simplified after the operands are updated,
// just use the simplified value instead. This frequently happens due to
// phi translation.
- if (Value *IV = SimplifyInstruction(New, DL)) {
+ if (Value *IV =
+ SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
delete New;
ValueMapping[BI] = IV;
} else {
diff --git a/llvm/lib/Transforms/Scalar/LICM.cpp b/llvm/lib/Transforms/Scalar/LICM.cpp
index 45bd122e072..5528a25864c 100644
--- a/llvm/lib/Transforms/Scalar/LICM.cpp
+++ b/llvm/lib/Transforms/Scalar/LICM.cpp
@@ -48,7 +48,6 @@
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
#include "llvm/IR/PredIteratorCache.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -77,21 +76,21 @@ static bool isNotUsedInLoop(Instruction &I, Loop *CurLoop);
static bool hoist(Instruction &I, BasicBlock *Preheader);
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
Loop *CurLoop, AliasSetTracker *CurAST );
-static bool isGuaranteedToExecute(Instruction &Inst, DominatorTree *DT,
- Loop *CurLoop, LICMSafetyInfo * SafetyInfo);
-static bool isSafeToExecuteUnconditionally(Instruction &Inst,DominatorTree *DT,
- const DataLayout *DL, Loop *CurLoop,
- LICMSafetyInfo * SafetyInfo);
+static bool isGuaranteedToExecute(Instruction &Inst, DominatorTree *DT,
+ Loop *CurLoop, LICMSafetyInfo *SafetyInfo);
+static bool isSafeToExecuteUnconditionally(Instruction &Inst, DominatorTree *DT,
+ Loop *CurLoop,
+ LICMSafetyInfo *SafetyInfo);
static bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
const AAMDNodes &AAInfo,
AliasSetTracker *CurAST);
static Instruction *CloneInstructionInExitBlock(Instruction &I,
BasicBlock &ExitBlock,
PHINode &PN, LoopInfo *LI);
-static bool canSinkOrHoistInst(Instruction &I, AliasAnalysis *AA,
- DominatorTree *DT, const DataLayout *DL,
- Loop *CurLoop, AliasSetTracker *CurAST,
- LICMSafetyInfo * SafetyInfo);
+static bool canSinkOrHoistInst(Instruction &I, AliasAnalysis *AA,
+ DominatorTree *DT, Loop *CurLoop,
+ AliasSetTracker *CurAST,
+ LICMSafetyInfo *SafetyInfo);
namespace {
struct LICM : public LoopPass {
@@ -131,7 +130,6 @@ namespace {
LoopInfo *LI; // Current LoopInfo
DominatorTree *DT; // Dominator Tree for the current Loop.
- const DataLayout *DL; // DataLayout for constant folding.
TargetLibraryInfo *TLI; // TargetLibraryInfo for constant folding.
// State that is updated as we process loops.
@@ -182,7 +180,6 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
AA = &getAnalysis<AliasAnalysis>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- DL = &L->getHeader()->getModule()->getDataLayout();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
@@ -235,10 +232,10 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
// instructions, we perform another pass to hoist them out of the loop.
//
if (L->hasDedicatedExits())
- Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, DL, TLI,
- CurLoop, CurAST, &SafetyInfo);
+ Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, CurLoop,
+ CurAST, &SafetyInfo);
if (Preheader)
- Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, DL, TLI,
+ Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI,
CurLoop, CurAST, &SafetyInfo);
// Now that all loop invariants have been removed from the loop, promote any
@@ -291,10 +288,9 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
/// first order w.r.t the DominatorTree. This allows us to visit uses before
/// definitions, allowing us to sink a loop body in one pass without iteration.
///
-bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
- DominatorTree *DT, const DataLayout *DL,
- TargetLibraryInfo *TLI, Loop *CurLoop,
- AliasSetTracker *CurAST, LICMSafetyInfo * SafetyInfo) {
+bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
+ DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
+ AliasSetTracker *CurAST, LICMSafetyInfo *SafetyInfo) {
// Verify inputs.
assert(N != nullptr && AA != nullptr && LI != nullptr &&
@@ -311,8 +307,8 @@ bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
// We are processing blocks in reverse dfo, so process children first.
const std::vector<DomTreeNode*> &Children = N->getChildren();
for (unsigned i = 0, e = Children.size(); i != e; ++i)
- Changed |= sinkRegion(Children[i], AA, LI, DT, DL, TLI, CurLoop,
- CurAST, SafetyInfo);
+ Changed |=
+ sinkRegion(Children[i], AA, LI, DT, TLI, CurLoop, CurAST, SafetyInfo);
// Only need to process the contents of this block if it is not part of a
// subloop (which would already have been processed).
if (inSubLoop(BB,CurLoop,LI)) return Changed;
@@ -336,8 +332,8 @@ bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
// outside of the loop. In this case, it doesn't even matter if the
// operands of the instruction are loop invariant.
//
- if (isNotUsedInLoop(I, CurLoop) &&
- canSinkOrHoistInst(I, AA, DT, DL, CurLoop, CurAST, SafetyInfo)) {
+ if (isNotUsedInLoop(I, CurLoop) &&
+ canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, SafetyInfo)) {
++II;
Changed |= sink(I, LI, DT, CurLoop, CurAST);
}
@@ -350,10 +346,9 @@ bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
/// order w.r.t the DominatorTree. This allows us to visit definitions before
/// uses, allowing us to hoist a loop body in one pass without iteration.
///
-bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
- DominatorTree *DT, const DataLayout *DL,
- TargetLibraryInfo *TLI, Loop *CurLoop,
- AliasSetTracker *CurAST, LICMSafetyInfo *SafetyInfo) {
+bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
+ DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
+ AliasSetTracker *CurAST, LICMSafetyInfo *SafetyInfo) {
// Verify inputs.
assert(N != nullptr && AA != nullptr && LI != nullptr &&
DT != nullptr && CurLoop != nullptr && CurAST != nullptr &&
@@ -372,7 +367,8 @@ bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
// Try constant folding this instruction. If all the operands are
// constants, it is technically hoistable, but it would be better to just
// fold it.
- if (Constant *C = ConstantFoldInstruction(&I, DL, TLI)) {
+ if (Constant *C = ConstantFoldInstruction(
+ &I, I.getModule()->getDataLayout(), TLI)) {
DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C << '\n');
CurAST->copyValue(&I, C);
CurAST->deleteValue(&I);
@@ -385,16 +381,16 @@ bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
// if all of the operands of the instruction are loop invariant and if it
// is safe to hoist the instruction.
//
- if (CurLoop->hasLoopInvariantOperands(&I) &&
- canSinkOrHoistInst(I, AA, DT, DL, CurLoop, CurAST, SafetyInfo) &&
- isSafeToExecuteUnconditionally(I, DT, DL, CurLoop, SafetyInfo))
+ if (CurLoop->hasLoopInvariantOperands(&I) &&
+ canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, SafetyInfo) &&
+ isSafeToExecuteUnconditionally(I, DT, CurLoop, SafetyInfo))
Changed |= hoist(I, CurLoop->getLoopPreheader());
}
const std::vector<DomTreeNode*> &Children = N->getChildren();
for (unsigned i = 0, e = Children.size(); i != e; ++i)
- Changed |= hoistRegion(Children[i], AA, LI, DT, DL, TLI, CurLoop,
- CurAST, SafetyInfo);
+ Changed |=
+ hoistRegion(Children[i], AA, LI, DT, TLI, CurLoop, CurAST, SafetyInfo);
return Changed;
}
@@ -424,10 +420,9 @@ void llvm::computeLICMSafetyInfo(LICMSafetyInfo * SafetyInfo, Loop * CurLoop) {
/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
/// instruction.
///
-bool canSinkOrHoistInst(Instruction &I, AliasAnalysis *AA,
- DominatorTree *DT, const DataLayout *DL,
- Loop *CurLoop, AliasSetTracker *CurAST,
- LICMSafetyInfo * SafetyInfo) {
+bool canSinkOrHoistInst(Instruction &I, AliasAnalysis *AA, DominatorTree *DT,
+ Loop *CurLoop, AliasSetTracker *CurAST,
+ LICMSafetyInfo *SafetyInfo) {
// Loads have extra constraints we have to verify before we can hoist them.
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
if (!LI->isUnordered())
@@ -487,7 +482,7 @@ bool canSinkOrHoistInst(Instruction &I, AliasAnalysis *AA,
!isa<InsertValueInst>(I))
return false;
- return isSafeToExecuteUnconditionally(I, DT, DL, CurLoop, SafetyInfo);
+ return isSafeToExecuteUnconditionally(I, DT, CurLoop, SafetyInfo);
}
/// Returns true if a PHINode is a trivially replaceable with an
@@ -643,10 +638,10 @@ static bool hoist(Instruction &I, BasicBlock *Preheader) {
/// or if it is a trapping instruction and is guaranteed to execute.
///
static bool isSafeToExecuteUnconditionally(Instruction &Inst, DominatorTree *DT,
- const DataLayout *DL, Loop *CurLoop,
- LICMSafetyInfo * SafetyInfo) {
+ Loop *CurLoop,
+ LICMSafetyInfo *SafetyInfo) {
// If it is not a trapping instruction, it is always safe to hoist.
- if (isSafeToSpeculativelyExecute(&Inst, DL))
+ if (isSafeToSpeculativelyExecute(&Inst))
return true;
return isGuaranteedToExecute(Inst, DT, CurLoop, SafetyInfo);
diff --git a/llvm/lib/Transforms/Scalar/LoadCombine.cpp b/llvm/lib/Transforms/Scalar/LoadCombine.cpp
index 9d543baf401..b1a08c9ee70 100644
--- a/llvm/lib/Transforms/Scalar/LoadCombine.cpp
+++ b/llvm/lib/Transforms/Scalar/LoadCombine.cpp
@@ -53,13 +53,10 @@ struct LoadPOPPair {
class LoadCombine : public BasicBlockPass {
LLVMContext *C;
- const DataLayout *DL;
AliasAnalysis *AA;
public:
- LoadCombine()
- : BasicBlockPass(ID),
- C(nullptr), DL(nullptr), AA(nullptr) {
+ LoadCombine() : BasicBlockPass(ID), C(nullptr), AA(nullptr) {
initializeSROAPass(*PassRegistry::getPassRegistry());
}
@@ -86,11 +83,6 @@ private:
bool LoadCombine::doInitialization(Function &F) {
DEBUG(dbgs() << "LoadCombine function: " << F.getName() << "\n");
C = &F.getContext();
- DL = &F.getParent()->getDataLayout();
- if (!DL) {
- DEBUG(dbgs() << " Skipping LoadCombine -- no target data!\n");
- return false;
- }
return true;
}
@@ -100,9 +92,10 @@ PointerOffsetPair LoadCombine::getPointerOffsetPair(LoadInst &LI) {
POP.Offset = 0;
while (isa<BitCastInst>(POP.Pointer) || isa<GetElementPtrInst>(POP.Pointer)) {
if (auto *GEP = dyn_cast<GetElementPtrInst>(POP.Pointer)) {
- unsigned BitWidth = DL->getPointerTypeSizeInBits(GEP->getType());
+ auto &DL = LI.getModule()->getDataLayout();
+ unsigned BitWidth = DL.getPointerTypeSizeInBits(GEP->getType());
APInt Offset(BitWidth, 0);
- if (GEP->accumulateConstantOffset(*DL, Offset))
+ if (GEP->accumulateConstantOffset(DL, Offset))
POP.Offset += Offset.getZExtValue();
else
// Can't handle GEPs with variable indices.
@@ -145,7 +138,8 @@ bool LoadCombine::aggregateLoads(SmallVectorImpl<LoadPOPPair> &Loads) {
if (PrevOffset == -1ull) {
BaseLoad = L.Load;
PrevOffset = L.POP.Offset;
- PrevSize = DL->getTypeStoreSize(L.Load->getType());
+ PrevSize = L.Load->getModule()->getDataLayout().getTypeStoreSize(
+ L.Load->getType());
AggregateLoads.push_back(L);
continue;
}
@@ -164,7 +158,8 @@ bool LoadCombine::aggregateLoads(SmallVectorImpl<LoadPOPPair> &Loads) {
// FIXME: We may want to handle this case.
continue;
PrevOffset = L.POP.Offset;
- PrevSize = DL->getTypeStoreSize(L.Load->getType());
+ PrevSize = L.Load->getModule()->getDataLayout().getTypeStoreSize(
+ L.Load->getType());
AggregateLoads.push_back(L);
}
if (combineLoads(AggregateLoads))
@@ -215,7 +210,8 @@ bool LoadCombine::combineLoads(SmallVectorImpl<LoadPOPPair> &Loads) {
for (const auto &L : Loads) {
Builder->SetInsertPoint(L.Load);
Value *V = Builder->CreateExtractInteger(
- *DL, NewLoad, cast<IntegerType>(L.Load->getType()),
+ L.Load->getModule()->getDataLayout(), NewLoad,
+ cast<IntegerType>(L.Load->getType()),
L.POP.Offset - Loads[0].POP.Offset, "combine.extract");
L.Load->replaceAllUsesWith(V);
}
@@ -225,13 +221,13 @@ bool LoadCombine::combineLoads(SmallVectorImpl<LoadPOPPair> &Loads) {
}
bool LoadCombine::runOnBasicBlock(BasicBlock &BB) {
- if (skipOptnoneFunction(BB) || !DL)
+ if (skipOptnoneFunction(BB))
return false;
AA = &getAnalysis<AliasAnalysis>();
- IRBuilder<true, TargetFolder>
- TheBuilder(BB.getContext(), TargetFolder(DL));
+ IRBuilder<true, TargetFolder> TheBuilder(
+ BB.getContext(), TargetFolder(BB.getModule()->getDataLayout()));
Builder = &TheBuilder;
DenseMap<const Value *, SmallVector<LoadPOPPair, 8>> LoadMap;
diff --git a/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
index cb20c033484..21c58297d82 100644
--- a/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
+++ b/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
@@ -935,7 +935,7 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
// header. This allows us to insert code for it in the preheader.
BasicBlock *Preheader = CurLoop->getLoopPreheader();
IRBuilder<> Builder(Preheader->getTerminator());
- SCEVExpander Expander(*SE, "loop-idiom");
+ SCEVExpander Expander(*SE, DL, "loop-idiom");
Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
@@ -961,7 +961,7 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
// pointer size if it isn't already.
- Type *IntPtr = Builder.getIntPtrTy(&DL, DestAS);
+ Type *IntPtr = Builder.getIntPtrTy(DL, DestAS);
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
@@ -1032,7 +1032,8 @@ processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
// header. This allows us to insert code for it in the preheader.
BasicBlock *Preheader = CurLoop->getLoopPreheader();
IRBuilder<> Builder(Preheader->getTerminator());
- SCEVExpander Expander(*SE, "loop-idiom");
+ const DataLayout &DL = Preheader->getModule()->getDataLayout();
+ SCEVExpander Expander(*SE, DL, "loop-idiom");
// Okay, we have a strided store "p[i]" of a loaded value. We can turn
// this into a memcpy in the loop preheader now if we want. However, this
@@ -1075,8 +1076,7 @@ processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
// pointer size if it isn't already.
- auto &DL = CurLoop->getHeader()->getModule()->getDataLayout();
- Type *IntPtrTy = Builder.getIntPtrTy(&DL, SI->getPointerAddressSpace());
+ Type *IntPtrTy = Builder.getIntPtrTy(DL, SI->getPointerAddressSpace());
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtrTy, 1),
diff --git a/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp b/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp
index 6fce2ac27c1..e1250265475 100644
--- a/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp
+++ b/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp
@@ -77,7 +77,6 @@ bool LoopInstSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
const TargetLibraryInfo *TLI =
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
@@ -109,6 +108,7 @@ bool LoopInstSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
WorklistItem Item = VisitStack.pop_back_val();
BasicBlock *BB = Item.getPointer();
bool IsSubloopHeader = Item.getInt();
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
// Simplify instructions in the current basic block.
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
diff --git a/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp b/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp
index 300b168cea8..d87781c98f3 100644
--- a/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp
+++ b/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp
@@ -160,7 +160,6 @@ namespace {
AliasAnalysis *AA;
LoopInfo *LI;
ScalarEvolution *SE;
- const DataLayout *DL;
TargetLibraryInfo *TLI;
DominatorTree *DT;
@@ -367,10 +366,8 @@ namespace {
struct DAGRootTracker {
DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
ScalarEvolution *SE, AliasAnalysis *AA,
- TargetLibraryInfo *TLI, const DataLayout *DL)
- : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI),
- DL(DL), IV(IV) {
- }
+ TargetLibraryInfo *TLI)
+ : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), IV(IV) {}
/// Stage 1: Find all the DAG roots for the induction variable.
bool findRoots();
@@ -416,7 +413,6 @@ namespace {
ScalarEvolution *SE;
AliasAnalysis *AA;
TargetLibraryInfo *TLI;
- const DataLayout *DL;
// The loop induction variable.
Instruction *IV;
@@ -1131,7 +1127,7 @@ bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
// needed because otherwise isSafeToSpeculativelyExecute returns
// false on PHI nodes.
if (!isa<PHINode>(I) && !isSimpleLoadStore(I) &&
- !isSafeToSpeculativelyExecute(I, DL))
+ !isSafeToSpeculativelyExecute(I))
// Intervening instructions cause side effects.
FutureSideEffects = true;
}
@@ -1161,11 +1157,10 @@ bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
// side effects, and this instruction might also, then we can't reorder
// them, and this matching fails. As an exception, we allow the alias
// set tracker to handle regular (simple) load/store dependencies.
- if (FutureSideEffects &&
- ((!isSimpleLoadStore(BaseInst) &&
- !isSafeToSpeculativelyExecute(BaseInst, DL)) ||
- (!isSimpleLoadStore(RootInst) &&
- !isSafeToSpeculativelyExecute(RootInst, DL)))) {
+ if (FutureSideEffects && ((!isSimpleLoadStore(BaseInst) &&
+ !isSafeToSpeculativelyExecute(BaseInst)) ||
+ (!isSimpleLoadStore(RootInst) &&
+ !isSafeToSpeculativelyExecute(RootInst)))) {
DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
" vs. " << *RootInst <<
" (side effects prevent reordering)\n");
@@ -1272,6 +1267,7 @@ void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
++J;
}
+ const DataLayout &DL = Header->getModule()->getDataLayout();
// We need to create a new induction variable for each different BaseInst.
for (auto &DRS : RootSets) {
@@ -1284,7 +1280,7 @@ void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
SE->getConstant(RealIVSCEV->getType(), 1),
L, SCEV::FlagAnyWrap));
{ // Limit the lifetime of SCEVExpander.
- SCEVExpander Expander(*SE, "reroll");
+ SCEVExpander Expander(*SE, DL, "reroll");
Value *NewIV = Expander.expandCodeFor(H, IV->getType(), Header->begin());
for (auto &KV : Uses) {
@@ -1324,7 +1320,7 @@ void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
}
}
- SimplifyInstructionsInBlock(Header, DL, TLI);
+ SimplifyInstructionsInBlock(Header, TLI);
DeleteDeadPHIs(Header, TLI);
}
@@ -1448,7 +1444,7 @@ void LoopReroll::ReductionTracker::replaceSelected() {
bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
const SCEV *IterCount,
ReductionTracker &Reductions) {
- DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DL);
+ DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI);
if (!DAGRoots.findRoots())
return false;
@@ -1477,7 +1473,6 @@ bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
SE = &getAnalysis<ScalarEvolution>();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- DL = &L->getHeader()->getModule()->getDataLayout();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
BasicBlock *Header = L->getHeader();
diff --git a/llvm/lib/Transforms/Scalar/LoopRotation.cpp b/llvm/lib/Transforms/Scalar/LoopRotation.cpp
index 4d123490537..2126b52d7fc 100644
--- a/llvm/lib/Transforms/Scalar/LoopRotation.cpp
+++ b/llvm/lib/Transforms/Scalar/LoopRotation.cpp
@@ -24,6 +24,7 @@
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
@@ -412,6 +413,8 @@ bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+
// For the rest of the instructions, either hoist to the OrigPreheader if
// possible or create a clone in the OldPreHeader if not.
TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
@@ -442,8 +445,8 @@ bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
// With the operands remapped, see if the instruction constant folds or is
// otherwise simplifyable. This commonly occurs because the entry from PHI
// nodes allows icmps and other instructions to fold.
- // FIXME: Provide DL, TLI, DT, AC to SimplifyInstruction.
- Value *V = SimplifyInstruction(C);
+ // FIXME: Provide TLI, DT, AC to SimplifyInstruction.
+ Value *V = SimplifyInstruction(C, DL);
if (V && LI->replacementPreservesLCSSAForm(C, V)) {
// If so, then delete the temporary instruction and stick the folded value
// in the map.
diff --git a/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
index 2c0769a91e4..8445d5f50c4 100644
--- a/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
+++ b/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -68,6 +68,7 @@
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -4823,7 +4824,8 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
// we can remove them after we are done working.
SmallVector<WeakVH, 16> DeadInsts;
- SCEVExpander Rewriter(SE, "lsr");
+ SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
+ "lsr");
#ifndef NDEBUG
Rewriter.setDebugType(DEBUG_TYPE);
#endif
@@ -5093,7 +5095,8 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
Changed |= DeleteDeadPHIs(L->getHeader());
if (EnablePhiElim && L->isLoopSimplifyForm()) {
SmallVector<WeakVH, 16> DeadInsts;
- SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+ SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), DL, "lsr");
#ifndef NDEBUG
Rewriter.setDebugType(DEBUG_TYPE);
#endif
diff --git a/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp b/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
index 407595e5dbb..bf06be694dc 100644
--- a/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
+++ b/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
@@ -356,11 +356,12 @@ class UnrollAnalyzer : public InstVisitor<UnrollAnalyzer, bool> {
if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
RHS = SimpleRHS;
Value *SimpleV = nullptr;
+ const DataLayout &DL = I.getModule()->getDataLayout();
if (auto FI = dyn_cast<FPMathOperator>(&I))
SimpleV =
- SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags());
+ SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
else
- SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS);
+ SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
if (SimpleV && CountedInstructions.insert(&I).second)
NumberOfOptimizedInstructions += TTI.getUserCost(&I);
diff --git a/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp b/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
index 987dc96fb14..988d2af3ea9 100644
--- a/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
+++ b/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
@@ -42,6 +42,7 @@
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@@ -1082,6 +1083,7 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
/// pass.
///
void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
while (!Worklist.empty()) {
Instruction *I = Worklist.back();
Worklist.pop_back();
@@ -1104,7 +1106,7 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
// See if instruction simplification can hack this up. This is common for
// things like "select false, X, Y" after unswitching made the condition be
// 'false'. TODO: update the domtree properly so we can pass it here.
- if (Value *V = SimplifyInstruction(I))
+ if (Value *V = SimplifyInstruction(I, DL))
if (LI->replacementPreservesLCSSAForm(I, V)) {
ReplaceUsesOfWith(I, V, Worklist, L, LPM);
continue;
diff --git a/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp
index a4d4652e0c0..c442c02d387 100644
--- a/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp
+++ b/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp
@@ -41,7 +41,8 @@ STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
- bool &VariableIdxFound, const DataLayout &TD){
+ bool &VariableIdxFound,
+ const DataLayout &DL) {
// Skip over the first indices.
gep_type_iterator GTI = gep_type_begin(GEP);
for (unsigned i = 1; i != Idx; ++i, ++GTI)
@@ -57,13 +58,13 @@ static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
// Handle struct indices, which add their field offset to the pointer.
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
+ Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
continue;
}
// Otherwise, we have a sequential type like an array or vector. Multiply
// the index by the ElementSize.
- uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
+ uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
Offset += Size*OpC->getSExtValue();
}
@@ -74,7 +75,7 @@ static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
/// constant offset, and return that constant offset. For example, Ptr1 might
/// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
- const DataLayout &TD) {
+ const DataLayout &DL) {
Ptr1 = Ptr1->stripPointerCasts();
Ptr2 = Ptr2->stripPointerCasts();
@@ -92,12 +93,12 @@ static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
// If one pointer is a GEP and the other isn't, then see if the GEP is a
// constant offset from the base, as in "P" and "gep P, 1".
if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
- Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, TD);
+ Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
return !VariableIdxFound;
}
if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
- Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, TD);
+ Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
return !VariableIdxFound;
}
@@ -115,8 +116,8 @@ static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
break;
- int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
- int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
+ int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
+ int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
if (VariableIdxFound) return false;
Offset = Offset2-Offset1;
@@ -150,12 +151,11 @@ struct MemsetRange {
/// TheStores - The actual stores that make up this range.
SmallVector<Instruction*, 16> TheStores;
- bool isProfitableToUseMemset(const DataLayout &TD) const;
-
+ bool isProfitableToUseMemset(const DataLayout &DL) const;
};
} // end anon namespace
-bool MemsetRange::isProfitableToUseMemset(const DataLayout &TD) const {
+bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
// If we found more than 4 stores to merge or 16 bytes, use memset.
if (TheStores.size() >= 4 || End-Start >= 16) return true;
@@ -183,7 +183,7 @@ bool MemsetRange::isProfitableToUseMemset(const DataLayout &TD) const {
// size. If so, check to see whether we will end up actually reducing the
// number of stores used.
unsigned Bytes = unsigned(End-Start);
- unsigned MaxIntSize = TD.getLargestLegalIntTypeSize();
+ unsigned MaxIntSize = DL.getLargestLegalIntTypeSize();
if (MaxIntSize == 0)
MaxIntSize = 1;
unsigned NumPointerStores = Bytes / MaxIntSize;
@@ -314,14 +314,12 @@ namespace {
class MemCpyOpt : public FunctionPass {
MemoryDependenceAnalysis *MD;
TargetLibraryInfo *TLI;
- const DataLayout *DL;
public:
static char ID; // Pass identification, replacement for typeid
MemCpyOpt() : FunctionPass(ID) {
initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
MD = nullptr;
TLI = nullptr;
- DL = nullptr;
}
bool runOnFunction(Function &F) override;
@@ -377,13 +375,13 @@ INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
/// attempts to merge them together into a memcpy/memset.
Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
Value *StartPtr, Value *ByteVal) {
- if (!DL) return nullptr;
+ const DataLayout &DL = StartInst->getModule()->getDataLayout();
// Okay, so we now have a single store that can be splatable. Scan to find
// all subsequent stores of the same value to offset from the same pointer.
// Join these together into ranges, so we can decide whether contiguous blocks
// are stored.
- MemsetRanges Ranges(*DL);
+ MemsetRanges Ranges(DL);
BasicBlock::iterator BI = StartInst;
for (++BI; !isa<TerminatorInst>(BI); ++BI) {
@@ -406,8 +404,8 @@ Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
// Check to see if this store is to a constant offset from the start ptr.
int64_t Offset;
- if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(),
- Offset, *DL))
+ if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
+ DL))
break;
Ranges.addStore(Offset, NextStore);
@@ -420,7 +418,7 @@ Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
// Check to see if this store is to a constant offset from the start ptr.
int64_t Offset;
- if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *DL))
+ if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
break;
Ranges.addMemSet(Offset, MSI);
@@ -452,7 +450,7 @@ Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
if (Range.TheStores.size() == 1) continue;
// If it is profitable to lower this range to memset, do so now.
- if (!Range.isProfitableToUseMemset(*DL))
+ if (!Range.isProfitableToUseMemset(DL))
continue;
// Otherwise, we do want to transform this! Create a new memset.
@@ -464,7 +462,7 @@ Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
if (Alignment == 0) {
Type *EltType =
cast<PointerType>(StartPtr->getType())->getElementType();
- Alignment = DL->getABITypeAlignment(EltType);
+ Alignment = DL.getABITypeAlignment(EltType);
}
AMemSet =
@@ -494,8 +492,7 @@ Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
if (!SI->isSimple()) return false;
-
- if (!DL) return false;
+ const DataLayout &DL = SI->getModule()->getDataLayout();
// Detect cases where we're performing call slot forwarding, but
// happen to be using a load-store pair to implement it, rather than
@@ -525,16 +522,16 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
if (C) {
unsigned storeAlign = SI->getAlignment();
if (!storeAlign)
- storeAlign = DL->getABITypeAlignment(SI->getOperand(0)->getType());
+ storeAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
unsigned loadAlign = LI->getAlignment();
if (!loadAlign)
- loadAlign = DL->getABITypeAlignment(LI->getType());
+ loadAlign = DL.getABITypeAlignment(LI->getType());
- bool changed = performCallSlotOptzn(LI,
- SI->getPointerOperand()->stripPointerCasts(),
- LI->getPointerOperand()->stripPointerCasts(),
- DL->getTypeStoreSize(SI->getOperand(0)->getType()),
- std::min(storeAlign, loadAlign), C);
+ bool changed = performCallSlotOptzn(
+ LI, SI->getPointerOperand()->stripPointerCasts(),
+ LI->getPointerOperand()->stripPointerCasts(),
+ DL.getTypeStoreSize(SI->getOperand(0)->getType()),
+ std::min(storeAlign, loadAlign), C);
if (changed) {
MD->removeInstruction(SI);
SI->eraseFromParent();
@@ -606,15 +603,13 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
if (!srcAlloca)
return false;
- // Check that all of src is copied to dest.
- if (!DL) return false;
-
ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
if (!srcArraySize)
return false;
- uint64_t srcSize = DL->getTypeAllocSize(srcAlloca->getAllocatedType()) *
- srcArraySize->getZExtValue();
+ const DataLayout &DL = cpy->getModule()->getDataLayout();
+ uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
+ srcArraySize->getZExtValue();
if (cpyLen < srcSize)
return false;
@@ -628,8 +623,8 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
if (!destArraySize)
return false;
- uint64_t destSize = DL->getTypeAllocSize(A->getAllocatedType()) *
- destArraySize->getZExtValue();
+ uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
+ destArraySize->getZExtValue();
if (destSize < srcSize)
return false;
@@ -648,7 +643,7 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
return false;
}
- uint64_t destSize = DL->getTypeAllocSize(StructTy);
+ uint64_t destSize = DL.getTypeAllocSize(StructTy);
if (destSize < srcSize)
return false;
}
@@ -659,7 +654,7 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
// Check that dest points to memory that is at least as aligned as src.
unsigned srcAlign = srcAlloca->getAlignment();
if (!srcAlign)
- srcAlign = DL->getABITypeAlignment(srcAlloca->getAllocatedType());
+ srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
// If dest is not aligned enough and we can't increase its alignment then
// bail out.
@@ -959,12 +954,11 @@ bool MemCpyOpt::processMemMove(MemMoveInst *M) {
/// processByValArgument - This is called on every byval argument in call sites.
bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
- if (!DL) return false;
-
+ const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
// Find out what feeds this byval argument.
Value *ByValArg = CS.getArgument(ArgNo);
Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
- uint64_t ByValSize = DL->getTypeAllocSize(ByValTy);
+ uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
MemDepResult DepInfo =
MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
true, CS.getInstruction(),
@@ -997,8 +991,8 @@ bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
*CS->getParent()->getParent());
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
if (MDep->getAlignment() < ByValAlign &&
- getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &AC,
- CS.getInstruction(), &DT) < ByValAlign)
+ getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
+ CS.getInstruction(), &AC, &DT) < ByValAlign)
return false;
// Verify that the copied-from memory doesn't change in between the memcpy and
@@ -1077,7 +1071,6 @@ bool MemCpyOpt::runOnFunction(Function &F) {
bool MadeChange = false;
MD = &getAnalysis<MemoryDependenceAnalysis>();
- DL = &F.getParent()->getDataLayout();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
// If we don't have at least memset and memcpy, there is little point of doing
diff --git a/llvm/lib/Transforms/Scalar/SCCP.cpp b/llvm/lib/Transforms/Scalar/SCCP.cpp
index 91fd09d3b4e..3a0d30058f1 100644
--- a/llvm/lib/Transforms/Scalar/SCCP.cpp
+++ b/llvm/lib/Transforms/Scalar/SCCP.cpp
@@ -1070,7 +1070,7 @@ void SCCPSolver::visitLoadInst(LoadInst &I) {
}
// Transform load from a constant into a constant if possible.
- if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, &DL))
+ if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL))
return markConstant(IV, &I, C);
// Otherwise we cannot say for certain what value this load will produce.
diff --git a/llvm/lib/Transforms/Scalar/SROA.cpp b/llvm/lib/Transforms/Scalar/SROA.cpp
index 09670c63080..06b000f3a2f 100644
--- a/llvm/lib/Transforms/Scalar/SROA.cpp
+++ b/llvm/lib/Transforms/Scalar/SROA.cpp
@@ -701,6 +701,7 @@ private:
// by writing out the code here where we have tho underlying allocation
// size readily available.
APInt GEPOffset = Offset;
+ const DataLayout &DL = GEPI.getModule()->getDataLayout();
for (gep_type_iterator GTI = gep_type_begin(GEPI),
GTE = gep_type_end(GEPI);
GTI != GTE; ++GTI) {
@@ -750,6 +751,7 @@ private:
if (!IsOffsetKnown)
return PI.setAborted(&LI);
+ const DataLayout &DL = LI.getModule()->getDataLayout();
uint64_t Size = DL.getTypeStoreSize(LI.getType());
return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
}
@@ -761,6 +763,7 @@ private:
if (!IsOffsetKnown)
return PI.setAborted(&SI);
+ const DataLayout &DL = SI.getModule()->getDataLayout();
uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
// If this memory access can be shown to *statically* extend outside the
@@ -898,6 +901,7 @@ private:
SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
Visited.insert(Root);
Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
+ const DataLayout &DL = Root->getModule()->getDataLayout();
// If there are no loads or stores, the access is dead. We mark that as
// a size zero access.
Size = 0;
@@ -1194,7 +1198,6 @@ class SROA : public FunctionPass {
const bool RequiresDomTree;
LLVMContext *C;
- const DataLayout *DL;
DominatorTree *DT;
AssumptionCache *AC;
@@ -1243,7 +1246,7 @@ class SROA : public FunctionPass {
public:
SROA(bool RequiresDomTree = true)
: FunctionPass(ID), RequiresDomTree(RequiresDomTree), C(nullptr),
- DL(nullptr), DT(nullptr) {
+ DT(nullptr) {
initializeSROAPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
@@ -1349,7 +1352,7 @@ static Type *findCommonType(AllocaSlices::const_iterator B,
///
/// FIXME: This should be hoisted into a generic utility, likely in
/// Transforms/Util/Local.h
-static bool isSafePHIToSpeculate(PHINode &PN, const DataLayout *DL = nullptr) {
+static bool isSafePHIToSpeculate(PHINode &PN) {
// For now, we can only do this promotion if the load is in the same block
// as the PHI, and if there are no stores between the phi and load.
// TODO: Allow recursive phi users.
@@ -1381,6 +1384,8 @@ static bool isSafePHIToSpeculate(PHINode &PN, const DataLayout *DL = nullptr) {
if (!HaveLoad)
return false;
+ const DataLayout &DL = PN.getModule()->getDataLayout();
+
// We can only transform this if it is safe to push the loads into the
// predecessor blocks. The only thing to watch out for is that we can't put
// a possibly trapping load in the predecessor if it is a critical edge.
@@ -1403,7 +1408,7 @@ static bool isSafePHIToSpeculate(PHINode &PN, const DataLayout *DL = nullptr) {
// is already a load in the block, then we can move the load to the pred
// block.
if (InVal->isDereferenceablePointer(DL) ||
- isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL))
+ isSafeToLoadUnconditionally(InVal, TI, MaxAlign))
continue;
return false;
@@ -1468,10 +1473,10 @@ static void speculatePHINodeLoads(PHINode &PN) {
///
/// We can do this to a select if its only uses are loads and if the operand
/// to the select can be loaded unconditionally.
-static bool isSafeSelectToSpeculate(SelectInst &SI,
- const DataLayout *DL = nullptr) {
+static bool isSafeSelectToSpeculate(SelectInst &SI) {
Value *TValue = SI.getTrueValue();
Value *FValue = SI.getFalseValue();
+ const DataLayout &DL = SI.getModule()->getDataLayout();
bool TDerefable = TValue->isDereferenceablePointer(DL);
bool FDerefable = FValue->isDereferenceablePointer(DL);
@@ -1484,10 +1489,10 @@ static bool isSafeSelectToSpeculate(SelectInst &SI,
// absolutely (e.g. allocas) or at this point because we can see other
// accesses to it.
if (!TDerefable &&
- !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL))
+ !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment()))
return false;
if (!FDerefable &&
- !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL))
+ !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment()))
return false;
}
@@ -3699,6 +3704,7 @@ bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
// them to the alloca slices.
SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
std::vector<LoadInst *> SplitLoads;
+ const DataLayout &DL = AI.getModule()->getDataLayout();
for (LoadInst *LI : Loads) {
SplitLoads.clear();
@@ -3724,10 +3730,10 @@ bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
auto *PartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
LoadInst *PLoad = IRB.CreateAlignedLoad(
- getAdjustedPtr(IRB, *DL, BasePtr,
- APInt(DL->getPointerSizeInBits(), PartOffset),
+ getAdjustedPtr(IRB, DL, BasePtr,
+ APInt(DL.getPointerSizeInBits(), PartOffset),
PartPtrTy, BasePtr->getName() + "."),
- getAdjustedAlignment(LI, PartOffset, *DL), /*IsVolatile*/ false,
+ getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
LI->getName());
// Append this load onto the list of split loads so we can find it later
@@ -3777,10 +3783,10 @@ bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
StoreInst *PStore = IRB.CreateAlignedStore(
- PLoad, getAdjustedPtr(IRB, *DL, StoreBasePtr,
- APInt(DL->getPointerSizeInBits(), PartOffset),
+ PLoad, getAdjustedPtr(IRB, DL, StoreBasePtr,
+ APInt(DL.getPointerSizeInBits(), PartOffset),
PartPtrTy, StoreBasePtr->getName() + "."),
- getAdjustedAlignment(SI, PartOffset, *DL), /*IsVolatile*/ false);
+ getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
(void)PStore;
DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n");
}
@@ -3857,20 +3863,20 @@ bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
} else {
IRB.SetInsertPoint(BasicBlock::iterator(LI));
PLoad = IRB.CreateAlignedLoad(
- getAdjustedPtr(IRB, *DL, LoadBasePtr,
- APInt(DL->getPointerSizeInBits(), PartOffset),
+ getAdjustedPtr(IRB, DL, LoadBasePtr,
+ APInt(DL.getPointerSizeInBits(), PartOffset),
PartPtrTy, LoadBasePtr->getName() + "."),
- getAdjustedAlignment(LI, PartOffset, *DL), /*IsVolatile*/ false,
+ getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
LI->getName());
}
// And store this partition.
IRB.SetInsertPoint(BasicBlock::iterator(SI));
StoreInst *PStore = IRB.CreateAlignedStore(
- PLoad, getAdjustedPtr(IRB, *DL, StoreBasePtr,
- APInt(DL->getPointerSizeInBits(), PartOffset),
+ PLoad, getAdjustedPtr(IRB, DL, StoreBasePtr,
+ APInt(DL.getPointerSizeInBits(), PartOffset),
PartPtrTy, StoreBasePtr->getName() + "."),
- getAdjustedAlignment(SI, PartOffset, *DL), /*IsVolatile*/ false);
+ getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
// Now build a new slice for the alloca.
NewSlices.push_back(
@@ -3970,25 +3976,26 @@ AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
// won't always succeed, in which case we fall back to a legal integer type
// or an i8 array of an appropriate size.
Type *SliceTy = nullptr;
+ const DataLayout &DL = AI.getModule()->getDataLayout();
if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset()))
- if (DL->getTypeAllocSize(CommonUseTy) >= P.size())
+ if (DL.getTypeAllocSize(CommonUseTy) >= P.size())
SliceTy = CommonUseTy;
if (!SliceTy)
- if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(),
+ if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
P.beginOffset(), P.size()))
SliceTy = TypePartitionTy;
if ((!SliceTy || (SliceTy->isArrayTy() &&
SliceTy->getArrayElementType()->isIntegerTy())) &&
- DL->isLegalInteger(P.size() * 8))
+ DL.isLegalInteger(P.size() * 8))
SliceTy = Type::getIntNTy(*C, P.size() * 8);
if (!SliceTy)
SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
- assert(DL->getTypeAllocSize(SliceTy) >= P.size());
+ assert(DL.getTypeAllocSize(SliceTy) >= P.size());
- bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, *DL);
+ bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
VectorType *VecTy =
- IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, *DL);
+ IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
if (VecTy)
SliceTy = VecTy;
@@ -4010,12 +4017,12 @@ AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
// The minimum alignment which users can rely on when the explicit
// alignment is omitted or zero is that required by the ABI for this
// type.
- Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
+ Alignment = DL.getABITypeAlignment(AI.getAllocatedType());
}
Alignment = MinAlign(Alignment, P.beginOffset());
// If we will get at least this much alignment from the type alone, leave
// the alloca's alignment unconstrained.
- if (Alignment <= DL->getABITypeAlignment(SliceTy))
+ if (Alignment <= DL.getABITypeAlignment(SliceTy))
Alignment = 0;
NewAI = new AllocaInst(
SliceTy, nullptr, Alignment,
@@ -4035,7 +4042,7 @@ AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
SmallPtrSet<PHINode *, 8> PHIUsers;
SmallPtrSet<SelectInst *, 8> SelectUsers;
- AllocaSliceRewriter Rewriter(*DL, AS, *this, AI, *NewAI, P.beginOffset(),
+ AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
P.endOffset(), IsIntegerPromotable, VecTy,
PHIUsers, SelectUsers);
bool Promotable = true;
@@ -4057,7 +4064,7 @@ AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
for (SmallPtrSetImpl<PHINode *>::iterator I = PHIUsers.begin(),
E = PHIUsers.end();
I != E; ++I)
- if (!isSafePHIToSpeculate(**I, DL)) {
+ if (!isSafePHIToSpeculate(**I)) {
Promotable = false;
PHIUsers.clear();
SelectUsers.clear();
@@ -4066,7 +4073,7 @@ AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
for (SmallPtrSetImpl<SelectInst *>::iterator I = SelectUsers.begin(),
E = SelectUsers.end();
I != E; ++I)
- if (!isSafeSelectToSpeculate(**I, DL)) {
+ if (!isSafeSelectToSpeculate(**I)) {
Promotable = false;
PHIUsers.clear();
SelectUsers.clear();
@@ -4110,6 +4117,7 @@ bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
unsigned NumPartitions = 0;
bool Changed = false;
+ const DataLayout &DL = AI.getModule()->getDataLayout();
// First try to pre-split loads and stores.
Changed |= presplitLoadsAndStores(AI, AS);
@@ -4127,7 +4135,7 @@ bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
// confident that the above handling of splittable loads and stores is
// completely sufficient before we forcibly disable the remaining handling.
if (S.beginOffset() == 0 &&
- S.endOffset() >= DL->getTypeAllocSize(AI.getAllocatedType()))
+ S.endOffset() >= DL.getTypeAllocSize(AI.getAllocatedType()))
continue;
if (isa<LoadInst>(S.getUse()->getUser()) ||
isa<StoreInst>(S.getUse()->getUser())) {
@@ -4155,7 +4163,7 @@ bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
Changed = true;
if (NewAI != &AI) {
uint64_t SizeOfByte = 8;
- uint64_t AllocaSize = DL->getTypeSizeInBits(NewAI->getAllocatedType());
+ uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType());
// Don't include any padding.
uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
Pieces.push_back(Piece(NewAI, P.beginOffset() * SizeOfByte, Size));
@@ -4236,21 +4244,22 @@ bool SROA::runOnAlloca(AllocaInst &AI) {
AI.eraseFromParent();
return true;
}
+ const DataLayout &DL = AI.getModule()->getDataLayout();
// Skip alloca forms that this analysis can't handle.
if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
- DL->getTypeAllocSize(AI.getAllocatedType()) == 0)
+ DL.getTypeAllocSize(AI.getAllocatedType()) == 0)
return false;
bool Changed = false;
// First, split any FCA loads and stores touching this alloca to promote
// better splitting and promotion opportunities.
- AggLoadStoreRewriter AggRewriter(*DL);
+ AggLoadStoreRewriter AggRewriter(DL);
Changed |= AggRewriter.rewrite(AI);
// Build the slices using a recursive instruction-visiting builder.
- AllocaSlices AS(*DL, AI);
+ AllocaSlices AS(DL, AI);
DEBUG(AS.print(dbgs()));
if (AS.isEscaped())
return Changed;
@@ -4423,7 +4432,6 @@ bool SROA::runOnFunction(Function &F) {
DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
C = &F.getContext();
- DL = &F.getParent()->getDataLayout();
DominatorTreeWrapperPass *DTWP =
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DT = DTWP ? &DTWP->getDomTree() : nullptr;
diff --git a/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
index d89a5bcd63a..acd85858906 100644
--- a/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
+++ b/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
@@ -89,7 +89,6 @@ namespace {
private:
bool HasDomTree;
- const DataLayout *DL;
/// DeadInsts - Keep track of instructions we have made dead, so that
/// we can remove them after we are done working.
@@ -159,9 +158,10 @@ namespace {
void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
Type *MemOpType, bool isStore, AllocaInfo &Info,
Instruction *TheAccess, bool AllowWholeAccess);
- bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
- uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
- Type *&IdxTy);
+ bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size,
+ const DataLayout &DL);
+ uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset, Type *&IdxTy,
+ const DataLayout &DL);
void DoScalarReplacement(AllocaInst *AI,
std::vector<AllocaInst*> &WorkList);
@@ -699,9 +699,9 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
// If the source and destination are both to the same alloca, then this is
// a noop copy-to-self, just delete it. Otherwise, emit a load and store
// as appropriate.
- AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &DL, 0));
+ AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, DL, 0));
- if (GetUnderlyingObject(MTI->getSource(), &DL, 0) != OrigAI) {
+ if (GetUnderlyingObject(MTI->getSource(), DL, 0) != OrigAI) {
// Dest must be OrigAI, change this to be a load from the original
// pointer (bitcasted), then a store to our new alloca.
assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
@@ -717,7 +717,7 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
SrcVal->setAlignment(MTI->getAlignment());
Builder.CreateStore(SrcVal, NewAI);
- } else if (GetUnderlyingObject(MTI->getDest(), &DL, 0) != OrigAI) {
+ } else if (GetUnderlyingObject(MTI->getDest(), DL, 0) != OrigAI) {
// Src must be OrigAI, change this to be a load from NewAI then a store
// through the original dest pointer (bitcasted).
assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
@@ -1032,16 +1032,8 @@ bool SROA::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
- DL = &F.getParent()->getDataLayout();
-
bool Changed = performPromotion(F);
- // FIXME: ScalarRepl currently depends on DataLayout more than it
- // theoretically needs to. It should be refactored in order to support
- // target-independent IR. Until this is done, just skip the actual
- // scalar-replacement portion of this pass.
- if (!DL) return Changed;
-
while (1) {
bool LocalChange = performScalarRepl(F);
if (!LocalChange) break; // No need to repromote if no scalarrepl
@@ -1147,7 +1139,8 @@ public:
///
/// We can do this to a select if its only uses are loads and if the operand to
/// the select can be loaded unconditionally.
-static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *DL) {
+static bool isSafeSelectToSpeculate(SelectInst *SI) {
+ const DataLayout &DL = SI->getModule()->getDataLayout();
bool TDerefable = SI->getTrueValue()->isDereferenceablePointer(DL);
bool FDerefable = SI->getFalseValue()->isDereferenceablePointer(DL);
@@ -1157,11 +1150,13 @@ static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *DL) {
// Both operands to the select need to be dereferencable, either absolutely
// (e.g. allocas) or at this point because we can see other accesses to it.
- if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
- LI->getAlignment(), DL))
+ if (!TDerefable &&
+ !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
+ LI->getAlignment()))
return false;
- if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
- LI->getAlignment(), DL))
+ if (!FDerefable &&
+ !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
+ LI->getAlignment()))
return false;
}
@@ -1184,7 +1179,7 @@ static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *DL) {
///
/// We can do this to a select if its only uses are loads and if the operand to
/// the select can be loaded unconditionally.
-static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *DL) {
+static bool isSafePHIToSpeculate(PHINode *PN) {
// For now, we can only do this promotion if the load is in the same block as
// the PHI, and if there are no stores between the phi and load.
// TODO: Allow recursive phi users.
@@ -1208,6 +1203,8 @@ static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *DL) {
MaxAlign = std::max(MaxAlign, LI->getAlignment());
}
+ const DataLayout &DL = PN->getModule()->getDataLayout();
+
// Okay, we know that we have one or more loads in the same block as the PHI.
// We can transform this if it is safe to push the loads into the predecessor
// blocks. The only thing to watch out for is that we can't put a possibly
@@ -1233,7 +1230,7 @@ static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *DL) {
// If this pointer is always safe to load, or if we can prove that there is
// already a load in the block, then we can move the load to the pred block.
if (InVal->isDereferenceablePointer(DL) ||
- isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, DL))
+ isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign))
continue;
return false;
@@ -1247,7 +1244,7 @@ static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *DL) {
/// direct (non-volatile) loads and stores to it. If the alloca is close but
/// not quite there, this will transform the code to allow promotion. As such,
/// it is a non-pure predicate.
-static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *DL) {
+static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout &DL) {
SetVector<Instruction*, SmallVector<Instruction*, 4>,
SmallPtrSet<Instruction*, 4> > InstsToRewrite;
for (User *U : AI->users()) {
@@ -1278,7 +1275,7 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *DL) {
// If it is safe to turn "load (select c, AI, ptr)" into a select of two
// loads, then we can transform this by rewriting the select.
- if (!isSafeSelectToSpeculate(SI, DL))
+ if (!isSafeSelectToSpeculate(SI))
return false;
InstsToRewrite.insert(SI);
@@ -1293,7 +1290,7 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *DL) {
// If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
// in the pred blocks, then we can transform this by rewriting the PHI.
- if (!isSafePHIToSpeculate(PN, DL))
+ if (!isSafePHIToSpeculate(PN))
return false;
InstsToRewrite.insert(PN);
@@ -1415,6 +1412,7 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *DL) {
bool SROA::performPromotion(Function &F) {
std::vector<AllocaInst*> Allocas;
+ const DataLayout &DL = F.getParent()->getDataLayout();
DominatorTree *DT = nullptr;
if (HasDomTree)
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
@@ -1478,6 +1476,7 @@ bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) {
//
bool SROA::performScalarRepl(Function &F) {
std::vector<AllocaInst*> WorkList;
+ const DataLayout &DL = F.getParent()->getDataLayout();
// Scan the entry basic block, adding allocas to the worklist.
BasicBlock &BB = F.getEntryBlock();
@@ -1507,7 +1506,7 @@ bool SROA::performScalarRepl(Function &F) {
// transform the allocation instruction if it is an array allocation
// (allocations OF arrays are ok though), and an allocation of a scalar
// value cannot be decomposed at all.
- uint64_t AllocaSize = DL->getTypeAllocSize(AI->getAllocatedType());
+ uint64_t AllocaSize = DL.getTypeAllocSize(AI->getAllocatedType());
// Do not promote [0 x %struct].
if (AllocaSize == 0) continue;
@@ -1530,8 +1529,9 @@ bool SROA::performScalarRepl(Function &F) {
// promoted itself. If so, we don't want to transform it needlessly. Note
// that we can't just check based on the type: the alloca may be of an i32
// but that has pointer arithmetic to set byte 3 of it or something.
- if (AllocaInst *NewAI = ConvertToScalarInfo(
- (unsigned)AllocaSize, *DL, ScalarLoadThreshold).TryConvert(AI)) {
+ if (AllocaInst *NewAI =
+ ConvertToScalarInfo((unsigned)AllocaSize, DL, ScalarLoadThreshold)
+ .TryConvert(AI)) {
NewAI->takeName(AI);
AI->eraseFromParent();
++NumConverted;
@@ -1609,6 +1609,7 @@ void SROA::DeleteDeadInstructions() {
/// referenced by this instruction.
void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
AllocaInfo &Info) {
+ const DataLayout &DL = I->getModule()->getDataLayout();
for (Use &U : I->uses()) {
Instruction *User = cast<Instruction>(U.getUser());
@@ -1631,8 +1632,8 @@ void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
if (!LI->isSimple())
return MarkUnsafe(Info, User);
Type *LIType = LI->getType();
- isSafeMemAccess(Offset, DL->getTypeAllocSize(LIType),
- LIType, false, Info, LI, true /*AllowWholeAccess*/);
+ isSafeMemAccess(Offset, DL.getTypeAllocSize(LIType), LIType, false, Info,
+ LI, true /*AllowWholeAccess*/);
Info.hasALoadOrStore = true;
} else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
@@ -1641,8 +1642,8 @@ void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
return MarkUnsafe(Info, User);
Type *SIType = SI->getOperand(0)->getType();
- isSafeMemAccess(Offset, DL->getTypeAllocSize(SIType),
- SIType, true, Info, SI, true /*AllowWholeAccess*/);
+ isSafeMemAccess(Offset, DL.getTypeAllocSize(SIType), SIType, true, Info,
+ SI, true /*AllowWholeAccess*/);
Info.hasALoadOrStore = true;
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
@@ -1674,6 +1675,7 @@ void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
if (!Info.CheckedPHIs.insert(PN).second)
return;
+ const DataLayout &DL = I->getModule()->getDataLayout();
for (User *U : I->users()) {
Instruction *UI = cast<Instruction>(U);
@@ -1690,8 +1692,8 @@ void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
if (!LI->isSimple())
return MarkUnsafe(Info, UI);
Type *LIType = LI->getType();
- isSafeMemAccess(Offset, DL->getTypeAllocSize(LIType),
- LIType, false, Info, LI, false /*AllowWholeAccess*/);
+ isSafeMemAccess(Offset, DL.getTypeAllocSize(LIType), LIType, false, Info,
+ LI, false /*AllowWholeAccess*/);
Info.hasALoadOrStore = true;
} else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
@@ -1700,8 +1702,8 @@ void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
return MarkUnsafe(Info, UI);
Type *SIType = SI->getOperand(0)->getType();
- isSafeMemAccess(Offset, DL->getTypeAllocSize(SIType),
- SIType, true, Info, SI, false /*AllowWholeAccess*/);
+ isSafeMemAccess(Offset, DL.getTypeAllocSize(SIType), SIType, true, Info,
+ SI, false /*AllowWholeAccess*/);
Info.hasALoadOrStore = true;
} else if (isa<PHINode>(UI) || isa<SelectInst>(UI)) {
isSafePHISelectUseForScalarRepl(UI, Offset, Info);
@@ -1745,9 +1747,11 @@ void SROA::isSafeGEP(GetElementPtrInst *GEPI,
// constant part of the offset.
if (NonConstant)
Indices.pop_back();
- Offset += DL->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
- if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset,
- NonConstantIdxSize))
+
+ const DataLayout &DL = GEPI->getModule()->getDataLayout();
+ Offset += DL.getIndexedOffset(GEPI->getPointerOperandType(), Indices);
+ if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, NonConstantIdxSize,
+ DL))
MarkUnsafe(Info, GEPI);
}
@@ -1802,9 +1806,10 @@ void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
Type *MemOpType, bool isStore,
AllocaInfo &Info, Instruction *TheAccess,
bool AllowWholeAccess) {
+ const DataLayout &DL = TheAccess->getModule()->getDataLayout();
// Check if this is a load/store of the entire alloca.
if (Offset == 0 && AllowWholeAccess &&
- MemSize == DL->getTypeAllocSize(Info.AI->getAllocatedType())) {
+ MemSize == DL.getTypeAllocSize(Info.AI->getAllocatedType())) {
// This can be safe for MemIntrinsics (where MemOpType is 0) and integer
// loads/stores (which are essentially the same as the MemIntrinsics with
// regard to copying padding between elements). But, if an alloca is
@@ -1827,7 +1832,7 @@ void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
}
// Check if the offset/size correspond to a component within the alloca type.
Type *T = Info.AI->getAllocatedType();
- if (TypeHasComponent(T, Offset, MemSize)) {
+ if (TypeHasComponent(T, Offset, MemSize, DL)) {
Info.hasSubelementAccess = true;
return;
}
@@ -1837,24 +1842,25 @@ void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
/// TypeHasComponent - Return true if T has a component type with the
/// specified offset and size. If Size is zero, do not check the size.
-bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
+bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size,
+ const DataLayout &DL) {
Type *EltTy;
uint64_t EltSize;
if (StructType *ST = dyn_cast<StructType>(T)) {
- const StructLayout *Layout = DL->getStructLayout(ST);
+ const StructLayout *Layout = DL.getStructLayout(ST);
unsigned EltIdx = Layout->getElementContainingOffset(Offset);
EltTy = ST->getContainedType(EltIdx);
- EltSize = DL->getTypeAllocSize(EltTy);
+ EltSize = DL.getTypeAllocSize(EltTy);
Offset -= Layout->getElementOffset(EltIdx);
} else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
EltTy = AT->getElementType();
- EltSize = DL->getTypeAllocSize(EltTy);
+ EltSize = DL.getTypeAllocSize(EltTy);
if (Offset >= AT->getNumElements() * EltSize)
return false;
Offset %= EltSize;
} else if (VectorType *VT = dyn_cast<VectorType>(T)) {
EltTy = VT->getElementType();
- EltSize = DL->getTypeAllocSize(EltTy);
+ EltSize = DL.getTypeAllocSize(EltTy);
if (Offset >= VT->getNumElements() * EltSize)
return false;
Offset %= EltSize;
@@ -1866,7 +1872,7 @@ bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
// Check if the component spans multiple elements.
if (Offset + Size > EltSize)
return false;
- return TypeHasComponent(EltTy, Offset, Size);
+ return TypeHasComponent(EltTy, Offset, Size, DL);
}
/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
@@ -1875,6 +1881,7 @@ bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
/// instruction.
void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
SmallVectorImpl<AllocaInst *> &NewElts) {
+ const DataLayout &DL = I->getModule()->getDataLayout();
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
Use &TheUse = *UI++;
Instruction *User = cast<Instruction>(TheUse.getUser());
@@ -1892,8 +1899,7 @@ void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
uint64_t MemSize = Length->getZExtValue();
- if (Offset == 0 &&
- MemSize == DL->getTypeAllocSize(AI->getAllocatedType()))
+ if (Offset == 0 && MemSize == DL.getTypeAllocSize(AI->getAllocatedType()))
RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
// Otherwise the intrinsic can only touch a single element and the
// address operand will be updated, so nothing else needs to be done.
@@ -1929,8 +1935,8 @@ void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
LI->replaceAllUsesWith(Insert);
DeadInsts.push_back(LI);
} else if (LIType->isIntegerTy() &&
- DL->getTypeAllocSize(LIType) ==
- DL->getTypeAllocSize(AI->getAllocatedType())) {
+ DL.getTypeAllocSize(LIType) ==
+ DL.getTypeAllocSize(AI->getAllocatedType())) {
// If this is a load of the entire alloca to an integer, rewrite it.
RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
}
@@ -1956,8 +1962,8 @@ void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
}
DeadInsts.push_back(SI);
} else if (SIType->isIntegerTy() &&
- DL->getTypeAllocSize(SIType) ==
- DL->getTypeAllocSize(AI->getAllocatedType())) {
+ DL.getTypeAllocSize(SIType) ==
+ DL.getTypeAllocSize(AI->getAllocatedType())) {
// If this is a store of the entire alloca from an integer, rewrite it.
RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
}
@@ -2000,7 +2006,8 @@ void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
Type *T = AI->getAllocatedType();
uint64_t EltOffset = 0;
Type *IdxTy;
- uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
+ uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy,
+ BC->getModule()->getDataLayout());
Instruction *Val = NewElts[Idx];
if (Val->getType() != BC->getDestTy()) {
Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
@@ -2015,11 +2022,12 @@ void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
/// Sets T to the type of the element and Offset to the offset within that
/// element. IdxTy is set to the type of the index result to be used in a
/// GEP instruction.
-uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
- Type *&IdxTy) {
+uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset, Type *&IdxTy,
+ const DataLayout &DL) {
uint64_t Idx = 0;
+
if (StructType *ST = dyn_cast<StructType>(T)) {
- const StructLayout *Layout = DL->getStructLayout(ST);
+ const StructLayout *Layout = DL.getStructLayout(ST);
Idx = Layout->getElementContainingOffset(Offset);
T = ST->getContainedType(Idx);
Offset -= Layout->getElementOffset(Idx);
@@ -2027,7 +2035,7 @@ uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
return Idx;
} else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
T = AT->getElementType();
- uint64_t EltSize = DL->getTypeAllocSize(T);
+ uint64_t EltSize = DL.getTypeAllocSize(T);
Idx = Offset / EltSize;
Offset -= Idx * EltSize;
IdxTy = Type::getInt64Ty(T->getContext());
@@ -2035,7 +2043,7 @@ uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
}
VectorType *VT = cast<VectorType>(T);
T = VT->getElementType();
- uint64_t EltSize = DL->getTypeAllocSize(T);
+ uint64_t EltSize = DL.getTypeAllocSize(T);
Idx = Offset / EltSize;
Offset -= Idx * EltSize;
IdxTy = Type::getInt64Ty(T->getContext());
@@ -2048,6 +2056,7 @@ uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
SmallVectorImpl<AllocaInst *> &NewElts) {
uint64_t OldOffset = Offset;
+ const DataLayout &DL = GEPI->getModule()->getDataLayout();
SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
// If the GEP was dynamic then it must have been a dynamic vector lookup.
// In this case, it must be the last GEP operand which is dynamic so keep that
@@ -2056,19 +2065,19 @@ void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
Value* NonConstantIdx = nullptr;
if (!GEPI->hasAllConstantIndices())
NonConstantIdx = Indices.pop_back_val();
- Offset += DL->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
+ Offset += DL.getIndexedOffset(GEPI->getPointerOperandType(), Indices);
RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
Type *T = AI->getAllocatedType();
Type *IdxTy;
- uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
+ uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy, DL);
if (GEPI->getOperand(0) == AI)
OldIdx = ~0ULL; // Force the GEP to be rewritten.
T = AI->getAllocatedType();
uint64_t EltOffset = Offset;
- uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
+ uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy, DL);
// If this GEP does not move the pointer across elements of the alloca
// being split, then it does not needs to be rewritten.
@@ -2079,7 +2088,7 @@ void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
SmallVector<Value*, 8> NewArgs;
NewArgs.push_back(Constant::getNullValue(i32Ty));
while (EltOffset != 0) {
- uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
+ uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy, DL);
NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
}
if (NonConstantIdx) {
@@ -2113,9 +2122,10 @@ void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
// Put matching lifetime markers on everything from Offset up to
// Offset+OldSize.
Type *AIType = AI->getAllocatedType();
+ const DataLayout &DL = II->getModule()->getDataLayout();
uint64_t NewOffset = Offset;
Type *IdxTy;
- uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
+ uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy, DL);
IRBuilder<> Builder(II);
uint64_t Size = OldSize->getLimitedValue();
@@ -2128,7 +2138,7 @@ void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
IdxTy = NewElts[Idx]->getAllocatedType();
- uint64_t EltSize = DL->getTypeAllocSize(IdxTy) - NewOffset;
+ uint64_t EltSize = DL.getTypeAllocSize(IdxTy) - NewOffset;
if (EltSize > Size) {
EltSize = Size;
Size = 0;
@@ -2144,7 +2154,7 @@ void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
for (; Idx != NewElts.size() && Size; ++Idx) {
IdxTy = NewElts[Idx]->getAllocatedType();
- uint64_t EltSize = DL->getTypeAllocSize(IdxTy);
+ uint64_t EltSize = DL.getTypeAllocSize(IdxTy);
if (EltSize > Size) {
EltSize = Size;
Size = 0;
@@ -2220,6 +2230,7 @@ SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
bool SROADest = MI->getRawDest() == Inst;
Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
+ const DataLayout &DL = MI->getModule()->getDataLayout();
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
// If this is a memcpy/memmove, emit a GEP of the other element address.
@@ -2236,10 +2247,10 @@ SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
Type *OtherTy = OtherPtrTy->getElementType();
if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
- EltOffset = DL->getStructLayout(ST)->getElementOffset(i);
+ EltOffset = DL.getStructLayout(ST)->getElementOffset(i);
} else {
Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
- EltOffset = DL->getTypeAllocSize(EltTy)*i;
+ EltOffset = DL.getTypeAllocSize(EltTy) * i;
}
// The alignment of the other pointer is the guaranteed alignment of the
@@ -2280,7 +2291,7 @@ SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
Type *ValTy = EltTy->getScalarType();
// Construct an integer with the right value.
- unsigned EltSize = DL->getTypeSizeInBits(ValTy);
+ unsigned EltSize = DL.getTypeSizeInBits(ValTy);
APInt OneVal(EltSize, CI->getZExtValue());
APInt TotalVal(OneVal);
// Set each byte.
@@ -2310,7 +2321,7 @@ SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
// this element.
}
- unsigned EltSize = DL->getTypeAllocSize(EltTy);
+ unsigned EltSize = DL.getTypeAllocSize(EltTy);
if (!EltSize)
continue;
@@ -2344,12 +2355,13 @@ SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
// and store the element value to the individual alloca.
Value *SrcVal = SI->getOperand(0);
Type *AllocaEltTy = AI->getAllocatedType();
- uint64_t AllocaSizeBits = DL->getTypeAllocSizeInBits(AllocaEltTy);
+ const DataLayout &DL = SI->getModule()->getDataLayout();
+ uint64_t AllocaSizeBits = DL.getTypeAllocSizeInBits(AllocaEltTy);
IRBuilder<> Builder(SI);
// Handle tail padding by extending the operand
- if (DL->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
+ if (DL.getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
SrcVal = Builder.CreateZExt(SrcVal,
IntegerType::get(SI->getContext(), AllocaSizeBits));
@@ -2359,15 +2371,15 @@ SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
// There are two forms here: AI could be an array or struct. Both cases
// have different ways to compute the element offset.
if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
- const StructLayout *Layout = DL->getStructLayout(EltSTy);
+ const StructLayout *Layout = DL.getStructLayout(EltSTy);
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
// Get the number of bits to shift SrcVal to get the value.
Type *FieldTy = EltSTy->getElementType(i);
uint64_t Shift = Layout->getElementOffsetInBits(i);
- if (DL->isBigEndian())
- Shift = AllocaSizeBits-Shift-DL->getTypeAllocSizeInBits(FieldTy);
+ if (DL.isBigEndian())
+ Shift = AllocaSizeBits - Shift - DL.getTypeAllocSizeInBits(FieldTy);
Value *EltVal = SrcVal;
if (Shift) {
@@ -2376,7 +2388,7 @@ SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
}
// Truncate down to an integer of the right size.
- uint64_t FieldSizeBits = DL->getTypeSizeInBits(FieldTy);
+ uint64_t FieldSizeBits = DL.getTypeSizeInBits(FieldTy);
// Ignore zero sized fields like {}, they obviously contain no data.
if (FieldSizeBits == 0) continue;
@@ -2401,12 +2413,12 @@ SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
} else {
ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
Type *ArrayEltTy = ATy->getElementType();
- uint64_t ElementOffset = DL->getTypeAllocSizeInBits(ArrayEltTy);
- uint64_t ElementSizeBits = DL->getTypeSizeInBits(ArrayEltTy);
+ uint64_t ElementOffset = DL.getTypeAllocSizeInBits(ArrayEltTy);
+ uint64_t ElementSizeBits = DL.getTypeSizeInBits(ArrayEltTy);
uint64_t Shift;
- if (DL->isBigEndian())
+ if (DL.isBigEndian())
Shift = AllocaSizeBits-ElementOffset;
else
Shift = 0;
@@ -2440,7 +2452,7 @@ SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
}
new StoreInst(EltVal, DestField, SI);
- if (DL->isBigEndian())
+ if (DL.isBigEndian())
Shift -= ElementOffset;
else
Shift += ElementOffset;
@@ -2458,7 +2470,8 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
// Extract each element out of the NewElts according to its structure offset
// and form the result value.
Type *AllocaEltTy = AI->getAllocatedType();
- uint64_t AllocaSizeBits = DL->getTypeAllocSizeInBits(AllocaEltTy);
+ const DataLayout &DL = LI->getModule()->getDataLayout();
+ uint64_t AllocaSizeBits = DL.getTypeAllocSizeInBits(AllocaEltTy);
DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
<< '\n');
@@ -2468,10 +2481,10 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
const StructLayout *Layout = nullptr;
uint64_t ArrayEltBitOffset = 0;
if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
- Layout = DL->getStructLayout(EltSTy);
+ Layout = DL.getStructLayout(EltSTy);
} else {
Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
- ArrayEltBitOffset = DL->getTypeAllocSizeInBits(ArrayEltTy);
+ ArrayEltBitOffset = DL.getTypeAllocSizeInBits(ArrayEltTy);
}
Value *ResultVal =
@@ -2483,7 +2496,7 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
Value *SrcField = NewElts[i];
Type *FieldTy =
cast<PointerType>(SrcField->getType())->getElementType();
- uint64_t FieldSizeBits = DL->getTypeSizeInBits(FieldTy);
+ uint64_t FieldSizeBits = DL.getTypeSizeInBits(FieldTy);
// Ignore zero sized fields like {}, they obviously contain no data.
if (FieldSizeBits == 0) continue;
@@ -2514,7 +2527,7 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
else // Array case.
Shift = i*ArrayEltBitOffset;
- if (DL->isBigEndian())
+ if (DL.isBigEndian())
Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
if (Shift) {
@@ -2531,7 +2544,7 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
}
// Handle tail padding by truncating the result
- if (DL->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
+ if (DL.getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
LI->replaceAllUsesWith(ResultVal);
@@ -2588,13 +2601,15 @@ bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
return false;
}
+ const DataLayout &DL = AI->getModule()->getDataLayout();
+
// Okay, we know all the users are promotable. If the aggregate is a memcpy
// source and destination, we have to be careful. In particular, the memcpy
// could be moving around elements that live in structure padding of the LLVM
// types, but may actually be used. In these cases, we refuse to promote the
// struct.
if (Info.isMemCpySrc && Info.isMemCpyDst &&
- HasPadding(AI->getAllocatedType(), *DL))
+ HasPadding(AI->getAllocatedType(), DL))
return false;
// If the alloca never has an access to just *part* of it, but is accessed
diff --git a/llvm/lib/Transforms/Scalar/Scalarizer.cpp b/llvm/lib/Transforms/Scalar/Scalarizer.cpp
index 5638d20075d..f2cff4dd492 100644
--- a/llvm/lib/Transforms/Scalar/Scalarizer.cpp
+++ b/llvm/lib/Transforms/Scalar/Scalarizer.cpp
@@ -165,7 +165,7 @@ private:
void gather(Instruction *, const ValueVector &);
bool canTransferMetadata(unsigned Kind);
void transferMetadata(Instruction *, const ValueVector &);
- bool getVectorLayout(Type *, unsigned, VectorLayout &);
+ bool getVectorLayout(Type *, unsigned, VectorLayout &, const DataLayout &);
bool finish();
template<typename T> bool splitBinary(Instruction &, const T &);
@@ -173,7 +173,6 @@ private:
ScatterMap Scattered;
GatherList Gathered;
unsigned ParallelLoopAccessMDKind;
- const DataLayout *DL;
bool ScalarizeLoadStore;
};
@@ -248,7 +247,6 @@ bool Scalarizer::doInitialization(Module &M) {
}
bool Scalarizer::runOnFunction(Function &F) {
- DL = &F.getParent()->getDataLayout();
for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
BasicBlock *BB = BBI;
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
@@ -344,10 +342,7 @@ void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
// Try to fill in Layout from Ty, returning true on success. Alignment is
// the alignment of the vector, or 0 if the ABI default should be used.
bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
- VectorLayout &Layout) {
- if (!DL)
- return false;
-
+ VectorLayout &Layout, const DataLayout &DL) {
// Make sure we're dealing with a vector.
Layout.VecTy = dyn_cast<VectorType>(Ty);
if (!Layout.VecTy)
@@ -355,15 +350,15 @@ bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
// Check that we're dealing with full-byte elements.
Layout.ElemTy = Layout.VecTy->getElementType();
- if (DL->getTypeSizeInBits(Layout.ElemTy) !=
- DL->getTypeStoreSizeInBits(Layout.ElemTy))
+ if (DL.getTypeSizeInBits(Layout.ElemTy) !=
+ DL.getTypeStoreSizeInBits(Layout.ElemTy))
return false;
if (Alignment)
Layout.VecAlign = Alignment;
else
- Layout.VecAlign = DL->getABITypeAlignment(Layout.VecTy);
- Layout.ElemSize = DL->getTypeStoreSize(Layout.ElemTy);
+ Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy);
+ Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
return true;
}
@@ -594,7 +589,8 @@ bool Scalarizer::visitLoadInst(LoadInst &LI) {
return false;
VectorLayout Layout;
- if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout))
+ if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout,
+ LI.getModule()->getDataLayout()))
return false;
unsigned NumElems = Layout.VecTy->getNumElements();
@@ -618,7 +614,8 @@ bool Scalarizer::visitStoreInst(StoreInst &SI) {
VectorLayout Layout;
Value *FullValue = SI.getValueOperand();
- if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout))
+ if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout,
+ SI.getModule()->getDataLayout()))
return false;
unsigned NumElems = Layout.VecTy->getNumElements();
diff --git a/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp b/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp
index 3aa57711416..3d5f6c9c1e2 100644
--- a/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp
+++ b/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp
@@ -199,18 +199,15 @@ class ConstantOffsetExtractor {
/// new index representing the remainder (equal to the original index minus
/// the constant offset), or nullptr if we cannot extract a constant offset.
/// \p Idx The given GEP index
- /// \p DL The datalayout of the module
/// \p GEP The given GEP
- static Value *Extract(Value *Idx, const DataLayout *DL,
- GetElementPtrInst *GEP);
+ static Value *Extract(Value *Idx, GetElementPtrInst *GEP);
/// Looks for a constant offset from the given GEP index without extracting
/// it. It returns the numeric value of the extracted constant offset (0 if
/// failed). The meaning of the arguments are the same as Extract.
- static int64_t Find(Value *Idx, const DataLayout *DL, GetElementPtrInst *GEP);
+ static int64_t Find(Value *Idx, GetElementPtrInst *GEP);
private:
- ConstantOffsetExtractor(const DataLayout *Layout, Instruction *InsertionPt)
- : DL(Layout), IP(InsertionPt) {}
+ ConstantOffsetExtractor(Instruction *InsertionPt) : IP(InsertionPt) {}
/// Searches the expression that computes V for a non-zero constant C s.t.
/// V can be reassociated into the form V' + C. If the searching is
/// successful, returns C and update UserChain as a def-use chain from C to V;
@@ -294,8 +291,6 @@ class ConstantOffsetExtractor {
/// A data structure used in rebuildWithoutConstOffset. Contains all
/// sext/zext instructions along UserChain.
SmallVector<CastInst *, 16> ExtInsts;
- /// The data layout of the module. Used in ComputeKnownBits.
- const DataLayout *DL;
Instruction *IP; /// Insertion position of cloned instructions.
};
@@ -316,11 +311,6 @@ class SeparateConstOffsetFromGEP : public FunctionPass {
AU.setPreservesCFG();
}
- bool doInitialization(Module &M) override {
- DL = &M.getDataLayout();
- return false;
- }
-
bool runOnFunction(Function &F) override;
private:
@@ -368,7 +358,6 @@ class SeparateConstOffsetFromGEP : public FunctionPass {
/// Verified in @i32_add in split-gep.ll
bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
- const DataLayout *DL;
const TargetMachine *TM;
/// Whether to lower a GEP with multiple indices into arithmetic operations or
/// multiple GEPs with a single index.
@@ -642,9 +631,8 @@ Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
return BO;
}
-Value *ConstantOffsetExtractor::Extract(Value *Idx, const DataLayout *DL,
- GetElementPtrInst *GEP) {
- ConstantOffsetExtractor Extractor(DL, GEP);
+Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP) {
+ ConstantOffsetExtractor Extractor(GEP);
// Find a non-zero constant offset first.
APInt ConstantOffset =
Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
@@ -655,10 +643,9 @@ Value *ConstantOffsetExtractor::Extract(Value *Idx, const DataLayout *DL,
return Extractor.rebuildWithoutConstOffset();
}
-int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL,
- GetElementPtrInst *GEP) {
+int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP) {
// If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
- return ConstantOffsetExtractor(DL, GEP)
+ return ConstantOffsetExtractor(GEP)
.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
GEP->isInBounds())
.getSExtValue();
@@ -669,6 +656,7 @@ void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
IntegerType *IT = cast<IntegerType>(V->getType());
KnownOne = APInt(IT->getBitWidth(), 0);
KnownZero = APInt(IT->getBitWidth(), 0);
+ const DataLayout &DL = IP->getModule()->getDataLayout();
llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0);
}
@@ -684,7 +672,8 @@ bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const {
bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
GetElementPtrInst *GEP) {
bool Changed = false;
- Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
+ const DataLayout &DL = GEP->getModule()->getDataLayout();
+ Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
gep_type_iterator GTI = gep_type_begin(*GEP);
for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
I != E; ++I, ++GTI) {
@@ -705,18 +694,19 @@ SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
NeedsExtraction = false;
int64_t AccumulativeByteOffset = 0;
gep_type_iterator GTI = gep_type_begin(*GEP);
+ const DataLayout &DL = GEP->getModule()->getDataLayout();
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
if (isa<SequentialType>(*GTI)) {
// Tries to extract a constant offset from this GEP index.
int64_t ConstantOffset =
- ConstantOffsetExtractor::Find(GEP->getOperand(I), DL, GEP);
+ ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP);
if (ConstantOffset != 0) {
NeedsExtraction = true;
// A GEP may have multiple indices. We accumulate the extracted
// constant offset to a byte offset, and later offset the remainder of
// the original GEP with this byte offset.
AccumulativeByteOffset +=
- ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
+ ConstantOffset * DL.getTypeAllocSize(GTI.getIndexedType());
}
} else if (LowerGEP) {
StructType *StTy = cast<StructType>(*GTI);
@@ -725,7 +715,7 @@ SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
if (Field != 0) {
NeedsExtraction = true;
AccumulativeByteOffset +=
- DL->getStructLayout(StTy)->getElementOffset(Field);
+ DL.getStructLayout(StTy)->getElementOffset(Field);
}
}
}
@@ -735,7 +725,8 @@ SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
IRBuilder<> Builder(Variadic);
- Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
+ const DataLayout &DL = Variadic->getModule()->getDataLayout();
+ Type *IntPtrTy = DL.getIntPtrType(Variadic->getType());
Type *I8PtrTy =
Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
@@ -755,7 +746,7 @@ void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
continue;
APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
- DL->getTypeAllocSize(GTI.getIndexedType()));
+ DL.getTypeAllocSize(GTI.getIndexedType()));
// Scale the index by element size.
if (ElementSize != 1) {
if (ElementSize.isPowerOf2()) {
@@ -786,7 +777,8 @@ void
SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
int64_t AccumulativeByteOffset) {
IRBuilder<> Builder(Variadic);
- Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
+ const DataLayout &DL = Variadic->getModule()->getDataLayout();
+ Type *IntPtrTy = DL.getIntPtrType(Variadic->getType());
Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
gep_type_iterator GTI = gep_type_begin(*Variadic);
@@ -802,7 +794,7 @@ SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
continue;
APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
- DL->getTypeAllocSize(GTI.getIndexedType()));
+ DL.getTypeAllocSize(GTI.getIndexedType()));
// Scale the index by element size.
if (ElementSize != 1) {
if (ElementSize.isPowerOf2()) {
@@ -875,8 +867,7 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
if (isa<SequentialType>(*GTI)) {
// Splits this GEP index into a variadic part and a constant offset, and
// uses the variadic part as the new index.
- Value *NewIdx =
- ConstantOffsetExtractor::Extract(GEP->getOperand(I), DL, GEP);
+ Value *NewIdx = ConstantOffsetExtractor::Extract(GEP->getOperand(I), GEP);
if (NewIdx != nullptr) {
GEP->setOperand(I, NewIdx);
}
@@ -953,9 +944,10 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
// Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
// unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
// used with unsigned integers later.
+ const DataLayout &DL = GEP->getModule()->getDataLayout();
int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
- DL->getTypeAllocSize(GEP->getType()->getElementType()));
- Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
+ DL.getTypeAllocSize(GEP->getType()->getElementType()));
+ Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
// Very likely. As long as %gep is natually aligned, the byte offset we
// extracted should be a multiple of sizeof(*%gep).
diff --git a/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp b/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp
index ac932b659ab..8566cd9736d 100644
--- a/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp
+++ b/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp
@@ -127,7 +127,7 @@ static bool mergeEmptyReturnBlocks(Function &F) {
/// iterativelySimplifyCFG - Call SimplifyCFG on all the blocks in the function,
/// iterating until no more changes are made.
static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
- const DataLayout *DL, AssumptionCache *AC,
+ AssumptionCache *AC,
unsigned BonusInstThreshold) {
bool Changed = false;
bool LocalChange = true;
@@ -137,7 +137,7 @@ static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
// Loop over all of the basic blocks and remove them if they are unneeded...
//
for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
- if (SimplifyCFG(BBIt++, TTI, BonusInstThreshold, DL, AC)) {
+ if (SimplifyCFG(BBIt++, TTI, BonusInstThreshold, AC)) {
LocalChange = true;
++NumSimpl;
}
@@ -148,11 +148,10 @@ static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
}
static bool simplifyFunctionCFG(Function &F, const TargetTransformInfo &TTI,
- const DataLayout *DL, AssumptionCache *AC,
- int BonusInstThreshold) {
+ AssumptionCache *AC, int BonusInstThreshold) {
bool EverChanged = removeUnreachableBlocks(F);
EverChanged |= mergeEmptyReturnBlocks(F);
- EverChanged |= iterativelySimplifyCFG(F, TTI, DL, AC, BonusInstThreshold);
+ EverChanged |= iterativelySimplifyCFG(F, TTI, AC, BonusInstThreshold);
// If neither pass changed anything, we're done.
if (!EverChanged) return false;
@@ -166,7 +165,7 @@ static bool simplifyFunctionCFG(Function &F, const TargetTransformInfo &TTI,
return true;
do {
- EverChanged = iterativelySimplifyCFG(F, TTI, DL, AC, BonusInstThreshold);
+ EverChanged = iterativelySimplifyCFG(F, TTI, AC, BonusInstThreshold);
EverChanged |= removeUnreachableBlocks(F);
} while (EverChanged);
@@ -181,11 +180,10 @@ SimplifyCFGPass::SimplifyCFGPass(int BonusInstThreshold)
PreservedAnalyses SimplifyCFGPass::run(Function &F,
AnalysisManager<Function> *AM) {
- auto &DL = F.getParent()->getDataLayout();
auto &TTI = AM->getResult<TargetIRAnalysis>(F);
auto &AC = AM->getResult<AssumptionAnalysis>(F);
- if (!simplifyFunctionCFG(F, TTI, &DL, &AC, BonusInstThreshold))
+ if (!simplifyFunctionCFG(F, TTI, &AC, BonusInstThreshold))
return PreservedAnalyses::none();
return PreservedAnalyses::all();
@@ -207,8 +205,7 @@ struct CFGSimplifyPass : public FunctionPass {
&getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
const TargetTransformInfo &TTI =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- const DataLayout &DL = F.getParent()->getDataLayout();
- return simplifyFunctionCFG(F, TTI, &DL, AC, BonusInstThreshold);
+ return simplifyFunctionCFG(F, TTI, AC, BonusInstThreshold);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
diff --git a/llvm/lib/Transforms/Scalar/Sink.cpp b/llvm/lib/Transforms/Scalar/Sink.cpp
index 4ba3f1949db..b169d5612f0 100644
--- a/llvm/lib/Transforms/Scalar/Sink.cpp
+++ b/llvm/lib/Transforms/Scalar/Sink.cpp
@@ -36,7 +36,6 @@ namespace {
DominatorTree *DT;
LoopInfo *LI;
AliasAnalysis *AA;
- const DataLayout *DL;
public:
static char ID; // Pass identification
@@ -101,7 +100,6 @@ bool Sinking::runOnFunction(Function &F) {
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
AA = &getAnalysis<AliasAnalysis>();
- DL = &F.getParent()->getDataLayout();
bool MadeChange, EverMadeChange = false;
@@ -196,7 +194,7 @@ bool Sinking::IsAcceptableTarget(Instruction *Inst,
if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) {
// We cannot sink a load across a critical edge - there may be stores in
// other code paths.
- if (!isSafeToSpeculativelyExecute(Inst, DL))
+ if (!isSafeToSpeculativelyExecute(Inst))
return false;
// We don't want to sink across a critical edge if we don't dominate the
diff --git a/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp b/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp
index bd6d925e8d5..73ef9ea24ce 100644
--- a/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp
+++ b/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp
@@ -87,7 +87,6 @@ STATISTIC(NumAccumAdded, "Number of accumulators introduced");
namespace {
struct TailCallElim : public FunctionPass {
const TargetTransformInfo *TTI;
- const DataLayout *DL;
static char ID; // Pass identification, replacement for typeid
TailCallElim() : FunctionPass(ID) {
@@ -159,8 +158,6 @@ bool TailCallElim::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
- DL = &F.getParent()->getDataLayout();
-
bool AllCallsAreTailCalls = false;
bool Modified = markTails(F, AllCallsAreTailCalls);
if (AllCallsAreTailCalls)
@@ -425,7 +422,7 @@ bool TailCallElim::runTRE(Function &F) {
PHINode *PN = ArgumentPHIs[i];
// If the PHI Node is a dynamic constant, replace it with the value it is.
- if (Value *PNV = SimplifyInstruction(PN)) {
+ if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
PN->replaceAllUsesWith(PNV);
PN->eraseFromParent();
}
@@ -454,7 +451,7 @@ bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
// being loaded from.
if (CI->mayWriteToMemory() ||
!isSafeToLoadUnconditionally(L->getPointerOperand(), L,
- L->getAlignment(), DL))
+ L->getAlignment()))
return false;
}
}
diff --git a/llvm/lib/Transforms/Utils/BuildLibCalls.cpp b/llvm/lib/Transforms/Utils/BuildLibCalls.cpp
index 762a83f2a5a..671cbfec0a2 100644
--- a/llvm/lib/Transforms/Utils/BuildLibCalls.cpp
+++ b/llvm/lib/Transforms/Utils/BuildLibCalls.cpp
@@ -33,7 +33,7 @@ Value *llvm::CastToCStr(Value *V, IRBuilder<> &B) {
/// EmitStrLen - Emit a call to the strlen function to the builder, for the
/// specified pointer. This always returns an integer value of size intptr_t.
-Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout *TD,
+Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::strlen))
return nullptr;
@@ -45,12 +45,9 @@ Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout *TD,
AS[1] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex, AVs);
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Constant *StrLen = M->getOrInsertFunction("strlen",
- AttributeSet::get(M->getContext(),
- AS),
- TD->getIntPtrType(Context),
- B.getInt8PtrTy(),
- nullptr);
+ Constant *StrLen = M->getOrInsertFunction(
+ "strlen", AttributeSet::get(M->getContext(), AS),
+ DL.getIntPtrType(Context), B.getInt8PtrTy(), nullptr);
CallInst *CI = B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen");
if (const Function *F = dyn_cast<Function>(StrLen->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
@@ -62,7 +59,7 @@ Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout *TD,
/// specified pointer. Ptr is required to be some pointer type, MaxLen must
/// be of size_t type, and the return value has 'intptr_t' type.
Value *llvm::EmitStrNLen(Value *Ptr, Value *MaxLen, IRBuilder<> &B,
- const DataLayout *TD, const TargetLibraryInfo *TLI) {
+ const DataLayout &DL, const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::strnlen))
return nullptr;
@@ -73,13 +70,10 @@ Value *llvm::EmitStrNLen(Value *Ptr, Value *MaxLen, IRBuilder<> &B,
AS[1] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex, AVs);
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Constant *StrNLen = M->getOrInsertFunction("strnlen",
- AttributeSet::get(M->getContext(),
- AS),
- TD->getIntPtrType(Context),
- B.getInt8PtrTy(),
- TD->getIntPtrType(Context),
- nullptr);
+ Constant *StrNLen =
+ M->getOrInsertFunction("strnlen", AttributeSet::get(M->getContext(), AS),
+ DL.getIntPtrType(Context), B.getInt8PtrTy(),
+ DL.getIntPtrType(Context), nullptr);
CallInst *CI = B.CreateCall2(StrNLen, CastToCStr(Ptr, B), MaxLen, "strnlen");
if (const Function *F = dyn_cast<Function>(StrNLen->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
@@ -91,7 +85,7 @@ Value *llvm::EmitStrNLen(Value *Ptr, Value *MaxLen, IRBuilder<> &B,
/// specified pointer and character. Ptr is required to be some pointer type,
/// and the return value has 'i8*' type.
Value *llvm::EmitStrChr(Value *Ptr, char C, IRBuilder<> &B,
- const DataLayout *TD, const TargetLibraryInfo *TLI) {
+ const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::strchr))
return nullptr;
@@ -114,9 +108,8 @@ Value *llvm::EmitStrChr(Value *Ptr, char C, IRBuilder<> &B,
}
/// EmitStrNCmp - Emit a call to the strncmp function to the builder.
-Value *llvm::EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len,
- IRBuilder<> &B, const DataLayout *TD,
- const TargetLibraryInfo *TLI) {
+Value *llvm::EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B,
+ const DataLayout &DL, const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::strncmp))
return nullptr;
@@ -128,13 +121,9 @@ Value *llvm::EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len,
AS[2] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex, AVs);
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Value *StrNCmp = M->getOrInsertFunction("strncmp",
- AttributeSet::get(M->getContext(),
- AS),
- B.getInt32Ty(),
- B.getInt8PtrTy(),
- B.getInt8PtrTy(),
- TD->getIntPtrType(Context), nullptr);
+ Value *StrNCmp = M->getOrInsertFunction(
+ "strncmp", AttributeSet::get(M->getContext(), AS), B.getInt32Ty(),
+ B.getInt8PtrTy(), B.getInt8PtrTy(), DL.getIntPtrType(Context), nullptr);
CallInst *CI = B.CreateCall3(StrNCmp, CastToCStr(Ptr1, B),
CastToCStr(Ptr2, B), Len, "strncmp");
@@ -147,8 +136,7 @@ Value *llvm::EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len,
/// EmitStrCpy - Emit a call to the strcpy function to the builder, for the
/// specified pointer arguments.
Value *llvm::EmitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B,
- const DataLayout *TD, const TargetLibraryInfo *TLI,
- StringRef Name) {
+ const TargetLibraryInfo *TLI, StringRef Name) {
if (!TLI->has(LibFunc::strcpy))
return nullptr;
@@ -170,8 +158,7 @@ Value *llvm::EmitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B,
/// EmitStrNCpy - Emit a call to the strncpy function to the builder, for the
/// specified pointer arguments.
-Value *llvm::EmitStrNCpy(Value *Dst, Value *Src, Value *Len,
- IRBuilder<> &B, const DataLayout *TD,
+Value *llvm::EmitStrNCpy(Value *Dst, Value *Src, Value *Len, IRBuilder<> &B,
const TargetLibraryInfo *TLI, StringRef Name) {
if (!TLI->has(LibFunc::strncpy))
return nullptr;
@@ -198,7 +185,7 @@ Value *llvm::EmitStrNCpy(Value *Dst, Value *Src, Value *Len,
/// This expects that the Len and ObjSize have type 'intptr_t' and Dst/Src
/// are pointers.
Value *llvm::EmitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize,
- IRBuilder<> &B, const DataLayout *TD,
+ IRBuilder<> &B, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::memcpy_chk))
return nullptr;
@@ -208,13 +195,10 @@ Value *llvm::EmitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize,
AS = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex,
Attribute::NoUnwind);
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Value *MemCpy = M->getOrInsertFunction("__memcpy_chk",
- AttributeSet::get(M->getContext(), AS),
- B.getInt8PtrTy(),
- B.getInt8PtrTy(),
- B.getInt8PtrTy(),
- TD->getIntPtrType(Context),
- TD->getIntPtrType(Context), nullptr);
+ Value *MemCpy = M->getOrInsertFunction(
+ "__memcpy_chk", AttributeSet::get(M->getContext(), AS), B.getInt8PtrTy(),
+ B.getInt8PtrTy(), B.getInt8PtrTy(), DL.getIntPtrType(Context),
+ DL.getIntPtrType(Context), nullptr);
Dst = CastToCStr(Dst, B);
Src = CastToCStr(Src, B);
CallInst *CI = B.CreateCall4(MemCpy, Dst, Src, Len, ObjSize);
@@ -225,9 +209,8 @@ Value *llvm::EmitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize,
/// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
/// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
-Value *llvm::EmitMemChr(Value *Ptr, Value *Val,
- Value *Len, IRBuilder<> &B, const DataLayout *TD,
- const TargetLibraryInfo *TLI) {
+Value *llvm::EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder<> &B,
+ const DataLayout &DL, const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::memchr))
return nullptr;
@@ -236,13 +219,9 @@ Value *llvm::EmitMemChr(Value *Ptr, Value *Val,
Attribute::AttrKind AVs[2] = { Attribute::ReadOnly, Attribute::NoUnwind };
AS = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex, AVs);
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Value *MemChr = M->getOrInsertFunction("memchr",
- AttributeSet::get(M->getContext(), AS),
- B.getInt8PtrTy(),
- B.getInt8PtrTy(),
- B.getInt32Ty(),
- TD->getIntPtrType(Context),
- nullptr);
+ Value *MemChr = M->getOrInsertFunction(
+ "memchr", AttributeSet::get(M->getContext(), AS), B.getInt8PtrTy(),
+ B.getInt8PtrTy(), B.getInt32Ty(), DL.getIntPtrType(Context), nullptr);
CallInst *CI = B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr");
if (const Function *F = dyn_cast<Function>(MemChr->stripPointerCasts()))
@@ -252,9 +231,8 @@ Value *llvm::EmitMemChr(Value *Ptr, Value *Val,
}
/// EmitMemCmp - Emit a call to the memcmp function.
-Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2,
- Value *Len, IRBuilder<> &B, const DataLayout *TD,
- const TargetLibraryInfo *TLI) {
+Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B,
+ const DataLayout &DL, const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::memcmp))
return nullptr;
@@ -266,12 +244,9 @@ Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2,
AS[2] = AttributeSet::get(M->getContext(), AttributeSet::FunctionIndex, AVs);
LLVMContext &Context = B.GetInsertBlock()->getContext();
- Value *MemCmp = M->getOrInsertFunction("memcmp",
- AttributeSet::get(M->getContext(), AS),
- B.getInt32Ty(),
- B.getInt8PtrTy(),
- B.getInt8PtrTy(),
- TD->getIntPtrType(Context), nullptr);
+ Value *MemCmp = M->getOrInsertFunction(
+ "memcmp", AttributeSet::get(M->getContext(), AS), B.getInt32Ty(),
+ B.getInt8PtrTy(), B.getInt8PtrTy(), DL.getIntPtrType(Context), nullptr);
CallInst *CI = B.CreateCall3(MemCmp, CastToCStr(Ptr1, B), CastToCStr(Ptr2, B),
Len, "memcmp");
@@ -339,7 +314,7 @@ Value *llvm::EmitBinaryFloatFnCall(Value *Op1, Value *Op2, StringRef Name,
/// EmitPutChar - Emit a call to the putchar function. This assumes that Char
/// is an integer.
-Value *llvm::EmitPutChar(Value *Char, IRBuilder<> &B, const DataLayout *TD,
+Value *llvm::EmitPutChar(Value *Char, IRBuilder<> &B,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::putchar))
return nullptr;
@@ -361,7 +336,7 @@ Value *llvm::EmitPutChar(Value *Char, IRBuilder<> &B, const DataLayout *TD,
/// EmitPutS - Emit a call to the puts function. This assumes that Str is
/// some pointer.
-Value *llvm::EmitPutS(Value *Str, IRBuilder<> &B, const DataLayout *TD,
+Value *llvm::EmitPutS(Value *Str, IRBuilder<> &B,
const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::puts))
return nullptr;
@@ -386,7 +361,7 @@ Value *llvm::EmitPutS(Value *Str, IRBuilder<> &B, const DataLayout *TD,
/// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
/// an integer and File is a pointer to FILE.
Value *llvm::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B,
- const DataLayout *TD, const TargetLibraryInfo *TLI) {
+ const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::fputc))
return nullptr;
@@ -419,7 +394,7 @@ Value *llvm::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B,
/// EmitFPutS - Emit a call to the puts function. Str is required to be a
/// pointer and File is a pointer to FILE.
Value *llvm::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B,
- const DataLayout *TD, const TargetLibraryInfo *TLI) {
+ const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::fputs))
return nullptr;
@@ -450,9 +425,8 @@ Value *llvm::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B,
/// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
/// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
-Value *llvm::EmitFWrite(Value *Ptr, Value *Size, Value *File,
- IRBuilder<> &B, const DataLayout *TD,
- const TargetLibraryInfo *TLI) {
+Value *llvm::EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder<> &B,
+ const DataLayout &DL, const TargetLibraryInfo *TLI) {
if (!TLI->has(LibFunc::fwrite))
return nullptr;
@@ -466,21 +440,18 @@ Value *llvm::EmitFWrite(Value *Ptr, Value *Size, Value *File,
StringRef FWriteName = TLI->getName(LibFunc::fwrite);
Constant *F;
if (File->getType()->isPointerTy())
- F = M->getOrInsertFunction(FWriteName,
- AttributeSet::get(M->getContext(), AS),
- TD->getIntPtrType(Context),
- B.getInt8PtrTy(),
- TD->getIntPtrType(Context),
- TD->getIntPtrType(Context),
- File->getType(), nullptr);
+ F = M->getOrInsertFunction(
+ FWriteName, AttributeSet::get(M->getContext(), AS),
+ DL.getIntPtrType(Context), B.getInt8PtrTy(), DL.getIntPtrType(Context),
+ DL.getIntPtrType(Context), File->getType(), nullptr);
else
- F = M->getOrInsertFunction(FWriteName, TD->getIntPtrType(Context),
- B.getInt8PtrTy(),
- TD->getIntPtrType(Context),
- TD->getIntPtrType(Context),
- File->getType(), nullptr);
- CallInst *CI = B.CreateCall4(F, CastToCStr(Ptr, B), Size,
- ConstantInt::get(TD->getIntPtrType(Context), 1), File);
+ F = M->getOrInsertFunction(FWriteName, DL.getIntPtrType(Context),
+ B.getInt8PtrTy(), DL.getIntPtrType(Context),
+ DL.getIntPtrType(Context), File->getType(),
+ nullptr);
+ CallInst *CI =
+ B.CreateCall4(F, CastToCStr(Ptr, B), Size,
+ ConstantInt::get(DL.getIntPtrType(Context), 1), File);
if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
CI->setCallingConv(Fn->getCallingConv());
diff --git a/llvm/lib/Transforms/Utils/CloneFunction.cpp b/llvm/lib/Transforms/Utils/CloneFunction.cpp
index 09279b6d506..10e6cd11630 100644
--- a/llvm/lib/Transforms/Utils/CloneFunction.cpp
+++ b/llvm/lib/Transforms/Utils/CloneFunction.cpp
@@ -259,23 +259,18 @@ namespace {
bool ModuleLevelChanges;
const char *NameSuffix;
ClonedCodeInfo *CodeInfo;
- const DataLayout *DL;
CloningDirector *Director;
ValueMapTypeRemapper *TypeMapper;
ValueMaterializer *Materializer;
public:
PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
- ValueToValueMapTy &valueMap,
- bool moduleLevelChanges,
- const char *nameSuffix,
- ClonedCodeInfo *codeInfo,
- const DataLayout *DL,
+ ValueToValueMapTy &valueMap, bool moduleLevelChanges,
+ const char *nameSuffix, ClonedCodeInfo *codeInfo,
CloningDirector *Director)
- : NewFunc(newFunc), OldFunc(oldFunc),
- VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
- NameSuffix(nameSuffix), CodeInfo(codeInfo), DL(DL),
- Director(Director) {
+ : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
+ ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
+ CodeInfo(codeInfo), Director(Director) {
// These are optional components. The Director may return null.
if (Director) {
TypeMapper = Director->getTypeRemapper();
@@ -360,7 +355,8 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
// If we can simplify this instruction to some other value, simply add
// a mapping to that value rather than inserting a new instruction into
// the basic block.
- if (Value *V = SimplifyInstruction(NewInst, DL)) {
+ if (Value *V =
+ SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
// On the off-chance that this simplifies to an instruction in the old
// function, map it back into the new function.
if (Value *MappedV = VMap.lookup(V))
@@ -466,7 +462,6 @@ void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
SmallVectorImpl<ReturnInst *> &Returns,
const char *NameSuffix,
ClonedCodeInfo *CodeInfo,
- const DataLayout *DL,
CloningDirector *Director) {
assert(NameSuffix && "NameSuffix cannot be null!");
@@ -488,7 +483,7 @@ void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
#endif
PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
- NameSuffix, CodeInfo, DL, Director);
+ NameSuffix, CodeInfo, Director);
const BasicBlock *StartingBB;
if (StartingInst)
StartingBB = StartingInst->getParent();
@@ -626,7 +621,7 @@ void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
// node).
for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
- recursivelySimplifyInstruction(PN, DL);
+ recursivelySimplifyInstruction(PN);
// Now that the inlined function body has been fully constructed, go through
// and zap unconditional fall-through branches. This happen all the time when
@@ -704,9 +699,8 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
SmallVectorImpl<ReturnInst*> &Returns,
const char *NameSuffix,
ClonedCodeInfo *CodeInfo,
- const DataLayout *DL,
Instruction *TheCall) {
- CloneAndPruneIntoFromInst(NewFunc, OldFunc, OldFunc->front().begin(),
- VMap, ModuleLevelChanges, Returns, NameSuffix,
- CodeInfo, DL, nullptr);
+ CloneAndPruneIntoFromInst(NewFunc, OldFunc, OldFunc->front().begin(), VMap,
+ ModuleLevelChanges, Returns, NameSuffix, CodeInfo,
+ nullptr);
}
diff --git a/llvm/lib/Transforms/Utils/InlineFunction.cpp b/llvm/lib/Transforms/Utils/InlineFunction.cpp
index 83f96ee7527..ee440e13da7 100644
--- a/llvm/lib/Transforms/Utils/InlineFunction.cpp
+++ b/llvm/lib/Transforms/Utils/InlineFunction.cpp
@@ -396,7 +396,7 @@ static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
/// parameters with noalias metadata specifying the new scope, and tag all
/// non-derived loads, stores and memory intrinsics with the new alias scopes.
static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
- const DataLayout *DL, AliasAnalysis *AA) {
+ const DataLayout &DL, AliasAnalysis *AA) {
if (!EnableNoAliasConversion)
return;
@@ -646,8 +646,9 @@ static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
// If we can already prove the asserted alignment in the context of the
// caller, then don't bother inserting the assumption.
Value *Arg = CS.getArgument(I->getArgNo());
- if (getKnownAlignment(Arg, &DL, &IFI.ACT->getAssumptionCache(*CalledFunc),
- CS.getInstruction(), &DT) >= Align)
+ if (getKnownAlignment(Arg, DL, CS.getInstruction(),
+ &IFI.ACT->getAssumptionCache(*CalledFunc),
+ &DT) >= Align)
continue;
IRBuilder<>(CS.getInstruction())
@@ -755,12 +756,13 @@ static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
return Arg;
+ const DataLayout &DL = Caller->getParent()->getDataLayout();
+
// If the pointer is already known to be sufficiently aligned, or if we can
// round it up to a larger alignment, then we don't need a temporary.
- auto &DL = Caller->getParent()->getDataLayout();
- if (getOrEnforceKnownAlignment(Arg, ByValAlignment, &DL,
- &IFI.ACT->getAssumptionCache(*Caller),
- TheCall) >= ByValAlignment)
+ if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall,
+ &IFI.ACT->getAssumptionCache(*Caller)) >=
+ ByValAlignment)
return Arg;
// Otherwise, we have to make a memcpy to get a safe alignment. This is bad
@@ -1042,7 +1044,7 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// happy with whatever the cloner can do.
CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
/*ModuleLevelChanges=*/false, Returns, ".i",
- &InlinedFunctionInfo, &DL, TheCall);
+ &InlinedFunctionInfo, TheCall);
// Remember the first block that is newly cloned over.
FirstNewBlock = LastBlock; ++FirstNewBlock;
@@ -1063,7 +1065,7 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
CloneAliasScopeMetadata(CS, VMap);
// Add noalias metadata if necessary.
- AddAliasScopeMetadata(CS, VMap, &DL, IFI.AA);
+ AddAliasScopeMetadata(CS, VMap, DL, IFI.AA);
// FIXME: We could register any cloned assumptions instead of clearing the
// whole function's cache.
@@ -1443,7 +1445,7 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// block other optimizations.
if (PHI) {
auto &DL = Caller->getParent()->getDataLayout();
- if (Value *V = SimplifyInstruction(PHI, &DL, nullptr, nullptr,
+ if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr,
&IFI.ACT->getAssumptionCache(*Caller))) {
PHI->replaceAllUsesWith(V);
PHI->eraseFromParent();
diff --git a/llvm/lib/Transforms/Utils/Local.cpp b/llvm/lib/Transforms/Utils/Local.cpp
index 48305684721..5a1fb1d6428 100644
--- a/llvm/lib/Transforms/Utils/Local.cpp
+++ b/llvm/lib/Transforms/Utils/Local.cpp
@@ -417,7 +417,7 @@ bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
///
/// This returns true if it changed the code, note that it can delete
/// instructions in other blocks as well in this block.
-bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
+bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
const TargetLibraryInfo *TLI) {
bool MadeChange = false;
@@ -434,7 +434,7 @@ bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
Instruction *Inst = BI++;
WeakVH BIHandle(BI);
- if (recursivelySimplifyInstruction(Inst, TD, TLI)) {
+ if (recursivelySimplifyInstruction(Inst, TLI)) {
MadeChange = true;
if (BIHandle != BI)
BI = BB->begin();
@@ -464,8 +464,7 @@ bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
///
/// .. and delete the predecessor corresponding to the '1', this will attempt to
/// recursively fold the and to 0.
-void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
- DataLayout *TD) {
+void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
// This only adjusts blocks with PHI nodes.
if (!isa<PHINode>(BB->begin()))
return;
@@ -480,7 +479,7 @@ void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
Value *OldPhiIt = PhiIt;
- if (!recursivelySimplifyInstruction(PN, TD))
+ if (!recursivelySimplifyInstruction(PN))
continue;
// If recursive simplification ended up deleting the next PHI node we would
@@ -900,13 +899,14 @@ bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
/// their preferred alignment from the beginning.
///
static unsigned enforceKnownAlignment(Value *V, unsigned Align,
- unsigned PrefAlign, const DataLayout *TD) {
+ unsigned PrefAlign,
+ const DataLayout &DL) {
V = V->stripPointerCasts();
if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
// If the preferred alignment is greater than the natural stack alignment
// then don't round up. This avoids dynamic stack realignment.
- if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
+ if (DL.exceedsNaturalStackAlignment(PrefAlign))
return Align;
// If there is a requested alignment and if this is an alloca, round up.
if (AI->getAlignment() >= PrefAlign)
@@ -945,13 +945,13 @@ static unsigned enforceKnownAlignment(Value *V, unsigned Align,
/// and it is more than the alignment of the ultimate object, see if we can
/// increase the alignment of the ultimate object, making this check succeed.
unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
- const DataLayout *DL,
- AssumptionCache *AC,
+ const DataLayout &DL,
const Instruction *CxtI,
+ AssumptionCache *AC,
const DominatorTree *DT) {
assert(V->getType()->isPointerTy() &&
"getOrEnforceKnownAlignment expects a pointer!");
- unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64;
+ unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
diff --git a/llvm/lib/Transforms/Utils/LoopSimplify.cpp b/llvm/lib/Transforms/Utils/LoopSimplify.cpp
index d4667f7b34b..a0760317506 100644
--- a/llvm/lib/Transforms/Utils/LoopSimplify.cpp
+++ b/llvm/lib/Transforms/Utils/LoopSimplify.cpp
@@ -210,10 +210,11 @@ static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA,
DominatorTree *DT,
AssumptionCache *AC) {
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
PHINode *PN = cast<PHINode>(I);
++I;
- if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT, AC)) {
+ if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
// This is a degenerate PHI already, don't modify it!
PN->replaceAllUsesWith(V);
if (AA) AA->deleteValue(PN);
@@ -477,7 +478,7 @@ static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
/// explicit if they accepted the analysis directly and then updated it.
static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
- ScalarEvolution *SE, Pass *PP, const DataLayout *DL,
+ ScalarEvolution *SE, Pass *PP,
AssumptionCache *AC) {
bool Changed = false;
ReprocessLoop:
@@ -609,13 +610,15 @@ ReprocessLoop:
}
}
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+
// Scan over the PHI nodes in the loop header. Since they now have only two
// incoming values (the loop is canonicalized), we may have simplified the PHI
// down to 'X = phi [X, Y]', which should be replaced with 'Y'.
PHINode *PN;
for (BasicBlock::iterator I = L->getHeader()->begin();
(PN = dyn_cast<PHINode>(I++)); )
- if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT, AC)) {
+ if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
if (AA) AA->deleteValue(PN);
if (SE) SE->forgetValue(PN);
PN->replaceAllUsesWith(V);
@@ -677,7 +680,8 @@ ReprocessLoop:
// The block has now been cleared of all instructions except for
// a comparison and a conditional branch. SimplifyCFG may be able
// to fold it now.
- if (!FoldBranchToCommonDest(BI, DL)) continue;
+ if (!FoldBranchToCommonDest(BI))
+ continue;
// Success. The block is now dead, so remove it from the loop,
// update the dominator tree and delete it.
@@ -715,7 +719,7 @@ ReprocessLoop:
bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
AliasAnalysis *AA, ScalarEvolution *SE,
- const DataLayout *DL, AssumptionCache *AC) {
+ AssumptionCache *AC) {
bool Changed = false;
// Worklist maintains our depth-first queue of loops in this nest to process.
@@ -732,7 +736,7 @@ bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
while (!Worklist.empty())
Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI,
- SE, PP, DL, AC);
+ SE, PP, AC);
return Changed;
}
@@ -750,7 +754,6 @@ namespace {
DominatorTree *DT;
LoopInfo *LI;
ScalarEvolution *SE;
- const DataLayout *DL;
AssumptionCache *AC;
bool runOnFunction(Function &F) override;
@@ -798,12 +801,11 @@ bool LoopSimplify::runOnFunction(Function &F) {
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = getAnalysisIfAvailable<ScalarEvolution>();
- DL = &F.getParent()->getDataLayout();
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
// Simplify each loop nest in the function.
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
- Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, DL, AC);
+ Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, AC);
return Changed;
}
diff --git a/llvm/lib/Transforms/Utils/LoopUnroll.cpp b/llvm/lib/Transforms/Utils/LoopUnroll.cpp
index 67e564187d7..f4cabc3fc2e 100644
--- a/llvm/lib/Transforms/Utils/LoopUnroll.cpp
+++ b/llvm/lib/Transforms/Utils/LoopUnroll.cpp
@@ -500,6 +500,7 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
// At this point, the code is well formed. We now do a quick sweep over the
// inserted code, doing constant propagation and dead code elimination as we
// go.
+ const DataLayout &DL = Header->getModule()->getDataLayout();
const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
@@ -508,7 +509,7 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
if (isInstructionTriviallyDead(Inst))
(*BB)->getInstList().erase(Inst);
- else if (Value *V = SimplifyInstruction(Inst))
+ else if (Value *V = SimplifyInstruction(Inst, DL))
if (LI->replacementPreservesLCSSAForm(Inst, V)) {
Inst->replaceAllUsesWith(V);
(*BB)->getInstList().erase(Inst);
@@ -531,8 +532,7 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
if (!OuterL && !CompletelyUnroll)
OuterL = L;
if (OuterL) {
- const DataLayout &DL = F->getParent()->getDataLayout();
- simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, &DL, AC);
+ simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, AC);
// LCSSA must be performed on the outermost affected loop. The unrolled
// loop's last loop latch is guaranteed to be in the outermost loop after
diff --git a/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp b/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
index 91b688cc8e1..381d8fc33ea 100644
--- a/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
+++ b/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
@@ -31,6 +31,7 @@
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
@@ -339,10 +340,11 @@ bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI);
BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI);
BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
+ const DataLayout &DL = Header->getModule()->getDataLayout();
// Compute the number of extra iterations required, which is:
// extra iterations = run-time trip count % (loop unroll factor + 1)
- SCEVExpander Expander(*SE, "loop-unroll");
+ SCEVExpander Expander(*SE, DL, "loop-unroll");
Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
PreHeaderBR);
Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
diff --git a/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
index dabadb794d4..4b34b193773 100644
--- a/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
+++ b/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
@@ -45,6 +45,7 @@
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <queue>
@@ -667,6 +668,8 @@ void PromoteMem2Reg::run() {
A->eraseFromParent();
}
+ const DataLayout &DL = F.getParent()->getDataLayout();
+
// Remove alloca's dbg.declare instrinsics from the function.
for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
@@ -691,7 +694,7 @@ void PromoteMem2Reg::run() {
PHINode *PN = I->second;
// If this PHI node merges one value and/or undefs, get the value.
- if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, &DT, AC)) {
+ if (Value *V = SimplifyInstruction(PN, DL, nullptr, &DT, AC)) {
if (AST && PN->getType()->isPointerTy())
AST->deleteValue(PN);
PN->replaceAllUsesWith(V);
diff --git a/llvm/lib/Transforms/Utils/SSAUpdater.cpp b/llvm/lib/Transforms/Utils/SSAUpdater.cpp
index c057b064934..955ce30ed3d 100644
--- a/llvm/lib/Transforms/Utils/SSAUpdater.cpp
+++ b/llvm/lib/Transforms/Utils/SSAUpdater.cpp
@@ -19,6 +19,7 @@
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
@@ -155,7 +156,8 @@ Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
// See if the PHI node can be merged to a single value. This can happen in
// loop cases when we get a PHI of itself and one other value.
- if (Value *V = SimplifyInstruction(InsertedPHI)) {
+ if (Value *V =
+ SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
InsertedPHI->eraseFromParent();
return V;
}
diff --git a/llvm/lib/Transforms/Utils/SimplifyCFG.cpp b/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
index 3248a83636c..896da1d3a6b 100644
--- a/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
+++ b/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
@@ -110,8 +110,8 @@ namespace {
class SimplifyCFGOpt {
const TargetTransformInfo &TTI;
+ const DataLayout &DL;
unsigned BonusInstThreshold;
- const DataLayout *const DL;
AssumptionCache *AC;
Value *isValueEqualityComparison(TerminatorInst *TI);
BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
@@ -131,9 +131,9 @@ class SimplifyCFGOpt {
bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
public:
- SimplifyCFGOpt(const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
- const DataLayout *DL, AssumptionCache *AC)
- : TTI(TTI), BonusInstThreshold(BonusInstThreshold), DL(DL), AC(AC) {}
+ SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
+ unsigned BonusInstThreshold, AssumptionCache *AC)
+ : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {}
bool run(BasicBlock *BB);
};
}
@@ -223,9 +223,9 @@ static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
/// given instruction, which is assumed to be safe to speculate. TCC_Free means
/// cheap, TCC_Basic means less cheap, and TCC_Expensive means prohibitively
/// expensive.
-static unsigned ComputeSpeculationCost(const User *I, const DataLayout *DL,
+static unsigned ComputeSpeculationCost(const User *I,
const TargetTransformInfo &TTI) {
- assert(isSafeToSpeculativelyExecute(I, DL) &&
+ assert(isSafeToSpeculativelyExecute(I) &&
"Instruction is not safe to speculatively execute!");
return TTI.getUserCost(I);
}
@@ -249,7 +249,6 @@ static unsigned ComputeSpeculationCost(const User *I, const DataLayout *DL,
static bool DominatesMergePoint(Value *V, BasicBlock *BB,
SmallPtrSetImpl<Instruction*> *AggressiveInsts,
unsigned &CostRemaining,
- const DataLayout *DL,
const TargetTransformInfo &TTI) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I) {
@@ -283,10 +282,10 @@ static bool DominatesMergePoint(Value *V, BasicBlock *BB,
// Okay, it looks like the instruction IS in the "condition". Check to
// see if it's a cheap instruction to unconditionally compute, and if it
// only uses stuff defined outside of the condition. If so, hoist it out.
- if (!isSafeToSpeculativelyExecute(I, DL))
+ if (!isSafeToSpeculativelyExecute(I))
return false;
- unsigned Cost = ComputeSpeculationCost(I, DL, TTI);
+ unsigned Cost = ComputeSpeculationCost(I, TTI);
if (Cost > CostRemaining)
return false;
@@ -296,7 +295,7 @@ static bool DominatesMergePoint(Value *V, BasicBlock *BB,
// Okay, we can only really hoist these out if their operands do
// not take us over the cost threshold.
for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
- if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, DL, TTI))
+ if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI))
return false;
// Okay, it's safe to do this! Remember this instruction.
AggressiveInsts->insert(I);
@@ -305,15 +304,15 @@ static bool DominatesMergePoint(Value *V, BasicBlock *BB,
/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
/// and PointerNullValue. Return NULL if value is not a constant int.
-static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) {
+static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
// Normal constant int.
ConstantInt *CI = dyn_cast<ConstantInt>(V);
- if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy())
+ if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
return CI;
// This is some kind of pointer constant. Turn it into a pointer-sized
// ConstantInt if possible.
- IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType()));
+ IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
// Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
if (isa<ConstantPointerNull>(V))
@@ -346,16 +345,16 @@ namespace {
/// while for a chain of '&&' it will build the set elements that make the test
/// fail.
struct ConstantComparesGatherer {
-
+ const DataLayout &DL;
Value *CompValue; /// Value found for the switch comparison
Value *Extra; /// Extra clause to be checked before the switch
SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
/// Construct and compute the result for the comparison instruction Cond
- ConstantComparesGatherer(Instruction *Cond, const DataLayout *DL)
- : CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
- gather(Cond, DL);
+ ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
+ : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
+ gather(Cond);
}
/// Prevent copy
@@ -380,7 +379,7 @@ private:
/// against is placed in CompValue.
/// If CompValue is already set, the function is expected to fail if a match
/// is found but the value compared to is different.
- bool matchInstruction(Instruction *I, const DataLayout *DL, bool isEQ) {
+ bool matchInstruction(Instruction *I, bool isEQ) {
// If this is an icmp against a constant, handle this as one of the cases.
ICmpInst *ICI;
ConstantInt *C;
@@ -462,7 +461,7 @@ private:
/// the value being compared, and stick the list constants into the Vals
/// vector.
/// One "Extra" case is allowed to differ from the other.
- void gather(Value *V, const DataLayout *DL) {
+ void gather(Value *V) {
Instruction *I = dyn_cast<Instruction>(V);
bool isEQ = (I->getOpcode() == Instruction::Or);
@@ -484,7 +483,7 @@ private:
}
// Try to match the current instruction
- if (matchInstruction(I, DL, isEQ))
+ if (matchInstruction(I, isEQ))
// Match succeed, continue the loop
continue;
}
@@ -532,15 +531,16 @@ Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
CV = SI->getCondition();
} else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
if (BI->isConditional() && BI->getCondition()->hasOneUse())
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
CV = ICI->getOperand(0);
+ }
// Unwrap any lossless ptrtoint cast.
- if (DL && CV) {
+ if (CV) {
if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
Value *Ptr = PTII->getPointerOperand();
- if (PTII->getType() == DL->getIntPtrType(Ptr->getType()))
+ if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
CV = Ptr;
}
}
@@ -981,8 +981,7 @@ bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
Builder.SetInsertPoint(PTI);
// Convert pointer to int before we switch.
if (CV->getType()->isPointerTy()) {
- assert(DL && "Cannot switch on pointer without DataLayout");
- CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()),
+ CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
"magicptr");
}
@@ -1053,7 +1052,7 @@ static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
/// BB2, hoist any common code in the two blocks up into the branch block. The
/// caller of this function guarantees that BI's block dominates BB1 and BB2.
-static bool HoistThenElseCodeToIf(BranchInst *BI, const DataLayout *DL,
+static bool HoistThenElseCodeToIf(BranchInst *BI,
const TargetTransformInfo &TTI) {
// This does very trivial matching, with limited scanning, to find identical
// instructions in the two blocks. In particular, we don't want to get into
@@ -1145,9 +1144,9 @@ HoistTerminator:
passingValueIsAlwaysUndefined(BB2V, PN))
return Changed;
- if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V, DL))
+ if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
return Changed;
- if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V, DL))
+ if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
return Changed;
}
}
@@ -1467,7 +1466,6 @@ static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
///
/// \returns true if the conditional block is removed.
static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
- const DataLayout *DL,
const TargetTransformInfo &TTI) {
// Be conservative for now. FP select instruction can often be expensive.
Value *BrCond = BI->getCondition();
@@ -1511,14 +1509,13 @@ static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
return false;
// Don't hoist the instruction if it's unsafe or expensive.
- if (!isSafeToSpeculativelyExecute(I, DL) &&
- !(HoistCondStores &&
- (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB,
- EndBB))))
+ if (!isSafeToSpeculativelyExecute(I) &&
+ !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
+ I, BB, ThenBB, EndBB))))
return false;
if (!SpeculatedStoreValue &&
- ComputeSpeculationCost(I, DL, TTI) > PHINodeFoldingThreshold *
- TargetTransformInfo::TCC_Basic)
+ ComputeSpeculationCost(I, TTI) >
+ PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
return false;
// Store the store speculation candidate.
@@ -1574,11 +1571,11 @@ static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
if (!OrigCE && !ThenCE)
continue; // Known safe and cheap.
- if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE, DL)) ||
- (OrigCE && !isSafeToSpeculativelyExecute(OrigCE, DL)))
+ if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
+ (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
return false;
- unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, DL, TTI) : 0;
- unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, DL, TTI) : 0;
+ unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
+ unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
unsigned MaxCost = 2 * PHINodeFoldingThreshold *
TargetTransformInfo::TCC_Basic;
if (OrigCost + ThenCost > MaxCost)
@@ -1688,7 +1685,7 @@ static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
/// that is defined in the same block as the branch and if any PHI entries are
/// constants, thread edges corresponding to that entry to be branches to their
/// ultimate destination.
-static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) {
+static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
BasicBlock *BB = BI->getParent();
PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
// NOTE: we currently cannot transform this case if the PHI node is used
@@ -1786,8 +1783,8 @@ static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) {
/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
/// PHI node, see if we can eliminate it.
-static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL,
- const TargetTransformInfo &TTI) {
+static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
+ const DataLayout &DL) {
// Ok, this is a two entry PHI node. Check to see if this is a simple "if
// statement", which has a very simple dominance structure. Basically, we
// are trying to find the condition that is being branched on, which
@@ -1830,9 +1827,9 @@ static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL,
}
if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
- MaxCostVal0, DL, TTI) ||
+ MaxCostVal0, TTI) ||
!DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
- MaxCostVal1, DL, TTI))
+ MaxCostVal1, TTI))
return false;
}
@@ -2052,8 +2049,7 @@ static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
/// predecessor branches to us and one of our successors, fold the block into
/// the predecessor and use logical operations to pick the right destination.
-bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL,
- unsigned BonusInstThreshold) {
+bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
BasicBlock *BB = BI->getParent();
Instruction *Cond = nullptr;
@@ -2109,7 +2105,7 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL,
// Ignore dbg intrinsics.
if (isa<DbgInfoIntrinsic>(I))
continue;
- if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I, DL))
+ if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I))
return false;
// I has only one use and can be executed unconditionally.
Instruction *User = dyn_cast<Instruction>(I->user_back());
@@ -2702,8 +2698,9 @@ static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
/// We prefer to split the edge to 'end' so that there is a true/false entry to
/// the PHI, merging the third icmp into the switch.
static bool TryToSimplifyUncondBranchWithICmpInIt(
- ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
- unsigned BonusInstThreshold, const DataLayout *DL, AssumptionCache *AC) {
+ ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
+ const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
+ AssumptionCache *AC) {
BasicBlock *BB = ICI->getParent();
// If the block has any PHIs in it or the icmp has multiple uses, it is too
@@ -2736,7 +2733,7 @@ static bool TryToSimplifyUncondBranchWithICmpInIt(
ICI->eraseFromParent();
}
// BB is now empty, so it is likely to simplify away.
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
}
// Ok, the block is reachable from the default dest. If the constant we're
@@ -2752,7 +2749,7 @@ static bool TryToSimplifyUncondBranchWithICmpInIt(
ICI->replaceAllUsesWith(V);
ICI->eraseFromParent();
// BB is now empty, so it is likely to simplify away.
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
}
// The use of the icmp has to be in the 'end' block, by the only PHI node in
@@ -2808,8 +2805,8 @@ static bool TryToSimplifyUncondBranchWithICmpInIt(
/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
/// Check to see if it is branching on an or/and chain of icmp instructions, and
/// fold it into a switch instruction if so.
-static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL,
- IRBuilder<> &Builder) {
+static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
+ const DataLayout &DL) {
Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
if (!Cond) return false;
@@ -2884,10 +2881,8 @@ static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL,
Builder.SetInsertPoint(BI);
// Convert pointer to int before we switch.
if (CompVal->getType()->isPointerTy()) {
- assert(DL && "Cannot switch on pointer without DataLayout");
- CompVal = Builder.CreatePtrToInt(CompVal,
- DL->getIntPtrType(CompVal->getType()),
- "magicptr");
+ CompVal = Builder.CreatePtrToInt(
+ CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
}
// Create the new switch instruction now.
@@ -3246,8 +3241,8 @@ static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
/// and use it to remove dead cases.
-static bool EliminateDeadSwitchCases(SwitchInst *SI, const DataLayout *DL,
- AssumptionCache *AC) {
+static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
+ const DataLayout &DL) {
Value *Cond = SI->getCondition();
unsigned Bits = Cond->getType()->getIntegerBitWidth();
APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
@@ -3398,9 +3393,8 @@ static Constant *LookupConstant(Value *V,
/// constant or can be replaced by constants from the ConstantPool. Returns the
/// resulting constant on success, 0 otherwise.
static Constant *
-ConstantFold(Instruction *I,
- const SmallDenseMap<Value *, Constant *> &ConstantPool,
- const DataLayout *DL) {
+ConstantFold(Instruction *I, const DataLayout &DL,
+ const SmallDenseMap<Value *, Constant *> &ConstantPool) {
if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
if (!A)
@@ -3420,9 +3414,10 @@ ConstantFold(Instruction *I,
return nullptr;
}
- if (CmpInst *Cmp = dyn_cast<CmpInst>(I))
+ if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
COps[1], DL);
+ }
return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
}
@@ -3432,12 +3427,10 @@ ConstantFold(Instruction *I,
/// destionations CaseDest corresponding to value CaseVal (0 for the default
/// case), of a switch instruction SI.
static bool
-GetCaseResults(SwitchInst *SI,
- ConstantInt *CaseVal,
- BasicBlock *CaseDest,
+GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
BasicBlock **CommonDest,
- SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res,
- const DataLayout *DL) {
+ SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
+ const DataLayout &DL) {
// The block from which we enter the common destination.
BasicBlock *Pred = SI->getParent();
@@ -3456,7 +3449,7 @@ GetCaseResults(SwitchInst *SI,
} else if (isa<DbgInfoIntrinsic>(I)) {
// Skip debug intrinsic.
continue;
- } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) {
+ } else if (Constant *C = ConstantFold(I, DL, ConstantPool)) {
// Instruction is side-effect free and constant.
// If the instruction has uses outside this block or a phi node slot for
@@ -3527,11 +3520,11 @@ static void MapCaseToResult(ConstantInt *CaseVal,
// results for the PHI node of the common destination block for a switch
// instruction. Returns false if multiple PHI nodes have been found or if
// there is not a common destination block for the switch.
-static bool InitializeUniqueCases(
- SwitchInst *SI, const DataLayout *DL, PHINode *&PHI,
- BasicBlock *&CommonDest,
- SwitchCaseResultVectorTy &UniqueResults,
- Constant *&DefaultResult) {
+static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
+ BasicBlock *&CommonDest,
+ SwitchCaseResultVectorTy &UniqueResults,
+ Constant *&DefaultResult,
+ const DataLayout &DL) {
for (auto &I : SI->cases()) {
ConstantInt *CaseVal = I.getCaseValue();
@@ -3638,15 +3631,15 @@ static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
/// phi nodes in a common successor block with only two different
/// constant values, replace the switch with select.
static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
- const DataLayout *DL, AssumptionCache *AC) {
+ AssumptionCache *AC, const DataLayout &DL) {
Value *const Cond = SI->getCondition();
PHINode *PHI = nullptr;
BasicBlock *CommonDest = nullptr;
Constant *DefaultResult;
SwitchCaseResultVectorTy UniqueResults;
// Collect all the cases that will deliver the same value from the switch.
- if (!InitializeUniqueCases(SI, DL, PHI, CommonDest, UniqueResults,
- DefaultResult))
+ if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
+ DL))
return false;
// Selects choose between maximum two values.
if (UniqueResults.size() != 2)
@@ -3673,12 +3666,10 @@ namespace {
/// SwitchLookupTable - Create a lookup table to use as a switch replacement
/// with the contents of Values, using DefaultValue to fill any holes in the
/// table.
- SwitchLookupTable(Module &M,
- uint64_t TableSize,
- ConstantInt *Offset,
- const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
- Constant *DefaultValue,
- const DataLayout *DL);
+ SwitchLookupTable(
+ Module &M, uint64_t TableSize, ConstantInt *Offset,
+ const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
+ Constant *DefaultValue, const DataLayout &DL);
/// BuildLookup - Build instructions with Builder to retrieve the value at
/// the position given by Index in the lookup table.
@@ -3686,8 +3677,7 @@ namespace {
/// WouldFitInRegister - Return true if a table with TableSize elements of
/// type ElementType would fit in a target-legal register.
- static bool WouldFitInRegister(const DataLayout *DL,
- uint64_t TableSize,
+ static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
const Type *ElementType);
private:
@@ -3729,12 +3719,10 @@ namespace {
};
}
-SwitchLookupTable::SwitchLookupTable(Module &M,
- uint64_t TableSize,
- ConstantInt *Offset,
- const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
- Constant *DefaultValue,
- const DataLayout *DL)
+SwitchLookupTable::SwitchLookupTable(
+ Module &M, uint64_t TableSize, ConstantInt *Offset,
+ const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
+ Constant *DefaultValue, const DataLayout &DL)
: SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
assert(Values.size() && "Can't build lookup table without values!");
@@ -3904,11 +3892,9 @@ Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
llvm_unreachable("Unknown lookup table kind!");
}
-bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL,
+bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
uint64_t TableSize,
const Type *ElementType) {
- if (!DL)
- return false;
const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
if (!IT)
return false;
@@ -3918,17 +3904,16 @@ bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL,
// Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
if (TableSize >= UINT_MAX/IT->getBitWidth())
return false;
- return DL->fitsInLegalInteger(TableSize * IT->getBitWidth());
+ return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
}
/// ShouldBuildLookupTable - Determine whether a lookup table should be built
/// for this switch, based on the number of cases, size of the table and the
/// types of the results.
-static bool ShouldBuildLookupTable(SwitchInst *SI,
- uint64_t TableSize,
- const TargetTransformInfo &TTI,
- const DataLayout *DL,
- const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
+static bool
+ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
+ const TargetTransformInfo &TTI, const DataLayout &DL,
+ const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
return false; // TableSize overflowed, or mul below might overflow.
@@ -4051,10 +4036,9 @@ static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
/// SwitchToLookupTable - If the switch is only used to initialize one or more
/// phi nodes in a common successor block with different constant values,
/// replace the switch with lookup tables.
-static bool SwitchToLookupTable(SwitchInst *SI,
- IRBuilder<> &Builder,
- const TargetTransformInfo &TTI,
- const DataLayout* DL) {
+static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
+ const DataLayout &DL,
+ const TargetTransformInfo &TTI) {
assert(SI->getNumCases() > 1 && "Degenerate switch?");
// Only build lookup table when we have a target that supports it.
@@ -4125,14 +4109,14 @@ static bool SwitchToLookupTable(SwitchInst *SI,
// or a bitmask that fits in a register.
SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
- &CommonDest, DefaultResultsList, DL);
+ &CommonDest, DefaultResultsList, DL);
bool NeedMask = (TableHasHoles && !HasDefaultResults);
if (NeedMask) {
// As an extra penalty for the validity test we require more cases.
if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
return false;
- if (!(DL && DL->fitsInLegalInteger(TableSize)))
+ if (!DL.fitsInLegalInteger(TableSize))
return false;
}
@@ -4290,12 +4274,12 @@ bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
// see if that predecessor totally determines the outcome of this switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
Value *Cond = SI->getCondition();
if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
if (SimplifySwitchOnSelect(SI, Select))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
// If the block only contains the switch, see if we can fold the block
// away into any preds.
@@ -4305,25 +4289,25 @@ bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
++BBI;
if (SI == &*BBI)
if (FoldValueComparisonIntoPredecessors(SI, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
}
// Try to transform the switch into an icmp and a branch.
if (TurnSwitchRangeIntoICmp(SI, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
// Remove unreachable cases.
- if (EliminateDeadSwitchCases(SI, DL, AC))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ if (EliminateDeadSwitchCases(SI, AC, DL))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- if (SwitchToSelect(SI, Builder, DL, AC))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ if (SwitchToSelect(SI, Builder, AC, DL))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
if (ForwardSwitchConditionToPHI(SI))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
- if (SwitchToLookupTable(SI, Builder, TTI, DL))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ if (SwitchToLookupTable(SI, Builder, DL, TTI))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
return false;
}
@@ -4360,7 +4344,7 @@ bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
if (SimplifyIndirectBrOnSelect(IBI, SI))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
}
return Changed;
}
@@ -4384,8 +4368,8 @@ bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
for (++I; isa<DbgInfoIntrinsic>(I); ++I)
;
if (I->isTerminator() &&
- TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI,
- BonusInstThreshold, DL, AC))
+ TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
+ BonusInstThreshold, AC))
return true;
}
@@ -4393,8 +4377,8 @@ bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
// branches to us and our successor, fold the comparison into the
// predecessor and use logical operations to update the incoming value
// for PHI nodes in common successor.
- if (FoldBranchToCommonDest(BI, DL, BonusInstThreshold))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ if (FoldBranchToCommonDest(BI, BonusInstThreshold))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
return false;
}
@@ -4409,7 +4393,7 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
// switch.
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
// This block must be empty, except for the setcond inst, if it exists.
// Ignore dbg intrinsics.
@@ -4419,26 +4403,26 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
++I;
if (&*I == BI) {
if (FoldValueComparisonIntoPredecessors(BI, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
} else if (&*I == cast<Instruction>(BI->getCondition())){
++I;
// Ignore dbg intrinsics.
while (isa<DbgInfoIntrinsic>(I))
++I;
if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
}
}
// Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
- if (SimplifyBranchOnICmpChain(BI, DL, Builder))
+ if (SimplifyBranchOnICmpChain(BI, Builder, DL))
return true;
// If this basic block is ONLY a compare and a branch, and if a predecessor
// branches to us and one of our successors, fold the comparison into the
// predecessor and use logical operations to pick the right destination.
- if (FoldBranchToCommonDest(BI, DL, BonusInstThreshold))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ if (FoldBranchToCommonDest(BI, BonusInstThreshold))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
// We have a conditional branch to two blocks that are only reachable
// from BI. We know that the condbr dominates the two blocks, so see if
@@ -4446,16 +4430,16 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
// can hoist it up to the branching block.
if (BI->getSuccessor(0)->getSinglePredecessor()) {
if (BI->getSuccessor(1)->getSinglePredecessor()) {
- if (HoistThenElseCodeToIf(BI, DL, TTI))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ if (HoistThenElseCodeToIf(BI, TTI))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
} else {
// If Successor #1 has multiple preds, we may be able to conditionally
// execute Successor #0 if it branches to Successor #1.
TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
if (Succ0TI->getNumSuccessors() == 1 &&
Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
- if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), DL, TTI))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
}
} else if (BI->getSuccessor(1)->getSinglePredecessor()) {
// If Successor #0 has multiple preds, we may be able to conditionally
@@ -4463,8 +4447,8 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
if (Succ1TI->getNumSuccessors() == 1 &&
Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
- if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), DL, TTI))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
}
// If this is a branch on a phi node in the current block, thread control
@@ -4472,14 +4456,14 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
if (PN->getParent() == BI->getParent())
if (FoldCondBranchOnPHI(BI, DL))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
// Scan predecessor blocks for conditional branches.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI != BI && PBI->isConditional())
if (SimplifyCondBranchToCondBranch(PBI, BI))
- return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true;
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
return false;
}
@@ -4591,7 +4575,7 @@ bool SimplifyCFGOpt::run(BasicBlock *BB) {
// eliminate it, do so now.
if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
if (PN->getNumIncomingValues() == 2)
- Changed |= FoldTwoEntryPHINode(PN, DL, TTI);
+ Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
Builder.SetInsertPoint(BB->getTerminator());
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
@@ -4623,7 +4607,7 @@ bool SimplifyCFGOpt::run(BasicBlock *BB) {
/// of the CFG. It returns true if a modification was made.
///
bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
- unsigned BonusInstThreshold, const DataLayout *DL,
- AssumptionCache *AC) {
- return SimplifyCFGOpt(TTI, BonusInstThreshold, DL, AC).run(BB);
+ unsigned BonusInstThreshold, AssumptionCache *AC) {
+ return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
+ BonusInstThreshold, AC).run(BB);
}
diff --git a/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp b/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp
index 1b4104a4fba..c499c87b1f0 100644
--- a/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp
+++ b/llvm/lib/Transforms/Utils/SimplifyInstructions.cpp
@@ -72,7 +72,7 @@ namespace {
continue;
// Don't waste time simplifying unused instructions.
if (!I->use_empty())
- if (Value *V = SimplifyInstruction(I, &DL, TLI, DT, AC)) {
+ if (Value *V = SimplifyInstruction(I, DL, TLI, DT, AC)) {
// Mark all uses for resimplification next time round the loop.
for (User *U : I->users())
Next->insert(cast<Instruction>(U));
diff --git a/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp b/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
index fb1d83fc333..a30514e4d9e 100644
--- a/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
+++ b/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
@@ -120,12 +120,12 @@ static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
/// string/memory copying library function \p Func.
/// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset.
/// Their fortified (_chk) counterparts are also accepted.
-static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func,
- const DataLayout *DL) {
+static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func) {
+ const DataLayout &DL = F->getParent()->getDataLayout();
FunctionType *FT = F->getFunctionType();
LLVMContext &Context = F->getContext();
Type *PCharTy = Type::getInt8PtrTy(Context);
- Type *SizeTTy = DL ? DL->getIntPtrType(Context) : nullptr;
+ Type *SizeTTy = DL.getIntPtrType(Context);
unsigned NumParams = FT->getNumParams();
// All string libfuncs return the same type as the first parameter.
@@ -208,10 +208,6 @@ Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
if (Len == 0)
return Dst;
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
return emitStrLenMemCpy(Src, Dst, Len, B);
}
@@ -230,9 +226,9 @@ Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
// We have enough information to now generate the memcpy call to do the
// concatenation for us. Make a memcpy to copy the nul byte with align = 1.
- B.CreateMemCpy(
- CpyDst, Src,
- ConstantInt::get(DL->getIntPtrType(Src->getContext()), Len + 1), 1);
+ B.CreateMemCpy(CpyDst, Src,
+ ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
+ 1);
return Dst;
}
@@ -269,10 +265,6 @@ Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
if (SrcLen == 0 || Len == 0)
return Dst;
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
// We don't optimize this case
if (Len < SrcLen)
return nullptr;
@@ -297,24 +289,20 @@ Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
// of the input string and turn this into memchr.
ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
if (!CharC) {
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
uint64_t Len = GetStringLength(SrcStr);
if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
return nullptr;
- return EmitMemChr(
- SrcStr, CI->getArgOperand(1), // include nul.
- ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), B, DL, TLI);
+ return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
+ B, DL, TLI);
}
// Otherwise, the character is a constant, see if the first argument is
// a string literal. If so, we can constant fold.
StringRef Str;
if (!getConstantStringInfo(SrcStr, Str)) {
- if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
+ if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
return nullptr;
}
@@ -350,8 +338,8 @@ Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
StringRef Str;
if (!getConstantStringInfo(SrcStr, Str)) {
// strrchr(s, 0) -> strchr(s, 0)
- if (DL && CharC->isZero())
- return EmitStrChr(SrcStr, '\0', B, DL, TLI);
+ if (CharC->isZero())
+ return EmitStrChr(SrcStr, '\0', B, TLI);
return nullptr;
}
@@ -398,12 +386,8 @@ Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
uint64_t Len1 = GetStringLength(Str1P);
uint64_t Len2 = GetStringLength(Str2P);
if (Len1 && Len2) {
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
return EmitMemCmp(Str1P, Str2P,
- ConstantInt::get(DL->getIntPtrType(CI->getContext()),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()),
std::min(Len1, Len2)),
B, DL, TLI);
}
@@ -435,7 +419,7 @@ Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
if (Length == 0) // strncmp(x,y,0) -> 0
return ConstantInt::get(CI->getType(), 0);
- if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
+ if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
StringRef Str1, Str2;
@@ -462,17 +446,13 @@ Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy))
return nullptr;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
if (Dst == Src) // strcpy(x,x) -> x
return Src;
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
// See if we can get the length of the input string.
uint64_t Len = GetStringLength(Src);
if (Len == 0)
@@ -481,7 +461,7 @@ Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
// We have enough information to now generate the memcpy call to do the
// copy for us. Make a memcpy to copy the nul byte with align = 1.
B.CreateMemCpy(Dst, Src,
- ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), 1);
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
return Dst;
}
@@ -490,11 +470,7 @@ Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
// Verify the "stpcpy" function prototype.
FunctionType *FT = Callee->getFunctionType();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy, DL))
- return nullptr;
-
- // These optimizations require DataLayout.
- if (!DL)
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy))
return nullptr;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
@@ -509,9 +485,9 @@ Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
return nullptr;
Type *PT = FT->getParamType(0);
- Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
+ Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
Value *DstEnd =
- B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1));
+ B.CreateGEP(Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
// We have enough information to now generate the memcpy call to do the
// copy for us. Make a memcpy to copy the nul byte with align = 1.
@@ -523,7 +499,7 @@ Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
FunctionType *FT = Callee->getFunctionType();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy))
return nullptr;
Value *Dst = CI->getArgOperand(0);
@@ -551,17 +527,13 @@ Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
if (Len == 0)
return Dst; // strncpy(x, y, 0) -> x
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
// Let strncpy handle the zero padding
if (Len > SrcLen + 1)
return nullptr;
Type *PT = FT->getParamType(0);
// strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
- B.CreateMemCpy(Dst, Src, ConstantInt::get(DL->getIntPtrType(PT), Len), 1);
+ B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
return Dst;
}
@@ -629,8 +601,8 @@ Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
}
// strpbrk(s, "a") -> strchr(s, 'a')
- if (DL && HasS2 && S2.size() == 1)
- return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
+ if (HasS2 && S2.size() == 1)
+ return EmitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
return nullptr;
}
@@ -706,7 +678,7 @@ Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
}
// strcspn(s, "") -> strlen(s)
- if (DL && HasS2 && S2.empty())
+ if (HasS2 && S2.empty())
return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
return nullptr;
@@ -725,7 +697,7 @@ Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
// fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
- if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
+ if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
if (!StrLen)
return nullptr;
@@ -767,7 +739,7 @@ Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
// fold strstr(x, "y") -> strchr(x, 'y').
if (HasStr2 && ToFindStr.size() == 1) {
- Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI);
+ Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
}
return nullptr;
@@ -827,11 +799,8 @@ Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy))
return nullptr;
// memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
@@ -842,11 +811,8 @@ Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove))
return nullptr;
// memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
@@ -857,11 +823,8 @@ Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset))
return nullptr;
// memset(p, v, n) -> llvm.memset(p, v, n, 1)
@@ -1521,7 +1484,7 @@ Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
// printf("x") -> putchar('x'), even for '%'.
if (FormatStr.size() == 1) {
- Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
+ Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TLI);
if (CI->use_empty() || !Res)
return Res;
return B.CreateIntCast(Res, CI->getType(), true);
@@ -1534,7 +1497,7 @@ Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
// pass to be run after this pass, to merge duplicate strings.
FormatStr = FormatStr.drop_back();
Value *GV = B.CreateGlobalString(FormatStr, "str");
- Value *NewCI = EmitPutS(GV, B, DL, TLI);
+ Value *NewCI = EmitPutS(GV, B, TLI);
return (CI->use_empty() || !NewCI)
? NewCI
: ConstantInt::get(CI->getType(), FormatStr.size() + 1);
@@ -1544,7 +1507,7 @@ Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
// printf("%c", chr) --> putchar(chr)
if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
CI->getArgOperand(1)->getType()->isIntegerTy()) {
- Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
+ Value *Res = EmitPutChar(CI->getArgOperand(1), B, TLI);
if (CI->use_empty() || !Res)
return Res;
@@ -1554,7 +1517,7 @@ Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
// printf("%s\n", str) --> puts(str)
if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
CI->getArgOperand(1)->getType()->isPointerTy()) {
- return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
+ return EmitPutS(CI->getArgOperand(1), B, TLI);
}
return nullptr;
}
@@ -1600,16 +1563,11 @@ Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
if (FormatStr[i] == '%')
return nullptr; // we found a format specifier, bail out.
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
// sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
- B.CreateMemCpy(
- CI->getArgOperand(0), CI->getArgOperand(1),
- ConstantInt::get(DL->getIntPtrType(CI->getContext()),
- FormatStr.size() + 1),
- 1); // Copy the null byte.
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()),
+ FormatStr.size() + 1),
+ 1); // Copy the null byte.
return ConstantInt::get(CI->getType(), FormatStr.size());
}
@@ -1634,10 +1592,6 @@ Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
}
if (FormatStr[1] == 's') {
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
// sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
if (!CI->getArgOperand(2)->getType()->isPointerTy())
return nullptr;
@@ -1702,13 +1656,9 @@ Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
return nullptr; // We found a format specifier.
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
return EmitFWrite(
CI->getArgOperand(1),
- ConstantInt::get(DL->getIntPtrType(CI->getContext()), FormatStr.size()),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
CI->getArgOperand(0), B, DL, TLI);
}
@@ -1723,14 +1673,14 @@ Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
// fprintf(F, "%c", chr) --> fputc(chr, F)
if (!CI->getArgOperand(2)->getType()->isIntegerTy())
return nullptr;
- return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
+ return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
}
if (FormatStr[1] == 's') {
// fprintf(F, "%s", str) --> fputs(str, F)
if (!CI->getArgOperand(2)->getType()->isPointerTy())
return nullptr;
- return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
+ return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
}
return nullptr;
}
@@ -1790,7 +1740,7 @@ Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
// This optimisation is only valid, if the return value is unused.
if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
- Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
+ Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TLI);
return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
}
@@ -1802,10 +1752,6 @@ Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
- // These optimizations require DataLayout.
- if (!DL)
- return nullptr;
-
// Require two pointers. Also, we can't optimize if return value is used.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
@@ -1820,7 +1766,7 @@ Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
// Known to have no uses (see above).
return EmitFWrite(
CI->getArgOperand(0),
- ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len - 1),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
CI->getArgOperand(1), B, DL, TLI);
}
@@ -1839,7 +1785,7 @@ Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
if (Str.empty() && CI->use_empty()) {
// puts("") -> putchar('\n')
- Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
+ Value *Res = EmitPutChar(B.getInt32('\n'), B, TLI);
if (CI->use_empty() || !Res)
return Res;
return B.CreateIntCast(Res, CI->getType(), true);
@@ -2089,9 +2035,9 @@ Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
}
LibCallSimplifier::LibCallSimplifier(
- const DataLayout *DL, const TargetLibraryInfo *TLI,
+ const DataLayout &DL, const TargetLibraryInfo *TLI,
function_ref<void(Instruction *, Value *)> Replacer)
- : FortifiedSimplifier(DL, TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
+ : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
Replacer(Replacer) {}
void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
@@ -2187,7 +2133,7 @@ bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk))
return nullptr;
if (isFortifiedCallFoldable(CI, 3, 2, false)) {
@@ -2201,7 +2147,7 @@ Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &
Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk))
return nullptr;
if (isFortifiedCallFoldable(CI, 3, 2, false)) {
@@ -2215,7 +2161,7 @@ Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<>
Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk))
return nullptr;
if (isFortifiedCallFoldable(CI, 3, 2, false)) {
@@ -2231,8 +2177,9 @@ Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
LibFunc::Func Func) {
Function *Callee = CI->getCalledFunction();
StringRef Name = Callee->getName();
+ const DataLayout &DL = CI->getModule()->getDataLayout();
- if (!checkStringCopyLibFuncSignature(Callee, Func, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, Func))
return nullptr;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
@@ -2250,7 +2197,7 @@ Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
// TODO: It might be nice to get a maximum length out of the possible
// string lengths for varying.
if (isFortifiedCallFoldable(CI, 2, 1, true)) {
- Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
+ Value *Ret = EmitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
return Ret;
} else if (!OnlyLowerUnknownSize) {
// Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
@@ -2258,11 +2205,7 @@ Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
if (Len == 0)
return nullptr;
- // This optimization requires DataLayout.
- if (!DL)
- return nullptr;
-
- Type *SizeTTy = DL->getIntPtrType(CI->getContext());
+ Type *SizeTTy = DL.getIntPtrType(CI->getContext());
Value *LenV = ConstantInt::get(SizeTTy, Len);
Value *Ret = EmitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
// If the function was an __stpcpy_chk, and we were able to fold it into
@@ -2280,12 +2223,11 @@ Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
Function *Callee = CI->getCalledFunction();
StringRef Name = Callee->getName();
- if (!checkStringCopyLibFuncSignature(Callee, Func, DL))
+ if (!checkStringCopyLibFuncSignature(Callee, Func))
return nullptr;
if (isFortifiedCallFoldable(CI, 3, 2, false)) {
- Value *Ret =
- EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), B, DL, TLI, Name.substr(2, 7));
+ Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
return Ret;
}
return nullptr;
@@ -2328,8 +2270,6 @@ Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
return nullptr;
}
-FortifiedLibCallSimplifier::
-FortifiedLibCallSimplifier(const DataLayout *DL, const TargetLibraryInfo *TLI,
- bool OnlyLowerUnknownSize)
- : DL(DL), TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {
-}
+FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
+ const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
+ : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
diff --git a/llvm/lib/Transforms/Vectorize/BBVectorize.cpp b/llvm/lib/Transforms/Vectorize/BBVectorize.cpp
index c16e4e089d7..29fb01f1b2e 100644
--- a/llvm/lib/Transforms/Vectorize/BBVectorize.cpp
+++ b/llvm/lib/Transforms/Vectorize/BBVectorize.cpp
@@ -207,7 +207,6 @@ namespace {
AA = &P->getAnalysis<AliasAnalysis>();
DT = &P->getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = &P->getAnalysis<ScalarEvolution>();
- DL = &F.getParent()->getDataLayout();
TTI = IgnoreTargetInfo
? nullptr
: &P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
@@ -222,7 +221,6 @@ namespace {
AliasAnalysis *AA;
DominatorTree *DT;
ScalarEvolution *SE;
- const DataLayout *DL;
const TargetTransformInfo *TTI;
// FIXME: const correct?
@@ -442,7 +440,6 @@ namespace {
AA = &getAnalysis<AliasAnalysis>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = &getAnalysis<ScalarEvolution>();
- DL = &BB.getModule()->getDataLayout();
TTI = IgnoreTargetInfo
? nullptr
: &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
@@ -641,13 +638,13 @@ namespace {
dyn_cast<SCEVConstant>(OffsetSCEV)) {
ConstantInt *IntOff = ConstOffSCEV->getValue();
int64_t Offset = IntOff->getSExtValue();
-
+ const DataLayout &DL = I->getModule()->getDataLayout();
Type *VTy = IPtr->getType()->getPointerElementType();
- int64_t VTyTSS = (int64_t) DL->getTypeStoreSize(VTy);
+ int64_t VTyTSS = (int64_t)DL.getTypeStoreSize(VTy);
Type *VTy2 = JPtr->getType()->getPointerElementType();
if (VTy != VTy2 && Offset < 0) {
- int64_t VTy2TSS = (int64_t) DL->getTypeStoreSize(VTy2);
+ int64_t VTy2TSS = (int64_t)DL.getTypeStoreSize(VTy2);
OffsetInElmts = Offset/VTy2TSS;
return (std::abs(Offset) % VTy2TSS) == 0;
}
@@ -845,7 +842,7 @@ namespace {
// It is important to cleanup here so that future iterations of this
// function have less work to do.
- (void) SimplifyInstructionsInBlock(&BB, DL, AA->getTargetLibraryInfo());
+ (void)SimplifyInstructionsInBlock(&BB, AA->getTargetLibraryInfo());
return true;
}
@@ -899,10 +896,6 @@ namespace {
return false;
}
- // We can't vectorize memory operations without target data
- if (!DL && IsSimpleLoadStore)
- return false;
-
Type *T1, *T2;
getInstructionTypes(I, T1, T2);
@@ -937,9 +930,8 @@ namespace {
if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
return false;
- if ((!Config.VectorizePointers || !DL) &&
- (T1->getScalarType()->isPointerTy() ||
- T2->getScalarType()->isPointerTy()))
+ if (!Config.VectorizePointers && (T1->getScalarType()->isPointerTy() ||
+ T2->getScalarType()->isPointerTy()))
return false;
if (!TTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
@@ -1000,8 +992,8 @@ namespace {
// An aligned load or store is possible only if the instruction
// with the lower offset has an alignment suitable for the
// vector type.
-
- unsigned VecAlignment = DL->getPrefTypeAlignment(VType);
+ const DataLayout &DL = I->getModule()->getDataLayout();
+ unsigned VecAlignment = DL.getPrefTypeAlignment(VType);
if (BottomAlignment < VecAlignment)
return false;
}
diff --git a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
index d22b469046f..18a456f611a 100644
--- a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -244,13 +244,12 @@ static Type* ToVectorTy(Type *Scalar, unsigned VF) {
class InnerLoopVectorizer {
public:
InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
- DominatorTree *DT, const DataLayout *DL,
- const TargetLibraryInfo *TLI, unsigned VecWidth,
- unsigned UnrollFactor)
- : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
- VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()),
- Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
- Legal(nullptr), AddedSafetyChecks(false) {}
+ DominatorTree *DT, const TargetLibraryInfo *TLI,
+ unsigned VecWidth, unsigned UnrollFactor)
+ : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), TLI(TLI), VF(VecWidth),
+ UF(UnrollFactor), Builder(SE->getContext()), Induction(nullptr),
+ OldInduction(nullptr), WidenMap(UnrollFactor), Legal(nullptr),
+ AddedSafetyChecks(false) {}
// Perform the actual loop widening (vectorization).
void vectorize(LoopVectorizationLegality *L) {
@@ -403,8 +402,6 @@ protected:
DominatorTree *DT;
/// Alias Analysis.
AliasAnalysis *AA;
- /// Data Layout.
- const DataLayout *DL;
/// Target Library Info.
const TargetLibraryInfo *TLI;
@@ -456,9 +453,9 @@ protected:
class InnerLoopUnroller : public InnerLoopVectorizer {
public:
InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
- DominatorTree *DT, const DataLayout *DL,
- const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
- InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
+ DominatorTree *DT, const TargetLibraryInfo *TLI,
+ unsigned UnrollFactor)
+ : InnerLoopVectorizer(OrigLoop, SE, LI, DT, TLI, 1, UnrollFactor) {}
private:
void scalarizeInstruction(Instruction *Instr,
@@ -560,14 +557,13 @@ static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *F
/// induction variable and the different reduction variables.
class LoopVectorizationLegality {
public:
- LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
- DominatorTree *DT, TargetLibraryInfo *TLI,
- AliasAnalysis *AA, Function *F,
- const TargetTransformInfo *TTI,
+ LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
+ TargetLibraryInfo *TLI, AliasAnalysis *AA,
+ Function *F, const TargetTransformInfo *TTI,
LoopAccessAnalysis *LAA)
- : NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
- TLI(TLI), TheFunction(F), TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr),
- Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false) {}
+ : NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F),
+ TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), Induction(nullptr),
+ WidestIndTy(nullptr), HasFunNoNaNAttr(false) {}
/// This enum represents the kinds of reductions that we support.
enum ReductionKind {
@@ -859,8 +855,6 @@ private:
Loop *TheLoop;
/// Scev analysis.
ScalarEvolution *SE;
- /// DataLayout analysis.
- const DataLayout *DL;
/// Target Library Info.
TargetLibraryInfo *TLI;
/// Parent function
@@ -919,10 +913,9 @@ public:
LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
LoopVectorizationLegality *Legal,
const TargetTransformInfo &TTI,
- const DataLayout *DL, const TargetLibraryInfo *TLI,
- AssumptionCache *AC, const Function *F,
- const LoopVectorizeHints *Hints)
- : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI),
+ const TargetLibraryInfo *TLI, AssumptionCache *AC,
+ const Function *F, const LoopVectorizeHints *Hints)
+ : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI),
TheFunction(F), Hints(Hints) {
CodeMetrics::collectEphemeralValues(L, AC, EphValues);
}
@@ -1000,8 +993,6 @@ private:
LoopVectorizationLegality *Legal;
/// Vector target information.
const TargetTransformInfo &TTI;
- /// Target data layout information.
- const DataLayout *DL;
/// Target Library Info.
const TargetLibraryInfo *TLI;
const Function *TheFunction;
@@ -1266,7 +1257,6 @@ struct LoopVectorize : public FunctionPass {
}
ScalarEvolution *SE;
- const DataLayout *DL;
LoopInfo *LI;
TargetTransformInfo *TTI;
DominatorTree *DT;
@@ -1282,7 +1272,6 @@ struct LoopVectorize : public FunctionPass {
bool runOnFunction(Function &F) override {
SE = &getAnalysis<ScalarEvolution>();
- DL = &F.getParent()->getDataLayout();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
@@ -1303,12 +1292,6 @@ struct LoopVectorize : public FunctionPass {
if (!TTI->getNumberOfRegisters(true))
return false;
- if (!DL) {
- DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName()
- << ": Missing data layout\n");
- return false;
- }
-
// Build up a worklist of inner-loops to vectorize. This is necessary as
// the act of vectorizing or partially unrolling a loop creates new loops
// and can invalidate iterators across the loops.
@@ -1436,7 +1419,7 @@ struct LoopVectorize : public FunctionPass {
}
// Check if it is legal to vectorize the loop.
- LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI, LAA);
+ LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA);
if (!LVL.canVectorize()) {
DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
emitMissedWarning(F, L, Hints);
@@ -1444,8 +1427,7 @@ struct LoopVectorize : public FunctionPass {
}
// Use the cost model.
- LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AC, F,
- &Hints);
+ LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, TLI, AC, F, &Hints);
// Check the function attributes to find out if this function should be
// optimized for size.
@@ -1509,11 +1491,11 @@ struct LoopVectorize : public FunctionPass {
// We decided not to vectorize, but we may want to unroll.
- InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
+ InnerLoopUnroller Unroller(L, SE, LI, DT, TLI, UF);
Unroller.vectorize(&LVL);
} else {
// If we decided that it is *legal* to vectorize the loop then do it.
- InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
+ InnerLoopVectorizer LB(L, SE, LI, DT, TLI, VF.Width, UF);
LB.vectorize(&LVL);
++LoopsVectorized;
@@ -1612,10 +1594,10 @@ Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx,
/// \brief Find the operand of the GEP that should be checked for consecutive
/// stores. This ignores trailing indices that have no effect on the final
/// pointer.
-static unsigned getGEPInductionOperand(const DataLayout *DL,
- const GetElementPtrInst *Gep) {
+static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) {
+ const DataLayout &DL = Gep->getModule()->getDataLayout();
unsigned LastOperand = Gep->getNumOperands() - 1;
- unsigned GEPAllocSize = DL->getTypeAllocSize(
+ unsigned GEPAllocSize = DL.getTypeAllocSize(
cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
// Walk backwards and try to peel off zeros.
@@ -1626,7 +1608,7 @@ static unsigned getGEPInductionOperand(const DataLayout *DL,
// If it's a type with the same allocation size as the result of the GEP we
// can peel off the zero index.
- if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
+ if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize)
break;
--LastOperand;
}
@@ -1672,7 +1654,7 @@ int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
return II.getConsecutiveDirection();
}
- unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
+ unsigned InductionOperand = getGEPInductionOperand(Gep);
// Check that all of the gep indices are uniform except for our induction
// operand.
@@ -1765,11 +1747,12 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
// An alignment of 0 means target abi alignment. We need to use the scalar's
// target abi alignment in such a case.
+ const DataLayout &DL = Instr->getModule()->getDataLayout();
if (!Alignment)
- Alignment = DL->getABITypeAlignment(ScalarDataTy);
+ Alignment = DL.getABITypeAlignment(ScalarDataTy);
unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
- unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
- unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
+ unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy);
+ unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF;
if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
!Legal->isMaskRequired(SI))
@@ -1810,7 +1793,7 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
// The last index does not have to be the induction. It can be
// consecutive and be a function of the index. For example A[I+1];
unsigned NumOperands = Gep->getNumOperands();
- unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
+ unsigned InductionOperand = getGEPInductionOperand(Gep);
// Create the new GEP with the new induction variable.
GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
@@ -2131,9 +2114,11 @@ void InnerLoopVectorizer::createEmptyLoop() {
ExitCount = SE->getAddExpr(BackedgeTakeCount,
SE->getConstant(BackedgeTakeCount->getType(), 1));
+ const DataLayout &DL = OldBasicBlock->getModule()->getDataLayout();
+
// Expand the trip count and place the new instructions in the preheader.
// Notice that the pre-header does not change, only the loop body.
- SCEVExpander Exp(*SE, "induction");
+ SCEVExpander Exp(*SE, DL, "induction");
// We need to test whether the backedge-taken count is uint##_max. Adding one
// to it will cause overflow and an incorrect loop trip count in the vector
@@ -3515,6 +3500,7 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// Look for the attribute signaling the absence of NaNs.
Function &F = *Header->getParent();
+ const DataLayout &DL = F.getParent()->getDataLayout();
if (F.hasFnAttribute("no-nans-fp-math"))
HasFunNoNaNAttr =
F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
@@ -3570,9 +3556,9 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
if (IK_NoInduction != IK) {
// Get the widest type.
if (!WidestIndTy)
- WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
+ WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
else
- WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
+ WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
// Int inductions are special because we only allow one IV.
if (IK == IK_IntInduction && StepValue->isOne()) {
@@ -3717,13 +3703,12 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
///\brief Remove GEPs whose indices but the last one are loop invariant and
/// return the induction operand of the gep pointer.
-static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE,
- const DataLayout *DL, Loop *Lp) {
+static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
if (!GEP)
return Ptr;
- unsigned InductionOperand = getGEPInductionOperand(DL, GEP);
+ unsigned InductionOperand = getGEPInductionOperand(GEP);
// Check that all of the gep indices are uniform except for our induction
// operand.
@@ -3752,8 +3737,7 @@ static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
///\brief Get the stride of a pointer access in a loop.
/// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a
/// pointer to the Value, or null otherwise.
-static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
- const DataLayout *DL, Loop *Lp) {
+static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
if (!PtrTy || PtrTy->isAggregateType())
return nullptr;
@@ -3766,7 +3750,7 @@ static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
// The size of the pointer access.
int64_t PtrAccessSize = 1;
- Ptr = stripGetElementPtr(Ptr, SE, DL, Lp);
+ Ptr = stripGetElementPtr(Ptr, SE, Lp);
const SCEV *V = SE->getSCEV(Ptr);
if (Ptr != OrigPtr)
@@ -3785,7 +3769,8 @@ static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
// Strip off the size of access multiplication if we are still analyzing the
// pointer.
if (OrigPtr == Ptr) {
- DL->getTypeAllocSize(PtrTy->getElementType());
+ const DataLayout &DL = Lp->getHeader()->getModule()->getDataLayout();
+ DL.getTypeAllocSize(PtrTy->getElementType());
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
if (M->getOperand(0)->getSCEVType() != scConstant)
return nullptr;
@@ -3837,7 +3822,7 @@ void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) {
else
return;
- Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop);
+ Value *Stride = getStrideFromPointer(Ptr, SE, TheLoop);
if (!Stride)
return;
@@ -4215,7 +4200,8 @@ LoopVectorizationLegality::isInductionVariable(PHINode *Phi,
if (!PointerElementType->isSized())
return IK_NoInduction;
- int64_t Size = static_cast<int64_t>(DL->getTypeAllocSize(PointerElementType));
+ const DataLayout &DL = Phi->getModule()->getDataLayout();
+ int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
int64_t CVSize = CV->getSExtValue();
if (CVSize % Size)
return IK_NoInduction;
@@ -4427,6 +4413,7 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
unsigned LoopVectorizationCostModel::getWidestType() {
unsigned MaxWidth = 8;
+ const DataLayout &DL = TheFunction->getParent()->getDataLayout();
// For each block.
for (Loop::block_iterator bb = TheLoop->block_begin(),
@@ -4461,7 +4448,7 @@ unsigned LoopVectorizationCostModel::getWidestType() {
continue;
MaxWidth = std::max(MaxWidth,
- (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
+ (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
}
}
@@ -4958,8 +4945,9 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
// Scalarized loads/stores.
int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
bool Reverse = ConsecutiveStride < 0;
- unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
- unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
+ const DataLayout &DL = I->getModule()->getDataLayout();
+ unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy);
+ unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF;
if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
bool IsComplexComputation =
isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
diff --git a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp b/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
index 4302070fb7c..f1be1a58bbd 100644
--- a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
+++ b/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
@@ -342,11 +342,11 @@ public:
typedef SmallPtrSet<Value *, 16> ValueSet;
typedef SmallVector<StoreInst *, 8> StoreList;
- BoUpSLP(Function *Func, ScalarEvolution *Se, const DataLayout *Dl,
- TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AliasAnalysis *Aa,
- LoopInfo *Li, DominatorTree *Dt, AssumptionCache *AC)
+ BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
+ TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
+ DominatorTree *Dt, AssumptionCache *AC)
: NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
- SE(Se), DL(Dl), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
+ SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
Builder(Se->getContext()) {
CodeMetrics::collectEphemeralValues(F, AC, EphValues);
}
@@ -383,7 +383,7 @@ public:
}
/// \returns true if the memory operations A and B are consecutive.
- bool isConsecutiveAccess(Value *A, Value *B);
+ bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL);
/// \brief Perform LICM and CSE on the newly generated gather sequences.
void optimizeGatherSequence();
@@ -877,7 +877,6 @@ private:
// Analysis and block reference.
Function *F;
ScalarEvolution *SE;
- const DataLayout *DL;
TargetTransformInfo *TTI;
TargetLibraryInfo *TLI;
AliasAnalysis *AA;
@@ -1130,8 +1129,9 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
return;
}
- if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
- if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0])) {
+ const DataLayout &DL = F->getParent()->getDataLayout();
+ if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
+ if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], DL)) {
++NumLoadsWantToChangeOrder;
}
BS.cancelScheduling(VL);
@@ -1300,9 +1300,10 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
return;
}
case Instruction::Store: {
+ const DataLayout &DL = F->getParent()->getDataLayout();
// Check if the stores are consecutive or of we need to swizzle them.
for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
- if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
+ if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
BS.cancelScheduling(VL);
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
@@ -1789,7 +1790,7 @@ unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
return -1;
}
-bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
+bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL) {
Value *PtrA = getPointerOperand(A);
Value *PtrB = getPointerOperand(B);
unsigned ASA = getAddressSpaceOperand(A);
@@ -1803,13 +1804,13 @@ bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
return false;
- unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA);
+ unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
- APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty));
+ APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
- PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA);
- PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB);
+ PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
+ PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
APInt OffsetDelta = OffsetB - OffsetA;
@@ -1842,6 +1843,7 @@ bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
SmallVectorImpl<Value *> &Left,
SmallVectorImpl<Value *> &Right) {
+ const DataLayout &DL = F->getParent()->getDataLayout();
// Push left and right operands of binary operation into Left and Right
for (unsigned i = 0, e = VL.size(); i < e; ++i) {
@@ -1856,10 +1858,10 @@ void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
Instruction *VL1 = cast<Instruction>(VL[j]);
Instruction *VL2 = cast<Instruction>(VL[j + 1]);
- if (isConsecutiveAccess(L, L1) && VL1->isCommutative()) {
+ if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
std::swap(Left[j], Right[j]);
continue;
- } else if (isConsecutiveAccess(L, L1) && VL2->isCommutative()) {
+ } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
std::swap(Left[j + 1], Right[j + 1]);
continue;
}
@@ -1870,10 +1872,10 @@ void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
Instruction *VL1 = cast<Instruction>(VL[j]);
Instruction *VL2 = cast<Instruction>(VL[j + 1]);
- if (isConsecutiveAccess(L, L1) && VL1->isCommutative()) {
+ if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
std::swap(Left[j], Right[j]);
continue;
- } else if (isConsecutiveAccess(L, L1) && VL2->isCommutative()) {
+ } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
std::swap(Left[j + 1], Right[j + 1]);
continue;
}
@@ -1983,6 +1985,8 @@ void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
Right = OrigRight;
}
+ const DataLayout &DL = F->getParent()->getDataLayout();
+
// Finally check if we can get longer vectorizable chain by reordering
// without breaking the good operand order detected above.
// E.g. If we have something like-
@@ -2001,7 +2005,7 @@ void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
for (unsigned j = 0; j < VL.size() - 1; ++j) {
if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
- if (isConsecutiveAccess(L, L1)) {
+ if (isConsecutiveAccess(L, L1, DL)) {
std::swap(Left[j + 1], Right[j + 1]);
continue;
}
@@ -2009,7 +2013,7 @@ void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
}
if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
- if (isConsecutiveAccess(L, L1)) {
+ if (isConsecutiveAccess(L, L1, DL)) {
std::swap(Left[j + 1], Right[j + 1]);
continue;
}
@@ -2105,6 +2109,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
return Gather(E->Scalars, VecTy);
}
+ const DataLayout &DL = F->getParent()->getDataLayout();
unsigned Opcode = getSameOpcode(E->Scalars);
switch (Opcode) {
@@ -2301,8 +2306,9 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
unsigned Alignment = LI->getAlignment();
LI = Builder.CreateLoad(VecPtr);
- if (!Alignment)
- Alignment = DL->getABITypeAlignment(ScalarLoadTy);
+ if (!Alignment) {
+ Alignment = DL.getABITypeAlignment(ScalarLoadTy);
+ }
LI->setAlignment(Alignment);
E->VectorizedValue = LI;
++NumVectorInstructions;
@@ -2331,8 +2337,9 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
ExternalUses.push_back(
ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
- if (!Alignment)
- Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
+ if (!Alignment) {
+ Alignment = DL.getABITypeAlignment(SI->getValueOperand()->getType());
+ }
S->setAlignment(Alignment);
E->VectorizedValue = S;
++NumVectorInstructions;
@@ -3051,7 +3058,6 @@ struct SLPVectorizer : public FunctionPass {
}
ScalarEvolution *SE;
- const DataLayout *DL;
TargetTransformInfo *TTI;
TargetLibraryInfo *TLI;
AliasAnalysis *AA;
@@ -3064,7 +3070,6 @@ struct SLPVectorizer : public FunctionPass {
return false;
SE = &getAnalysis<ScalarEvolution>();
- DL = &F.getParent()->getDataLayout();
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
TLI = TLIP ? &TLIP->getTLI() : nullptr;
@@ -3081,11 +3086,6 @@ struct SLPVectorizer : public FunctionPass {
if (!TTI->getNumberOfRegisters(true))
return false;
- // Must have DataLayout. We can't require it because some tests run w/o
- // triple.
- if (!DL)
- return false;
-
// Don't vectorize when the attribute NoImplicitFloat is used.
if (F.hasFnAttribute(Attribute::NoImplicitFloat))
return false;
@@ -3094,7 +3094,7 @@ struct SLPVectorizer : public FunctionPass {
// Use the bottom up slp vectorizer to construct chains that start with
// store instructions.
- BoUpSLP R(&F, SE, DL, TTI, TLI, AA, LI, DT, AC);
+ BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC);
// A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
// delete instructions.
@@ -3190,7 +3190,8 @@ bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
<< "\n");
Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
- unsigned Sz = DL->getTypeSizeInBits(StoreTy);
+ auto &DL = cast<StoreInst>(Chain[0])->getModule()->getDataLayout();
+ unsigned Sz = DL.getTypeSizeInBits(StoreTy);
unsigned VF = MinVecRegSize / Sz;
if (!isPowerOf2_32(Sz) || VF < 2)
@@ -3233,8 +3234,8 @@ bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
int costThreshold, BoUpSLP &R) {
- SetVector<Value *> Heads, Tails;
- SmallDenseMap<Value *, Value *> ConsecutiveChain;
+ SetVector<StoreInst *> Heads, Tails;
+ SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
// We may run into multiple chains that merge into a single chain. We mark the
// stores that we vectorized so that we don't visit the same store twice.
@@ -3247,8 +3248,8 @@ bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
for (unsigned j = 0; j < e; ++j) {
if (i == j)
continue;
-
- if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
+ const DataLayout &DL = Stores[i]->getModule()->getDataLayout();
+ if (R.isConsecutiveAccess(Stores[i], Stores[j], DL)) {
Tails.insert(Stores[j]);
Heads.insert(Stores[i]);
ConsecutiveChain[Stores[i]] = Stores[j];
@@ -3257,7 +3258,7 @@ bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
}
// For stores that start but don't end a link in the chain:
- for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
+ for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
it != e; ++it) {
if (Tails.count(*it))
continue;
@@ -3265,7 +3266,7 @@ bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
// We found a store instr that starts a chain. Now follow the chain and try
// to vectorize it.
BoUpSLP::ValueList Operands;
- Value *I = *it;
+ StoreInst *I = *it;
// Collect the chain into a list.
while (Tails.count(I) || Heads.count(I)) {
if (VectorizedStores.count(I))
@@ -3290,6 +3291,7 @@ bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
unsigned count = 0;
StoreRefs.clear();
+ const DataLayout &DL = BB->getModule()->getDataLayout();
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
StoreInst *SI = dyn_cast<StoreInst>(it);
if (!SI)
@@ -3335,9 +3337,10 @@ bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
return false;
unsigned Opcode0 = I0->getOpcode();
+ const DataLayout &DL = I0->getModule()->getDataLayout();
Type *Ty0 = I0->getType();
- unsigned Sz = DL->getTypeSizeInBits(Ty0);
+ unsigned Sz = DL.getTypeSizeInBits(Ty0);
unsigned VF = MinVecRegSize / Sz;
for (int i = 0, e = VL.size(); i < e; ++i) {
@@ -3539,8 +3542,7 @@ public:
ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
/// \brief Try to find a reduction tree.
- bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
- const DataLayout *DL) {
+ bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) {
assert((!Phi ||
std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
"Thi phi needs to use the binary operator");
@@ -3565,9 +3567,10 @@ public:
if (!isValidElementType(Ty))
return false;
+ const DataLayout &DL = B->getModule()->getDataLayout();
ReductionOpcode = B->getOpcode();
ReducedValueOpcode = 0;
- ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
+ ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty);
ReductionRoot = B;
ReductionPHI = Phi;
@@ -3877,8 +3880,7 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
// Try to match and vectorize a horizontal reduction.
HorizontalReduction HorRdx;
- if (ShouldVectorizeHor &&
- HorRdx.matchAssociativeReduction(P, BI, DL) &&
+ if (ShouldVectorizeHor && HorRdx.matchAssociativeReduction(P, BI) &&
HorRdx.tryToReduce(R, TTI)) {
Changed = true;
it = BB->begin();
@@ -3908,7 +3910,7 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
if (BinaryOperator *BinOp =
dyn_cast<BinaryOperator>(SI->getValueOperand())) {
HorizontalReduction HorRdx;
- if (((HorRdx.matchAssociativeReduction(nullptr, BinOp, DL) &&
+ if (((HorRdx.matchAssociativeReduction(nullptr, BinOp) &&
HorRdx.tryToReduce(R, TTI)) ||
tryToVectorize(BinOp, R))) {
Changed = true;
OpenPOWER on IntegriCloud