summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms')
-rw-r--r--llvm/lib/Transforms/Scalar/EarlyCSE.cpp4
-rw-r--r--llvm/lib/Transforms/Scalar/GVNHoist.cpp4
-rw-r--r--llvm/lib/Transforms/Scalar/NewGVN.cpp2
-rw-r--r--llvm/lib/Transforms/Utils/CMakeLists.txt2
-rw-r--r--llvm/lib/Transforms/Utils/MemorySSA.cpp2059
-rw-r--r--llvm/lib/Transforms/Utils/MemorySSAUpdater.cpp494
-rw-r--r--llvm/lib/Transforms/Utils/Utils.cpp2
7 files changed, 5 insertions, 2562 deletions
diff --git a/llvm/lib/Transforms/Scalar/EarlyCSE.cpp b/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
index 50141e4def9..04479b6e49a 100644
--- a/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
+++ b/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
@@ -19,6 +19,8 @@
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
@@ -32,8 +34,6 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/MemorySSA.h"
-#include "llvm/Transforms/Utils/MemorySSAUpdater.h"
#include <deque>
using namespace llvm;
using namespace llvm::PatternMatch;
diff --git a/llvm/lib/Transforms/Scalar/GVNHoist.cpp b/llvm/lib/Transforms/Scalar/GVNHoist.cpp
index 2797869851d..6adfe130d14 100644
--- a/llvm/lib/Transforms/Scalar/GVNHoist.cpp
+++ b/llvm/lib/Transforms/Scalar/GVNHoist.cpp
@@ -45,11 +45,11 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/MemorySSA.h"
-#include "llvm/Transforms/Utils/MemorySSAUpdater.h"
using namespace llvm;
diff --git a/llvm/lib/Transforms/Scalar/NewGVN.cpp b/llvm/lib/Transforms/Scalar/NewGVN.cpp
index 1e6692482bd..0b882a0a5c4 100644
--- a/llvm/lib/Transforms/Scalar/NewGVN.cpp
+++ b/llvm/lib/Transforms/Scalar/NewGVN.cpp
@@ -81,7 +81,7 @@
#include "llvm/Transforms/Scalar/GVNExpression.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/MemorySSA.h"
+#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Transforms/Utils/PredicateInfo.h"
#include "llvm/Transforms/Utils/VNCoercion.h"
#include <numeric>
diff --git a/llvm/lib/Transforms/Utils/CMakeLists.txt b/llvm/lib/Transforms/Utils/CMakeLists.txt
index 5bc322edbed..7a21c03da22 100644
--- a/llvm/lib/Transforms/Utils/CMakeLists.txt
+++ b/llvm/lib/Transforms/Utils/CMakeLists.txt
@@ -34,8 +34,6 @@ add_llvm_library(LLVMTransformUtils
LowerMemIntrinsics.cpp
LowerSwitch.cpp
Mem2Reg.cpp
- MemorySSA.cpp
- MemorySSAUpdater.cpp
MetaRenamer.cpp
ModuleUtils.cpp
NameAnonGlobals.cpp
diff --git a/llvm/lib/Transforms/Utils/MemorySSA.cpp b/llvm/lib/Transforms/Utils/MemorySSA.cpp
deleted file mode 100644
index b1e9603f533..00000000000
--- a/llvm/lib/Transforms/Utils/MemorySSA.cpp
+++ /dev/null
@@ -1,2059 +0,0 @@
-//===-- MemorySSA.cpp - Memory SSA Builder---------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------===//
-//
-// This file implements the MemorySSA class.
-//
-//===----------------------------------------------------------------===//
-#include "llvm/Transforms/Utils/MemorySSA.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/GraphTraits.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallBitVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/CFG.h"
-#include "llvm/Analysis/GlobalsModRef.h"
-#include "llvm/Analysis/IteratedDominanceFrontier.h"
-#include "llvm/Analysis/MemoryLocation.h"
-#include "llvm/Analysis/PHITransAddr.h"
-#include "llvm/IR/AssemblyAnnotationWriter.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/FormattedStream.h"
-#include "llvm/Transforms/Scalar.h"
-#include <algorithm>
-
-#define DEBUG_TYPE "memoryssa"
-using namespace llvm;
-INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
- true)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
-INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
- true)
-
-INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
- "Memory SSA Printer", false, false)
-INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
-INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
- "Memory SSA Printer", false, false)
-
-static cl::opt<unsigned> MaxCheckLimit(
- "memssa-check-limit", cl::Hidden, cl::init(100),
- cl::desc("The maximum number of stores/phis MemorySSA"
- "will consider trying to walk past (default = 100)"));
-
-static cl::opt<bool>
- VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden,
- cl::desc("Verify MemorySSA in legacy printer pass."));
-
-namespace llvm {
-/// \brief An assembly annotator class to print Memory SSA information in
-/// comments.
-class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
- friend class MemorySSA;
- const MemorySSA *MSSA;
-
-public:
- MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
-
- virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
- formatted_raw_ostream &OS) {
- if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
- OS << "; " << *MA << "\n";
- }
-
- virtual void emitInstructionAnnot(const Instruction *I,
- formatted_raw_ostream &OS) {
- if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
- OS << "; " << *MA << "\n";
- }
-};
-}
-
-namespace {
-/// Our current alias analysis API differentiates heavily between calls and
-/// non-calls, and functions called on one usually assert on the other.
-/// This class encapsulates the distinction to simplify other code that wants
-/// "Memory affecting instructions and related data" to use as a key.
-/// For example, this class is used as a densemap key in the use optimizer.
-class MemoryLocOrCall {
-public:
- MemoryLocOrCall() : IsCall(false) {}
- MemoryLocOrCall(MemoryUseOrDef *MUD)
- : MemoryLocOrCall(MUD->getMemoryInst()) {}
- MemoryLocOrCall(const MemoryUseOrDef *MUD)
- : MemoryLocOrCall(MUD->getMemoryInst()) {}
-
- MemoryLocOrCall(Instruction *Inst) {
- if (ImmutableCallSite(Inst)) {
- IsCall = true;
- CS = ImmutableCallSite(Inst);
- } else {
- IsCall = false;
- // There is no such thing as a memorylocation for a fence inst, and it is
- // unique in that regard.
- if (!isa<FenceInst>(Inst))
- Loc = MemoryLocation::get(Inst);
- }
- }
-
- explicit MemoryLocOrCall(const MemoryLocation &Loc)
- : IsCall(false), Loc(Loc) {}
-
- bool IsCall;
- ImmutableCallSite getCS() const {
- assert(IsCall);
- return CS;
- }
- MemoryLocation getLoc() const {
- assert(!IsCall);
- return Loc;
- }
-
- bool operator==(const MemoryLocOrCall &Other) const {
- if (IsCall != Other.IsCall)
- return false;
-
- if (IsCall)
- return CS.getCalledValue() == Other.CS.getCalledValue();
- return Loc == Other.Loc;
- }
-
-private:
- union {
- ImmutableCallSite CS;
- MemoryLocation Loc;
- };
-};
-}
-
-namespace llvm {
-template <> struct DenseMapInfo<MemoryLocOrCall> {
- static inline MemoryLocOrCall getEmptyKey() {
- return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
- }
- static inline MemoryLocOrCall getTombstoneKey() {
- return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
- }
- static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
- if (MLOC.IsCall)
- return hash_combine(MLOC.IsCall,
- DenseMapInfo<const Value *>::getHashValue(
- MLOC.getCS().getCalledValue()));
- return hash_combine(
- MLOC.IsCall, DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
- }
- static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
- return LHS == RHS;
- }
-};
-
-enum class Reorderability { Always, IfNoAlias, Never };
-
-/// This does one-way checks to see if Use could theoretically be hoisted above
-/// MayClobber. This will not check the other way around.
-///
-/// This assumes that, for the purposes of MemorySSA, Use comes directly after
-/// MayClobber, with no potentially clobbering operations in between them.
-/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
-static Reorderability getLoadReorderability(const LoadInst *Use,
- const LoadInst *MayClobber) {
- bool VolatileUse = Use->isVolatile();
- bool VolatileClobber = MayClobber->isVolatile();
- // Volatile operations may never be reordered with other volatile operations.
- if (VolatileUse && VolatileClobber)
- return Reorderability::Never;
-
- // The lang ref allows reordering of volatile and non-volatile operations.
- // Whether an aliasing nonvolatile load and volatile load can be reordered,
- // though, is ambiguous. Because it may not be best to exploit this ambiguity,
- // we only allow volatile/non-volatile reordering if the volatile and
- // non-volatile operations don't alias.
- Reorderability Result = VolatileUse || VolatileClobber
- ? Reorderability::IfNoAlias
- : Reorderability::Always;
-
- // If a load is seq_cst, it cannot be moved above other loads. If its ordering
- // is weaker, it can be moved above other loads. We just need to be sure that
- // MayClobber isn't an acquire load, because loads can't be moved above
- // acquire loads.
- //
- // Note that this explicitly *does* allow the free reordering of monotonic (or
- // weaker) loads of the same address.
- bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
- bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
- AtomicOrdering::Acquire);
- if (SeqCstUse || MayClobberIsAcquire)
- return Reorderability::Never;
- return Result;
-}
-
-static bool instructionClobbersQuery(MemoryDef *MD,
- const MemoryLocation &UseLoc,
- const Instruction *UseInst,
- AliasAnalysis &AA) {
- Instruction *DefInst = MD->getMemoryInst();
- assert(DefInst && "Defining instruction not actually an instruction");
- ImmutableCallSite UseCS(UseInst);
-
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
- // These intrinsics will show up as affecting memory, but they are just
- // markers.
- switch (II->getIntrinsicID()) {
- case Intrinsic::lifetime_start:
- if (UseCS)
- return false;
- return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), UseLoc);
- case Intrinsic::lifetime_end:
- case Intrinsic::invariant_start:
- case Intrinsic::invariant_end:
- case Intrinsic::assume:
- return false;
- default:
- break;
- }
- }
-
- if (UseCS) {
- ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
- return I != MRI_NoModRef;
- }
-
- if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) {
- if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) {
- switch (getLoadReorderability(UseLoad, DefLoad)) {
- case Reorderability::Always:
- return false;
- case Reorderability::Never:
- return true;
- case Reorderability::IfNoAlias:
- return !AA.isNoAlias(UseLoc, MemoryLocation::get(DefLoad));
- }
- }
- }
-
- return AA.getModRefInfo(DefInst, UseLoc) & MRI_Mod;
-}
-
-static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU,
- const MemoryLocOrCall &UseMLOC,
- AliasAnalysis &AA) {
- // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
- // to exist while MemoryLocOrCall is pushed through places.
- if (UseMLOC.IsCall)
- return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
- AA);
- return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
- AA);
-}
-
-// Return true when MD may alias MU, return false otherwise.
-bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
- AliasAnalysis &AA) {
- return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA);
-}
-}
-
-namespace {
-struct UpwardsMemoryQuery {
- // True if our original query started off as a call
- bool IsCall;
- // The pointer location we started the query with. This will be empty if
- // IsCall is true.
- MemoryLocation StartingLoc;
- // This is the instruction we were querying about.
- const Instruction *Inst;
- // The MemoryAccess we actually got called with, used to test local domination
- const MemoryAccess *OriginalAccess;
-
- UpwardsMemoryQuery()
- : IsCall(false), Inst(nullptr), OriginalAccess(nullptr) {}
-
- UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
- : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
- if (!IsCall)
- StartingLoc = MemoryLocation::get(Inst);
- }
-};
-
-static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
- AliasAnalysis &AA) {
- Instruction *Inst = MD->getMemoryInst();
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- switch (II->getIntrinsicID()) {
- case Intrinsic::lifetime_end:
- return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
- default:
- return false;
- }
- }
- return false;
-}
-
-static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
- const Instruction *I) {
- // If the memory can't be changed, then loads of the memory can't be
- // clobbered.
- //
- // FIXME: We should handle invariant groups, as well. It's a bit harder,
- // because we need to pay close attention to invariant group barriers.
- return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
- AA.pointsToConstantMemory(cast<LoadInst>(I)->
- getPointerOperand()));
-}
-
-/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
-/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
-///
-/// This is meant to be as simple and self-contained as possible. Because it
-/// uses no cache, etc., it can be relatively expensive.
-///
-/// \param Start The MemoryAccess that we want to walk from.
-/// \param ClobberAt A clobber for Start.
-/// \param StartLoc The MemoryLocation for Start.
-/// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to.
-/// \param Query The UpwardsMemoryQuery we used for our search.
-/// \param AA The AliasAnalysis we used for our search.
-static void LLVM_ATTRIBUTE_UNUSED
-checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
- const MemoryLocation &StartLoc, const MemorySSA &MSSA,
- const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
- assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
-
- if (MSSA.isLiveOnEntryDef(Start)) {
- assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
- "liveOnEntry must clobber itself");
- return;
- }
-
- bool FoundClobber = false;
- DenseSet<MemoryAccessPair> VisitedPhis;
- SmallVector<MemoryAccessPair, 8> Worklist;
- Worklist.emplace_back(Start, StartLoc);
- // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
- // is found, complain.
- while (!Worklist.empty()) {
- MemoryAccessPair MAP = Worklist.pop_back_val();
- // All we care about is that nothing from Start to ClobberAt clobbers Start.
- // We learn nothing from revisiting nodes.
- if (!VisitedPhis.insert(MAP).second)
- continue;
-
- for (MemoryAccess *MA : def_chain(MAP.first)) {
- if (MA == ClobberAt) {
- if (auto *MD = dyn_cast<MemoryDef>(MA)) {
- // instructionClobbersQuery isn't essentially free, so don't use `|=`,
- // since it won't let us short-circuit.
- //
- // Also, note that this can't be hoisted out of the `Worklist` loop,
- // since MD may only act as a clobber for 1 of N MemoryLocations.
- FoundClobber =
- FoundClobber || MSSA.isLiveOnEntryDef(MD) ||
- instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
- }
- break;
- }
-
- // We should never hit liveOnEntry, unless it's the clobber.
- assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
-
- if (auto *MD = dyn_cast<MemoryDef>(MA)) {
- (void)MD;
- assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) &&
- "Found clobber before reaching ClobberAt!");
- continue;
- }
-
- assert(isa<MemoryPhi>(MA));
- Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
- }
- }
-
- // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
- // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
- assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
- "ClobberAt never acted as a clobber");
-}
-
-/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
-/// in one class.
-class ClobberWalker {
- /// Save a few bytes by using unsigned instead of size_t.
- using ListIndex = unsigned;
-
- /// Represents a span of contiguous MemoryDefs, potentially ending in a
- /// MemoryPhi.
- struct DefPath {
- MemoryLocation Loc;
- // Note that, because we always walk in reverse, Last will always dominate
- // First. Also note that First and Last are inclusive.
- MemoryAccess *First;
- MemoryAccess *Last;
- Optional<ListIndex> Previous;
-
- DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
- Optional<ListIndex> Previous)
- : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
-
- DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
- Optional<ListIndex> Previous)
- : DefPath(Loc, Init, Init, Previous) {}
- };
-
- const MemorySSA &MSSA;
- AliasAnalysis &AA;
- DominatorTree &DT;
- UpwardsMemoryQuery *Query;
-
- // Phi optimization bookkeeping
- SmallVector<DefPath, 32> Paths;
- DenseSet<ConstMemoryAccessPair> VisitedPhis;
-
- /// Find the nearest def or phi that `From` can legally be optimized to.
- const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
- assert(From->getNumOperands() && "Phi with no operands?");
-
- BasicBlock *BB = From->getBlock();
- MemoryAccess *Result = MSSA.getLiveOnEntryDef();
- DomTreeNode *Node = DT.getNode(BB);
- while ((Node = Node->getIDom())) {
- auto *Defs = MSSA.getBlockDefs(Node->getBlock());
- if (Defs)
- return &*Defs->rbegin();
- }
- return Result;
- }
-
- /// Result of calling walkToPhiOrClobber.
- struct UpwardsWalkResult {
- /// The "Result" of the walk. Either a clobber, the last thing we walked, or
- /// both.
- MemoryAccess *Result;
- bool IsKnownClobber;
- };
-
- /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
- /// This will update Desc.Last as it walks. It will (optionally) also stop at
- /// StopAt.
- ///
- /// This does not test for whether StopAt is a clobber
- UpwardsWalkResult
- walkToPhiOrClobber(DefPath &Desc,
- const MemoryAccess *StopAt = nullptr) const {
- assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
-
- for (MemoryAccess *Current : def_chain(Desc.Last)) {
- Desc.Last = Current;
- if (Current == StopAt)
- return {Current, false};
-
- if (auto *MD = dyn_cast<MemoryDef>(Current))
- if (MSSA.isLiveOnEntryDef(MD) ||
- instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA))
- return {MD, true};
- }
-
- assert(isa<MemoryPhi>(Desc.Last) &&
- "Ended at a non-clobber that's not a phi?");
- return {Desc.Last, false};
- }
-
- void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
- ListIndex PriorNode) {
- auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
- upward_defs_end());
- for (const MemoryAccessPair &P : UpwardDefs) {
- PausedSearches.push_back(Paths.size());
- Paths.emplace_back(P.second, P.first, PriorNode);
- }
- }
-
- /// Represents a search that terminated after finding a clobber. This clobber
- /// may or may not be present in the path of defs from LastNode..SearchStart,
- /// since it may have been retrieved from cache.
- struct TerminatedPath {
- MemoryAccess *Clobber;
- ListIndex LastNode;
- };
-
- /// Get an access that keeps us from optimizing to the given phi.
- ///
- /// PausedSearches is an array of indices into the Paths array. Its incoming
- /// value is the indices of searches that stopped at the last phi optimization
- /// target. It's left in an unspecified state.
- ///
- /// If this returns None, NewPaused is a vector of searches that terminated
- /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
- Optional<TerminatedPath>
- getBlockingAccess(const MemoryAccess *StopWhere,
- SmallVectorImpl<ListIndex> &PausedSearches,
- SmallVectorImpl<ListIndex> &NewPaused,
- SmallVectorImpl<TerminatedPath> &Terminated) {
- assert(!PausedSearches.empty() && "No searches to continue?");
-
- // BFS vs DFS really doesn't make a difference here, so just do a DFS with
- // PausedSearches as our stack.
- while (!PausedSearches.empty()) {
- ListIndex PathIndex = PausedSearches.pop_back_val();
- DefPath &Node = Paths[PathIndex];
-
- // If we've already visited this path with this MemoryLocation, we don't
- // need to do so again.
- //
- // NOTE: That we just drop these paths on the ground makes caching
- // behavior sporadic. e.g. given a diamond:
- // A
- // B C
- // D
- //
- // ...If we walk D, B, A, C, we'll only cache the result of phi
- // optimization for A, B, and D; C will be skipped because it dies here.
- // This arguably isn't the worst thing ever, since:
- // - We generally query things in a top-down order, so if we got below D
- // without needing cache entries for {C, MemLoc}, then chances are
- // that those cache entries would end up ultimately unused.
- // - We still cache things for A, so C only needs to walk up a bit.
- // If this behavior becomes problematic, we can fix without a ton of extra
- // work.
- if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
- continue;
-
- UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
- if (Res.IsKnownClobber) {
- assert(Res.Result != StopWhere);
- // If this wasn't a cache hit, we hit a clobber when walking. That's a
- // failure.
- TerminatedPath Term{Res.Result, PathIndex};
- if (!MSSA.dominates(Res.Result, StopWhere))
- return Term;
-
- // Otherwise, it's a valid thing to potentially optimize to.
- Terminated.push_back(Term);
- continue;
- }
-
- if (Res.Result == StopWhere) {
- // We've hit our target. Save this path off for if we want to continue
- // walking.
- NewPaused.push_back(PathIndex);
- continue;
- }
-
- assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
- addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
- }
-
- return None;
- }
-
- template <typename T, typename Walker>
- struct generic_def_path_iterator
- : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
- std::forward_iterator_tag, T *> {
- generic_def_path_iterator() : W(nullptr), N(None) {}
- generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
-
- T &operator*() const { return curNode(); }
-
- generic_def_path_iterator &operator++() {
- N = curNode().Previous;
- return *this;
- }
-
- bool operator==(const generic_def_path_iterator &O) const {
- if (N.hasValue() != O.N.hasValue())
- return false;
- return !N.hasValue() || *N == *O.N;
- }
-
- private:
- T &curNode() const { return W->Paths[*N]; }
-
- Walker *W;
- Optional<ListIndex> N;
- };
-
- using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
- using const_def_path_iterator =
- generic_def_path_iterator<const DefPath, const ClobberWalker>;
-
- iterator_range<def_path_iterator> def_path(ListIndex From) {
- return make_range(def_path_iterator(this, From), def_path_iterator());
- }
-
- iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
- return make_range(const_def_path_iterator(this, From),
- const_def_path_iterator());
- }
-
- struct OptznResult {
- /// The path that contains our result.
- TerminatedPath PrimaryClobber;
- /// The paths that we can legally cache back from, but that aren't
- /// necessarily the result of the Phi optimization.
- SmallVector<TerminatedPath, 4> OtherClobbers;
- };
-
- ListIndex defPathIndex(const DefPath &N) const {
- // The assert looks nicer if we don't need to do &N
- const DefPath *NP = &N;
- assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
- "Out of bounds DefPath!");
- return NP - &Paths.front();
- }
-
- /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
- /// that act as legal clobbers. Note that this won't return *all* clobbers.
- ///
- /// Phi optimization algorithm tl;dr:
- /// - Find the earliest def/phi, A, we can optimize to
- /// - Find if all paths from the starting memory access ultimately reach A
- /// - If not, optimization isn't possible.
- /// - Otherwise, walk from A to another clobber or phi, A'.
- /// - If A' is a def, we're done.
- /// - If A' is a phi, try to optimize it.
- ///
- /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
- /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
- OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
- const MemoryLocation &Loc) {
- assert(Paths.empty() && VisitedPhis.empty() &&
- "Reset the optimization state.");
-
- Paths.emplace_back(Loc, Start, Phi, None);
- // Stores how many "valid" optimization nodes we had prior to calling
- // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
- auto PriorPathsSize = Paths.size();
-
- SmallVector<ListIndex, 16> PausedSearches;
- SmallVector<ListIndex, 8> NewPaused;
- SmallVector<TerminatedPath, 4> TerminatedPaths;
-
- addSearches(Phi, PausedSearches, 0);
-
- // Moves the TerminatedPath with the "most dominated" Clobber to the end of
- // Paths.
- auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
- assert(!Paths.empty() && "Need a path to move");
- auto Dom = Paths.begin();
- for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
- if (!MSSA.dominates(I->Clobber, Dom->Clobber))
- Dom = I;
- auto Last = Paths.end() - 1;
- if (Last != Dom)
- std::iter_swap(Last, Dom);
- };
-
- MemoryPhi *Current = Phi;
- while (1) {
- assert(!MSSA.isLiveOnEntryDef(Current) &&
- "liveOnEntry wasn't treated as a clobber?");
-
- const auto *Target = getWalkTarget(Current);
- // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
- // optimization for the prior phi.
- assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
- return MSSA.dominates(P.Clobber, Target);
- }));
-
- // FIXME: This is broken, because the Blocker may be reported to be
- // liveOnEntry, and we'll happily wait for that to disappear (read: never)
- // For the moment, this is fine, since we do nothing with blocker info.
- if (Optional<TerminatedPath> Blocker = getBlockingAccess(
- Target, PausedSearches, NewPaused, TerminatedPaths)) {
-
- // Find the node we started at. We can't search based on N->Last, since
- // we may have gone around a loop with a different MemoryLocation.
- auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
- return defPathIndex(N) < PriorPathsSize;
- });
- assert(Iter != def_path_iterator());
-
- DefPath &CurNode = *Iter;
- assert(CurNode.Last == Current);
-
- // Two things:
- // A. We can't reliably cache all of NewPaused back. Consider a case
- // where we have two paths in NewPaused; one of which can't optimize
- // above this phi, whereas the other can. If we cache the second path
- // back, we'll end up with suboptimal cache entries. We can handle
- // cases like this a bit better when we either try to find all
- // clobbers that block phi optimization, or when our cache starts
- // supporting unfinished searches.
- // B. We can't reliably cache TerminatedPaths back here without doing
- // extra checks; consider a case like:
- // T
- // / \
- // D C
- // \ /
- // S
- // Where T is our target, C is a node with a clobber on it, D is a
- // diamond (with a clobber *only* on the left or right node, N), and
- // S is our start. Say we walk to D, through the node opposite N
- // (read: ignoring the clobber), and see a cache entry in the top
- // node of D. That cache entry gets put into TerminatedPaths. We then
- // walk up to C (N is later in our worklist), find the clobber, and
- // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
- // the bottom part of D to the cached clobber, ignoring the clobber
- // in N. Again, this problem goes away if we start tracking all
- // blockers for a given phi optimization.
- TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
- return {Result, {}};
- }
-
- // If there's nothing left to search, then all paths led to valid clobbers
- // that we got from our cache; pick the nearest to the start, and allow
- // the rest to be cached back.
- if (NewPaused.empty()) {
- MoveDominatedPathToEnd(TerminatedPaths);
- TerminatedPath Result = TerminatedPaths.pop_back_val();
- return {Result, std::move(TerminatedPaths)};
- }
-
- MemoryAccess *DefChainEnd = nullptr;
- SmallVector<TerminatedPath, 4> Clobbers;
- for (ListIndex Paused : NewPaused) {
- UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
- if (WR.IsKnownClobber)
- Clobbers.push_back({WR.Result, Paused});
- else
- // Micro-opt: If we hit the end of the chain, save it.
- DefChainEnd = WR.Result;
- }
-
- if (!TerminatedPaths.empty()) {
- // If we couldn't find the dominating phi/liveOnEntry in the above loop,
- // do it now.
- if (!DefChainEnd)
- for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
- DefChainEnd = MA;
-
- // If any of the terminated paths don't dominate the phi we'll try to
- // optimize, we need to figure out what they are and quit.
- const BasicBlock *ChainBB = DefChainEnd->getBlock();
- for (const TerminatedPath &TP : TerminatedPaths) {
- // Because we know that DefChainEnd is as "high" as we can go, we
- // don't need local dominance checks; BB dominance is sufficient.
- if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
- Clobbers.push_back(TP);
- }
- }
-
- // If we have clobbers in the def chain, find the one closest to Current
- // and quit.
- if (!Clobbers.empty()) {
- MoveDominatedPathToEnd(Clobbers);
- TerminatedPath Result = Clobbers.pop_back_val();
- return {Result, std::move(Clobbers)};
- }
-
- assert(all_of(NewPaused,
- [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
-
- // Because liveOnEntry is a clobber, this must be a phi.
- auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
-
- PriorPathsSize = Paths.size();
- PausedSearches.clear();
- for (ListIndex I : NewPaused)
- addSearches(DefChainPhi, PausedSearches, I);
- NewPaused.clear();
-
- Current = DefChainPhi;
- }
- }
-
- void verifyOptResult(const OptznResult &R) const {
- assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
- return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
- }));
- }
-
- void resetPhiOptznState() {
- Paths.clear();
- VisitedPhis.clear();
- }
-
-public:
- ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
- : MSSA(MSSA), AA(AA), DT(DT) {}
-
- void reset() {}
-
- /// Finds the nearest clobber for the given query, optimizing phis if
- /// possible.
- MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
- Query = &Q;
-
- MemoryAccess *Current = Start;
- // This walker pretends uses don't exist. If we're handed one, silently grab
- // its def. (This has the nice side-effect of ensuring we never cache uses)
- if (auto *MU = dyn_cast<MemoryUse>(Start))
- Current = MU->getDefiningAccess();
-
- DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
- // Fast path for the overly-common case (no crazy phi optimization
- // necessary)
- UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
- MemoryAccess *Result;
- if (WalkResult.IsKnownClobber) {
- Result = WalkResult.Result;
- } else {
- OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
- Current, Q.StartingLoc);
- verifyOptResult(OptRes);
- resetPhiOptznState();
- Result = OptRes.PrimaryClobber.Clobber;
- }
-
-#ifdef EXPENSIVE_CHECKS
- checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
-#endif
- return Result;
- }
-
- void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
-};
-
-struct RenamePassData {
- DomTreeNode *DTN;
- DomTreeNode::const_iterator ChildIt;
- MemoryAccess *IncomingVal;
-
- RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
- MemoryAccess *M)
- : DTN(D), ChildIt(It), IncomingVal(M) {}
- void swap(RenamePassData &RHS) {
- std::swap(DTN, RHS.DTN);
- std::swap(ChildIt, RHS.ChildIt);
- std::swap(IncomingVal, RHS.IncomingVal);
- }
-};
-} // anonymous namespace
-
-namespace llvm {
-/// \brief A MemorySSAWalker that does AA walks to disambiguate accesses. It no
-/// longer does caching on its own,
-/// but the name has been retained for the moment.
-class MemorySSA::CachingWalker final : public MemorySSAWalker {
- ClobberWalker Walker;
- bool AutoResetWalker;
-
- MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
- void verifyRemoved(MemoryAccess *);
-
-public:
- CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
- ~CachingWalker() override;
-
- using MemorySSAWalker::getClobberingMemoryAccess;
- MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
- MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
- const MemoryLocation &) override;
- void invalidateInfo(MemoryAccess *) override;
-
- /// Whether we call resetClobberWalker() after each time we *actually* walk to
- /// answer a clobber query.
- void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; }
-
- /// Drop the walker's persistent data structures.
- void resetClobberWalker() { Walker.reset(); }
-
- void verify(const MemorySSA *MSSA) override {
- MemorySSAWalker::verify(MSSA);
- Walker.verify(MSSA);
- }
-};
-
-void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
- bool RenameAllUses) {
- // Pass through values to our successors
- for (const BasicBlock *S : successors(BB)) {
- auto It = PerBlockAccesses.find(S);
- // Rename the phi nodes in our successor block
- if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
- continue;
- AccessList *Accesses = It->second.get();
- auto *Phi = cast<MemoryPhi>(&Accesses->front());
- if (RenameAllUses) {
- int PhiIndex = Phi->getBasicBlockIndex(BB);
- assert(PhiIndex != -1 && "Incomplete phi during partial rename");
- Phi->setIncomingValue(PhiIndex, IncomingVal);
- } else
- Phi->addIncoming(IncomingVal, BB);
- }
-}
-
-/// \brief Rename a single basic block into MemorySSA form.
-/// Uses the standard SSA renaming algorithm.
-/// \returns The new incoming value.
-MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
- bool RenameAllUses) {
- auto It = PerBlockAccesses.find(BB);
- // Skip most processing if the list is empty.
- if (It != PerBlockAccesses.end()) {
- AccessList *Accesses = It->second.get();
- for (MemoryAccess &L : *Accesses) {
- if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
- if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
- MUD->setDefiningAccess(IncomingVal);
- if (isa<MemoryDef>(&L))
- IncomingVal = &L;
- } else {
- IncomingVal = &L;
- }
- }
- }
- return IncomingVal;
-}
-
-/// \brief This is the standard SSA renaming algorithm.
-///
-/// We walk the dominator tree in preorder, renaming accesses, and then filling
-/// in phi nodes in our successors.
-void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
- SmallPtrSetImpl<BasicBlock *> &Visited,
- bool SkipVisited, bool RenameAllUses) {
- SmallVector<RenamePassData, 32> WorkStack;
- // Skip everything if we already renamed this block and we are skipping.
- // Note: You can't sink this into the if, because we need it to occur
- // regardless of whether we skip blocks or not.
- bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
- if (SkipVisited && AlreadyVisited)
- return;
-
- IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
- renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
- WorkStack.push_back({Root, Root->begin(), IncomingVal});
-
- while (!WorkStack.empty()) {
- DomTreeNode *Node = WorkStack.back().DTN;
- DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
- IncomingVal = WorkStack.back().IncomingVal;
-
- if (ChildIt == Node->end()) {
- WorkStack.pop_back();
- } else {
- DomTreeNode *Child = *ChildIt;
- ++WorkStack.back().ChildIt;
- BasicBlock *BB = Child->getBlock();
- // Note: You can't sink this into the if, because we need it to occur
- // regardless of whether we skip blocks or not.
- AlreadyVisited = !Visited.insert(BB).second;
- if (SkipVisited && AlreadyVisited) {
- // We already visited this during our renaming, which can happen when
- // being asked to rename multiple blocks. Figure out the incoming val,
- // which is the last def.
- // Incoming value can only change if there is a block def, and in that
- // case, it's the last block def in the list.
- if (auto *BlockDefs = getWritableBlockDefs(BB))
- IncomingVal = &*BlockDefs->rbegin();
- } else
- IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
- renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
- WorkStack.push_back({Child, Child->begin(), IncomingVal});
- }
- }
-}
-
-/// \brief This handles unreachable block accesses by deleting phi nodes in
-/// unreachable blocks, and marking all other unreachable MemoryAccess's as
-/// being uses of the live on entry definition.
-void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
- assert(!DT->isReachableFromEntry(BB) &&
- "Reachable block found while handling unreachable blocks");
-
- // Make sure phi nodes in our reachable successors end up with a
- // LiveOnEntryDef for our incoming edge, even though our block is forward
- // unreachable. We could just disconnect these blocks from the CFG fully,
- // but we do not right now.
- for (const BasicBlock *S : successors(BB)) {
- if (!DT->isReachableFromEntry(S))
- continue;
- auto It = PerBlockAccesses.find(S);
- // Rename the phi nodes in our successor block
- if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
- continue;
- AccessList *Accesses = It->second.get();
- auto *Phi = cast<MemoryPhi>(&Accesses->front());
- Phi->addIncoming(LiveOnEntryDef.get(), BB);
- }
-
- auto It = PerBlockAccesses.find(BB);
- if (It == PerBlockAccesses.end())
- return;
-
- auto &Accesses = It->second;
- for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
- auto Next = std::next(AI);
- // If we have a phi, just remove it. We are going to replace all
- // users with live on entry.
- if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
- UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
- else
- Accesses->erase(AI);
- AI = Next;
- }
-}
-
-MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
- : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
- NextID(INVALID_MEMORYACCESS_ID) {
- buildMemorySSA();
-}
-
-MemorySSA::~MemorySSA() {
- // Drop all our references
- for (const auto &Pair : PerBlockAccesses)
- for (MemoryAccess &MA : *Pair.second)
- MA.dropAllReferences();
-}
-
-MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
- auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
-
- if (Res.second)
- Res.first->second = make_unique<AccessList>();
- return Res.first->second.get();
-}
-MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
- auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
-
- if (Res.second)
- Res.first->second = make_unique<DefsList>();
- return Res.first->second.get();
-}
-
-/// This class is a batch walker of all MemoryUse's in the program, and points
-/// their defining access at the thing that actually clobbers them. Because it
-/// is a batch walker that touches everything, it does not operate like the
-/// other walkers. This walker is basically performing a top-down SSA renaming
-/// pass, where the version stack is used as the cache. This enables it to be
-/// significantly more time and memory efficient than using the regular walker,
-/// which is walking bottom-up.
-class MemorySSA::OptimizeUses {
-public:
- OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
- DominatorTree *DT)
- : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
- Walker = MSSA->getWalker();
- }
-
- void optimizeUses();
-
-private:
- /// This represents where a given memorylocation is in the stack.
- struct MemlocStackInfo {
- // This essentially is keeping track of versions of the stack. Whenever
- // the stack changes due to pushes or pops, these versions increase.
- unsigned long StackEpoch;
- unsigned long PopEpoch;
- // This is the lower bound of places on the stack to check. It is equal to
- // the place the last stack walk ended.
- // Note: Correctness depends on this being initialized to 0, which densemap
- // does
- unsigned long LowerBound;
- const BasicBlock *LowerBoundBlock;
- // This is where the last walk for this memory location ended.
- unsigned long LastKill;
- bool LastKillValid;
- };
- void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
- SmallVectorImpl<MemoryAccess *> &,
- DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
- MemorySSA *MSSA;
- MemorySSAWalker *Walker;
- AliasAnalysis *AA;
- DominatorTree *DT;
-};
-
-/// Optimize the uses in a given block This is basically the SSA renaming
-/// algorithm, with one caveat: We are able to use a single stack for all
-/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
-/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
-/// going to be some position in that stack of possible ones.
-///
-/// We track the stack positions that each MemoryLocation needs
-/// to check, and last ended at. This is because we only want to check the
-/// things that changed since last time. The same MemoryLocation should
-/// get clobbered by the same store (getModRefInfo does not use invariantness or
-/// things like this, and if they start, we can modify MemoryLocOrCall to
-/// include relevant data)
-void MemorySSA::OptimizeUses::optimizeUsesInBlock(
- const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
- SmallVectorImpl<MemoryAccess *> &VersionStack,
- DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
-
- /// If no accesses, nothing to do.
- MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
- if (Accesses == nullptr)
- return;
-
- // Pop everything that doesn't dominate the current block off the stack,
- // increment the PopEpoch to account for this.
- while (true) {
- assert(
- !VersionStack.empty() &&
- "Version stack should have liveOnEntry sentinel dominating everything");
- BasicBlock *BackBlock = VersionStack.back()->getBlock();
- if (DT->dominates(BackBlock, BB))
- break;
- while (VersionStack.back()->getBlock() == BackBlock)
- VersionStack.pop_back();
- ++PopEpoch;
- }
-
- for (MemoryAccess &MA : *Accesses) {
- auto *MU = dyn_cast<MemoryUse>(&MA);
- if (!MU) {
- VersionStack.push_back(&MA);
- ++StackEpoch;
- continue;
- }
-
- if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
- MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true);
- continue;
- }
-
- MemoryLocOrCall UseMLOC(MU);
- auto &LocInfo = LocStackInfo[UseMLOC];
- // If the pop epoch changed, it means we've removed stuff from top of
- // stack due to changing blocks. We may have to reset the lower bound or
- // last kill info.
- if (LocInfo.PopEpoch != PopEpoch) {
- LocInfo.PopEpoch = PopEpoch;
- LocInfo.StackEpoch = StackEpoch;
- // If the lower bound was in something that no longer dominates us, we
- // have to reset it.
- // We can't simply track stack size, because the stack may have had
- // pushes/pops in the meantime.
- // XXX: This is non-optimal, but only is slower cases with heavily
- // branching dominator trees. To get the optimal number of queries would
- // be to make lowerbound and lastkill a per-loc stack, and pop it until
- // the top of that stack dominates us. This does not seem worth it ATM.
- // A much cheaper optimization would be to always explore the deepest
- // branch of the dominator tree first. This will guarantee this resets on
- // the smallest set of blocks.
- if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
- !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
- // Reset the lower bound of things to check.
- // TODO: Some day we should be able to reset to last kill, rather than
- // 0.
- LocInfo.LowerBound = 0;
- LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
- LocInfo.LastKillValid = false;
- }
- } else if (LocInfo.StackEpoch != StackEpoch) {
- // If all that has changed is the StackEpoch, we only have to check the
- // new things on the stack, because we've checked everything before. In
- // this case, the lower bound of things to check remains the same.
- LocInfo.PopEpoch = PopEpoch;
- LocInfo.StackEpoch = StackEpoch;
- }
- if (!LocInfo.LastKillValid) {
- LocInfo.LastKill = VersionStack.size() - 1;
- LocInfo.LastKillValid = true;
- }
-
- // At this point, we should have corrected last kill and LowerBound to be
- // in bounds.
- assert(LocInfo.LowerBound < VersionStack.size() &&
- "Lower bound out of range");
- assert(LocInfo.LastKill < VersionStack.size() &&
- "Last kill info out of range");
- // In any case, the new upper bound is the top of the stack.
- unsigned long UpperBound = VersionStack.size() - 1;
-
- if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
- DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
- << *(MU->getMemoryInst()) << ")"
- << " because there are " << UpperBound - LocInfo.LowerBound
- << " stores to disambiguate\n");
- // Because we did not walk, LastKill is no longer valid, as this may
- // have been a kill.
- LocInfo.LastKillValid = false;
- continue;
- }
- bool FoundClobberResult = false;
- while (UpperBound > LocInfo.LowerBound) {
- if (isa<MemoryPhi>(VersionStack[UpperBound])) {
- // For phis, use the walker, see where we ended up, go there
- Instruction *UseInst = MU->getMemoryInst();
- MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
- // We are guaranteed to find it or something is wrong
- while (VersionStack[UpperBound] != Result) {
- assert(UpperBound != 0);
- --UpperBound;
- }
- FoundClobberResult = true;
- break;
- }
-
- MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
- // If the lifetime of the pointer ends at this instruction, it's live on
- // entry.
- if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
- // Reset UpperBound to liveOnEntryDef's place in the stack
- UpperBound = 0;
- FoundClobberResult = true;
- break;
- }
- if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) {
- FoundClobberResult = true;
- break;
- }
- --UpperBound;
- }
- // At the end of this loop, UpperBound is either a clobber, or lower bound
- // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
- if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
- MU->setDefiningAccess(VersionStack[UpperBound], true);
- // We were last killed now by where we got to
- LocInfo.LastKill = UpperBound;
- } else {
- // Otherwise, we checked all the new ones, and now we know we can get to
- // LastKill.
- MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true);
- }
- LocInfo.LowerBound = VersionStack.size() - 1;
- LocInfo.LowerBoundBlock = BB;
- }
-}
-
-/// Optimize uses to point to their actual clobbering definitions.
-void MemorySSA::OptimizeUses::optimizeUses() {
- SmallVector<MemoryAccess *, 16> VersionStack;
- DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
- VersionStack.push_back(MSSA->getLiveOnEntryDef());
-
- unsigned long StackEpoch = 1;
- unsigned long PopEpoch = 1;
- // We perform a non-recursive top-down dominator tree walk.
- for (const auto *DomNode : depth_first(DT->getRootNode()))
- optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
- LocStackInfo);
-}
-
-void MemorySSA::placePHINodes(
- const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks,
- const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) {
- // Determine where our MemoryPhi's should go
- ForwardIDFCalculator IDFs(*DT);
- IDFs.setDefiningBlocks(DefiningBlocks);
- SmallVector<BasicBlock *, 32> IDFBlocks;
- IDFs.calculate(IDFBlocks);
-
- std::sort(IDFBlocks.begin(), IDFBlocks.end(),
- [&BBNumbers](const BasicBlock *A, const BasicBlock *B) {
- return BBNumbers.lookup(A) < BBNumbers.lookup(B);
- });
-
- // Now place MemoryPhi nodes.
- for (auto &BB : IDFBlocks)
- createMemoryPhi(BB);
-}
-
-void MemorySSA::buildMemorySSA() {
- // We create an access to represent "live on entry", for things like
- // arguments or users of globals, where the memory they use is defined before
- // the beginning of the function. We do not actually insert it into the IR.
- // We do not define a live on exit for the immediate uses, and thus our
- // semantics do *not* imply that something with no immediate uses can simply
- // be removed.
- BasicBlock &StartingPoint = F.getEntryBlock();
- LiveOnEntryDef = make_unique<MemoryDef>(F.getContext(), nullptr, nullptr,
- &StartingPoint, NextID++);
- DenseMap<const BasicBlock *, unsigned int> BBNumbers;
- unsigned NextBBNum = 0;
-
- // We maintain lists of memory accesses per-block, trading memory for time. We
- // could just look up the memory access for every possible instruction in the
- // stream.
- SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
- SmallPtrSet<BasicBlock *, 32> DefUseBlocks;
- // Go through each block, figure out where defs occur, and chain together all
- // the accesses.
- for (BasicBlock &B : F) {
- BBNumbers[&B] = NextBBNum++;
- bool InsertIntoDef = false;
- AccessList *Accesses = nullptr;
- DefsList *Defs = nullptr;
- for (Instruction &I : B) {
- MemoryUseOrDef *MUD = createNewAccess(&I);
- if (!MUD)
- continue;
-
- if (!Accesses)
- Accesses = getOrCreateAccessList(&B);
- Accesses->push_back(MUD);
- if (isa<MemoryDef>(MUD)) {
- InsertIntoDef = true;
- if (!Defs)
- Defs = getOrCreateDefsList(&B);
- Defs->push_back(*MUD);
- }
- }
- if (InsertIntoDef)
- DefiningBlocks.insert(&B);
- if (Accesses)
- DefUseBlocks.insert(&B);
- }
- placePHINodes(DefiningBlocks, BBNumbers);
-
- // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
- // filled in with all blocks.
- SmallPtrSet<BasicBlock *, 16> Visited;
- renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
-
- CachingWalker *Walker = getWalkerImpl();
-
- // We're doing a batch of updates; don't drop useful caches between them.
- Walker->setAutoResetWalker(false);
- OptimizeUses(this, Walker, AA, DT).optimizeUses();
- Walker->setAutoResetWalker(true);
- Walker->resetClobberWalker();
-
- // Mark the uses in unreachable blocks as live on entry, so that they go
- // somewhere.
- for (auto &BB : F)
- if (!Visited.count(&BB))
- markUnreachableAsLiveOnEntry(&BB);
-}
-
-MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
-
-MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
- if (Walker)
- return Walker.get();
-
- Walker = make_unique<CachingWalker>(this, AA, DT);
- return Walker.get();
-}
-
-// This is a helper function used by the creation routines. It places NewAccess
-// into the access and defs lists for a given basic block, at the given
-// insertion point.
-void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
- const BasicBlock *BB,
- InsertionPlace Point) {
- auto *Accesses = getOrCreateAccessList(BB);
- if (Point == Beginning) {
- // If it's a phi node, it goes first, otherwise, it goes after any phi
- // nodes.
- if (isa<MemoryPhi>(NewAccess)) {
- Accesses->push_front(NewAccess);
- auto *Defs = getOrCreateDefsList(BB);
- Defs->push_front(*NewAccess);
- } else {
- auto AI = find_if_not(
- *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
- Accesses->insert(AI, NewAccess);
- if (!isa<MemoryUse>(NewAccess)) {
- auto *Defs = getOrCreateDefsList(BB);
- auto DI = find_if_not(
- *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
- Defs->insert(DI, *NewAccess);
- }
- }
- } else {
- Accesses->push_back(NewAccess);
- if (!isa<MemoryUse>(NewAccess)) {
- auto *Defs = getOrCreateDefsList(BB);
- Defs->push_back(*NewAccess);
- }
- }
- BlockNumberingValid.erase(BB);
-}
-
-void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
- AccessList::iterator InsertPt) {
- auto *Accesses = getWritableBlockAccesses(BB);
- bool WasEnd = InsertPt == Accesses->end();
- Accesses->insert(AccessList::iterator(InsertPt), What);
- if (!isa<MemoryUse>(What)) {
- auto *Defs = getOrCreateDefsList(BB);
- // If we got asked to insert at the end, we have an easy job, just shove it
- // at the end. If we got asked to insert before an existing def, we also get
- // an terator. If we got asked to insert before a use, we have to hunt for
- // the next def.
- if (WasEnd) {
- Defs->push_back(*What);
- } else if (isa<MemoryDef>(InsertPt)) {
- Defs->insert(InsertPt->getDefsIterator(), *What);
- } else {
- while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
- ++InsertPt;
- // Either we found a def, or we are inserting at the end
- if (InsertPt == Accesses->end())
- Defs->push_back(*What);
- else
- Defs->insert(InsertPt->getDefsIterator(), *What);
- }
- }
- BlockNumberingValid.erase(BB);
-}
-
-// Move What before Where in the IR. The end result is taht What will belong to
-// the right lists and have the right Block set, but will not otherwise be
-// correct. It will not have the right defining access, and if it is a def,
-// things below it will not properly be updated.
-void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
- AccessList::iterator Where) {
- // Keep it in the lookup tables, remove from the lists
- removeFromLists(What, false);
- What->setBlock(BB);
- insertIntoListsBefore(What, BB, Where);
-}
-
-void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
- InsertionPlace Point) {
- removeFromLists(What, false);
- What->setBlock(BB);
- insertIntoListsForBlock(What, BB, Point);
-}
-
-MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
- assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
- MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
- // Phi's always are placed at the front of the block.
- insertIntoListsForBlock(Phi, BB, Beginning);
- ValueToMemoryAccess[BB] = Phi;
- return Phi;
-}
-
-MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
- MemoryAccess *Definition) {
- assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
- MemoryUseOrDef *NewAccess = createNewAccess(I);
- assert(
- NewAccess != nullptr &&
- "Tried to create a memory access for a non-memory touching instruction");
- NewAccess->setDefiningAccess(Definition);
- return NewAccess;
-}
-
-// Return true if the instruction has ordering constraints.
-// Note specifically that this only considers stores and loads
-// because others are still considered ModRef by getModRefInfo.
-static inline bool isOrdered(const Instruction *I) {
- if (auto *SI = dyn_cast<StoreInst>(I)) {
- if (!SI->isUnordered())
- return true;
- } else if (auto *LI = dyn_cast<LoadInst>(I)) {
- if (!LI->isUnordered())
- return true;
- }
- return false;
-}
-/// \brief Helper function to create new memory accesses
-MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
- // The assume intrinsic has a control dependency which we model by claiming
- // that it writes arbitrarily. Ignore that fake memory dependency here.
- // FIXME: Replace this special casing with a more accurate modelling of
- // assume's control dependency.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
- if (II->getIntrinsicID() == Intrinsic::assume)
- return nullptr;
-
- // Find out what affect this instruction has on memory.
- ModRefInfo ModRef = AA->getModRefInfo(I);
- // The isOrdered check is used to ensure that volatiles end up as defs
- // (atomics end up as ModRef right now anyway). Until we separate the
- // ordering chain from the memory chain, this enables people to see at least
- // some relative ordering to volatiles. Note that getClobberingMemoryAccess
- // will still give an answer that bypasses other volatile loads. TODO:
- // Separate memory aliasing and ordering into two different chains so that we
- // can precisely represent both "what memory will this read/write/is clobbered
- // by" and "what instructions can I move this past".
- bool Def = bool(ModRef & MRI_Mod) || isOrdered(I);
- bool Use = bool(ModRef & MRI_Ref);
-
- // It's possible for an instruction to not modify memory at all. During
- // construction, we ignore them.
- if (!Def && !Use)
- return nullptr;
-
- assert((Def || Use) &&
- "Trying to create a memory access with a non-memory instruction");
-
- MemoryUseOrDef *MUD;
- if (Def)
- MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
- else
- MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
- ValueToMemoryAccess[I] = MUD;
- return MUD;
-}
-
-/// \brief Returns true if \p Replacer dominates \p Replacee .
-bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
- const MemoryAccess *Replacee) const {
- if (isa<MemoryUseOrDef>(Replacee))
- return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
- const auto *MP = cast<MemoryPhi>(Replacee);
- // For a phi node, the use occurs in the predecessor block of the phi node.
- // Since we may occur multiple times in the phi node, we have to check each
- // operand to ensure Replacer dominates each operand where Replacee occurs.
- for (const Use &Arg : MP->operands()) {
- if (Arg.get() != Replacee &&
- !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
- return false;
- }
- return true;
-}
-
-/// \brief Properly remove \p MA from all of MemorySSA's lookup tables.
-void MemorySSA::removeFromLookups(MemoryAccess *MA) {
- assert(MA->use_empty() &&
- "Trying to remove memory access that still has uses");
- BlockNumbering.erase(MA);
- if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA))
- MUD->setDefiningAccess(nullptr);
- // Invalidate our walker's cache if necessary
- if (!isa<MemoryUse>(MA))
- Walker->invalidateInfo(MA);
- // The call below to erase will destroy MA, so we can't change the order we
- // are doing things here
- Value *MemoryInst;
- if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
- MemoryInst = MUD->getMemoryInst();
- } else {
- MemoryInst = MA->getBlock();
- }
- auto VMA = ValueToMemoryAccess.find(MemoryInst);
- if (VMA->second == MA)
- ValueToMemoryAccess.erase(VMA);
-}
-
-/// \brief Properly remove \p MA from all of MemorySSA's lists.
-///
-/// Because of the way the intrusive list and use lists work, it is important to
-/// do removal in the right order.
-/// ShouldDelete defaults to true, and will cause the memory access to also be
-/// deleted, not just removed.
-void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
- // The access list owns the reference, so we erase it from the non-owning list
- // first.
- if (!isa<MemoryUse>(MA)) {
- auto DefsIt = PerBlockDefs.find(MA->getBlock());
- std::unique_ptr<DefsList> &Defs = DefsIt->second;
- Defs->remove(*MA);
- if (Defs->empty())
- PerBlockDefs.erase(DefsIt);
- }
-
- // The erase call here will delete it. If we don't want it deleted, we call
- // remove instead.
- auto AccessIt = PerBlockAccesses.find(MA->getBlock());
- std::unique_ptr<AccessList> &Accesses = AccessIt->second;
- if (ShouldDelete)
- Accesses->erase(MA);
- else
- Accesses->remove(MA);
-
- if (Accesses->empty())
- PerBlockAccesses.erase(AccessIt);
-}
-
-void MemorySSA::print(raw_ostream &OS) const {
- MemorySSAAnnotatedWriter Writer(this);
- F.print(OS, &Writer);
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
-#endif
-
-void MemorySSA::verifyMemorySSA() const {
- verifyDefUses(F);
- verifyDomination(F);
- verifyOrdering(F);
- Walker->verify(this);
-}
-
-/// \brief Verify that the order and existence of MemoryAccesses matches the
-/// order and existence of memory affecting instructions.
-void MemorySSA::verifyOrdering(Function &F) const {
- // Walk all the blocks, comparing what the lookups think and what the access
- // lists think, as well as the order in the blocks vs the order in the access
- // lists.
- SmallVector<MemoryAccess *, 32> ActualAccesses;
- SmallVector<MemoryAccess *, 32> ActualDefs;
- for (BasicBlock &B : F) {
- const AccessList *AL = getBlockAccesses(&B);
- const auto *DL = getBlockDefs(&B);
- MemoryAccess *Phi = getMemoryAccess(&B);
- if (Phi) {
- ActualAccesses.push_back(Phi);
- ActualDefs.push_back(Phi);
- }
-
- for (Instruction &I : B) {
- MemoryAccess *MA = getMemoryAccess(&I);
- assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
- "We have memory affecting instructions "
- "in this block but they are not in the "
- "access list or defs list");
- if (MA) {
- ActualAccesses.push_back(MA);
- if (isa<MemoryDef>(MA))
- ActualDefs.push_back(MA);
- }
- }
- // Either we hit the assert, really have no accesses, or we have both
- // accesses and an access list.
- // Same with defs.
- if (!AL && !DL)
- continue;
- assert(AL->size() == ActualAccesses.size() &&
- "We don't have the same number of accesses in the block as on the "
- "access list");
- assert((DL || ActualDefs.size() == 0) &&
- "Either we should have a defs list, or we should have no defs");
- assert((!DL || DL->size() == ActualDefs.size()) &&
- "We don't have the same number of defs in the block as on the "
- "def list");
- auto ALI = AL->begin();
- auto AAI = ActualAccesses.begin();
- while (ALI != AL->end() && AAI != ActualAccesses.end()) {
- assert(&*ALI == *AAI && "Not the same accesses in the same order");
- ++ALI;
- ++AAI;
- }
- ActualAccesses.clear();
- if (DL) {
- auto DLI = DL->begin();
- auto ADI = ActualDefs.begin();
- while (DLI != DL->end() && ADI != ActualDefs.end()) {
- assert(&*DLI == *ADI && "Not the same defs in the same order");
- ++DLI;
- ++ADI;
- }
- }
- ActualDefs.clear();
- }
-}
-
-/// \brief Verify the domination properties of MemorySSA by checking that each
-/// definition dominates all of its uses.
-void MemorySSA::verifyDomination(Function &F) const {
-#ifndef NDEBUG
- for (BasicBlock &B : F) {
- // Phi nodes are attached to basic blocks
- if (MemoryPhi *MP = getMemoryAccess(&B))
- for (const Use &U : MP->uses())
- assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
-
- for (Instruction &I : B) {
- MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
- if (!MD)
- continue;
-
- for (const Use &U : MD->uses())
- assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
- }
- }
-#endif
-}
-
-/// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use
-/// appears in the use list of \p Def.
-
-void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
-#ifndef NDEBUG
- // The live on entry use may cause us to get a NULL def here
- if (!Def)
- assert(isLiveOnEntryDef(Use) &&
- "Null def but use not point to live on entry def");
- else
- assert(is_contained(Def->users(), Use) &&
- "Did not find use in def's use list");
-#endif
-}
-
-/// \brief Verify the immediate use information, by walking all the memory
-/// accesses and verifying that, for each use, it appears in the
-/// appropriate def's use list
-void MemorySSA::verifyDefUses(Function &F) const {
- for (BasicBlock &B : F) {
- // Phi nodes are attached to basic blocks
- if (MemoryPhi *Phi = getMemoryAccess(&B)) {
- assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
- pred_begin(&B), pred_end(&B))) &&
- "Incomplete MemoryPhi Node");
- for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
- verifyUseInDefs(Phi->getIncomingValue(I), Phi);
- }
-
- for (Instruction &I : B) {
- if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
- verifyUseInDefs(MA->getDefiningAccess(), MA);
- }
- }
- }
-}
-
-MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const {
- return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
-}
-
-MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
- return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
-}
-
-/// Perform a local numbering on blocks so that instruction ordering can be
-/// determined in constant time.
-/// TODO: We currently just number in order. If we numbered by N, we could
-/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
-/// log2(N) sequences of mixed before and after) without needing to invalidate
-/// the numbering.
-void MemorySSA::renumberBlock(const BasicBlock *B) const {
- // The pre-increment ensures the numbers really start at 1.
- unsigned long CurrentNumber = 0;
- const AccessList *AL = getBlockAccesses(B);
- assert(AL != nullptr && "Asking to renumber an empty block");
- for (const auto &I : *AL)
- BlockNumbering[&I] = ++CurrentNumber;
- BlockNumberingValid.insert(B);
-}
-
-/// \brief Determine, for two memory accesses in the same block,
-/// whether \p Dominator dominates \p Dominatee.
-/// \returns True if \p Dominator dominates \p Dominatee.
-bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
- const MemoryAccess *Dominatee) const {
-
- const BasicBlock *DominatorBlock = Dominator->getBlock();
-
- assert((DominatorBlock == Dominatee->getBlock()) &&
- "Asking for local domination when accesses are in different blocks!");
- // A node dominates itself.
- if (Dominatee == Dominator)
- return true;
-
- // When Dominatee is defined on function entry, it is not dominated by another
- // memory access.
- if (isLiveOnEntryDef(Dominatee))
- return false;
-
- // When Dominator is defined on function entry, it dominates the other memory
- // access.
- if (isLiveOnEntryDef(Dominator))
- return true;
-
- if (!BlockNumberingValid.count(DominatorBlock))
- renumberBlock(DominatorBlock);
-
- unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
- // All numbers start with 1
- assert(DominatorNum != 0 && "Block was not numbered properly");
- unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
- assert(DominateeNum != 0 && "Block was not numbered properly");
- return DominatorNum < DominateeNum;
-}
-
-bool MemorySSA::dominates(const MemoryAccess *Dominator,
- const MemoryAccess *Dominatee) const {
- if (Dominator == Dominatee)
- return true;
-
- if (isLiveOnEntryDef(Dominatee))
- return false;
-
- if (Dominator->getBlock() != Dominatee->getBlock())
- return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
- return locallyDominates(Dominator, Dominatee);
-}
-
-bool MemorySSA::dominates(const MemoryAccess *Dominator,
- const Use &Dominatee) const {
- if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
- BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
- // The def must dominate the incoming block of the phi.
- if (UseBB != Dominator->getBlock())
- return DT->dominates(Dominator->getBlock(), UseBB);
- // If the UseBB and the DefBB are the same, compare locally.
- return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
- }
- // If it's not a PHI node use, the normal dominates can already handle it.
- return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
-}
-
-const static char LiveOnEntryStr[] = "liveOnEntry";
-
-void MemoryDef::print(raw_ostream &OS) const {
- MemoryAccess *UO = getDefiningAccess();
-
- OS << getID() << " = MemoryDef(";
- if (UO && UO->getID())
- OS << UO->getID();
- else
- OS << LiveOnEntryStr;
- OS << ')';
-}
-
-void MemoryPhi::print(raw_ostream &OS) const {
- bool First = true;
- OS << getID() << " = MemoryPhi(";
- for (const auto &Op : operands()) {
- BasicBlock *BB = getIncomingBlock(Op);
- MemoryAccess *MA = cast<MemoryAccess>(Op);
- if (!First)
- OS << ',';
- else
- First = false;
-
- OS << '{';
- if (BB->hasName())
- OS << BB->getName();
- else
- BB->printAsOperand(OS, false);
- OS << ',';
- if (unsigned ID = MA->getID())
- OS << ID;
- else
- OS << LiveOnEntryStr;
- OS << '}';
- }
- OS << ')';
-}
-
-MemoryAccess::~MemoryAccess() {}
-
-void MemoryUse::print(raw_ostream &OS) const {
- MemoryAccess *UO = getDefiningAccess();
- OS << "MemoryUse(";
- if (UO && UO->getID())
- OS << UO->getID();
- else
- OS << LiveOnEntryStr;
- OS << ')';
-}
-
-void MemoryAccess::dump() const {
-// Cannot completely remove virtual function even in release mode.
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- print(dbgs());
- dbgs() << "\n";
-#endif
-}
-
-char MemorySSAPrinterLegacyPass::ID = 0;
-
-MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
- initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
-}
-
-void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<MemorySSAWrapperPass>();
- AU.addPreserved<MemorySSAWrapperPass>();
-}
-
-bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
- auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
- MSSA.print(dbgs());
- if (VerifyMemorySSA)
- MSSA.verifyMemorySSA();
- return false;
-}
-
-AnalysisKey MemorySSAAnalysis::Key;
-
-MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &AA = AM.getResult<AAManager>(F);
- return MemorySSAAnalysis::Result(make_unique<MemorySSA>(F, &AA, &DT));
-}
-
-PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- OS << "MemorySSA for function: " << F.getName() << "\n";
- AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
-
- return PreservedAnalyses::all();
-}
-
-PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
-
- return PreservedAnalyses::all();
-}
-
-char MemorySSAWrapperPass::ID = 0;
-
-MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
- initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
-}
-
-void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
-
-void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequiredTransitive<DominatorTreeWrapperPass>();
- AU.addRequiredTransitive<AAResultsWrapperPass>();
-}
-
-bool MemorySSAWrapperPass::runOnFunction(Function &F) {
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
- MSSA.reset(new MemorySSA(F, &AA, &DT));
- return false;
-}
-
-void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
-
-void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
- MSSA->print(OS);
-}
-
-MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
-
-MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
- DominatorTree *D)
- : MemorySSAWalker(M), Walker(*M, *A, *D), AutoResetWalker(true) {}
-
-MemorySSA::CachingWalker::~CachingWalker() {}
-
-void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
- if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
- MUD->resetOptimized();
-}
-
-/// \brief Walk the use-def chains starting at \p MA and find
-/// the MemoryAccess that actually clobbers Loc.
-///
-/// \returns our clobbering memory access
-MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
- MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
- MemoryAccess *New = Walker.findClobber(StartingAccess, Q);
-#ifdef EXPENSIVE_CHECKS
- MemoryAccess *NewNoCache = Walker.findClobber(StartingAccess, Q);
- assert(NewNoCache == New && "Cache made us hand back a different result?");
-#endif
- if (AutoResetWalker)
- resetClobberWalker();
- return New;
-}
-
-MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
- MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
- if (isa<MemoryPhi>(StartingAccess))
- return StartingAccess;
-
- auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
- if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
- return StartingUseOrDef;
-
- Instruction *I = StartingUseOrDef->getMemoryInst();
-
- // Conservatively, fences are always clobbers, so don't perform the walk if we
- // hit a fence.
- if (!ImmutableCallSite(I) && I->isFenceLike())
- return StartingUseOrDef;
-
- UpwardsMemoryQuery Q;
- Q.OriginalAccess = StartingUseOrDef;
- Q.StartingLoc = Loc;
- Q.Inst = I;
- Q.IsCall = false;
-
- // Unlike the other function, do not walk to the def of a def, because we are
- // handed something we already believe is the clobbering access.
- MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
- ? StartingUseOrDef->getDefiningAccess()
- : StartingUseOrDef;
-
- MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
- DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
- DEBUG(dbgs() << *StartingUseOrDef << "\n");
- DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
- DEBUG(dbgs() << *Clobber << "\n");
- return Clobber;
-}
-
-MemoryAccess *
-MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
- auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
- // If this is a MemoryPhi, we can't do anything.
- if (!StartingAccess)
- return MA;
-
- // If this is an already optimized use or def, return the optimized result.
- // Note: Currently, we do not store the optimized def result because we'd need
- // a separate field, since we can't use it as the defining access.
- if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
- if (MUD->isOptimized())
- return MUD->getOptimized();
-
- const Instruction *I = StartingAccess->getMemoryInst();
- UpwardsMemoryQuery Q(I, StartingAccess);
- // We can't sanely do anything with a fences, they conservatively
- // clobber all memory, and have no locations to get pointers from to
- // try to disambiguate.
- if (!Q.IsCall && I->isFenceLike())
- return StartingAccess;
-
- if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
- MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
- if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
- MUD->setOptimized(LiveOnEntry);
- return LiveOnEntry;
- }
-
- // Start with the thing we already think clobbers this location
- MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
-
- // At this point, DefiningAccess may be the live on entry def.
- // If it is, we will not get a better result.
- if (MSSA->isLiveOnEntryDef(DefiningAccess))
- return DefiningAccess;
-
- MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
- DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
- DEBUG(dbgs() << *DefiningAccess << "\n");
- DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
- DEBUG(dbgs() << *Result << "\n");
- if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
- MUD->setOptimized(Result);
-
- return Result;
-}
-
-MemoryAccess *
-DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
- if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
- return Use->getDefiningAccess();
- return MA;
-}
-
-MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
- MemoryAccess *StartingAccess, const MemoryLocation &) {
- if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
- return Use->getDefiningAccess();
- return StartingAccess;
-}
-} // namespace llvm
diff --git a/llvm/lib/Transforms/Utils/MemorySSAUpdater.cpp b/llvm/lib/Transforms/Utils/MemorySSAUpdater.cpp
deleted file mode 100644
index c396bd73504..00000000000
--- a/llvm/lib/Transforms/Utils/MemorySSAUpdater.cpp
+++ /dev/null
@@ -1,494 +0,0 @@
-//===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------===//
-//
-// This file implements the MemorySSAUpdater class.
-//
-//===----------------------------------------------------------------===//
-#include "llvm/Transforms/Utils/MemorySSAUpdater.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/FormattedStream.h"
-#include "llvm/Transforms/Utils/MemorySSA.h"
-#include <algorithm>
-
-#define DEBUG_TYPE "memoryssa"
-using namespace llvm;
-namespace llvm {
-// This is the marker algorithm from "Simple and Efficient Construction of
-// Static Single Assignment Form"
-// The simple, non-marker algorithm places phi nodes at any join
-// Here, we place markers, and only place phi nodes if they end up necessary.
-// They are only necessary if they break a cycle (IE we recursively visit
-// ourselves again), or we discover, while getting the value of the operands,
-// that there are two or more definitions needing to be merged.
-// This still will leave non-minimal form in the case of irreducible control
-// flow, where phi nodes may be in cycles with themselves, but unnecessary.
-MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(BasicBlock *BB) {
- // Single predecessor case, just recurse, we can only have one definition.
- if (BasicBlock *Pred = BB->getSinglePredecessor()) {
- return getPreviousDefFromEnd(Pred);
- } else if (VisitedBlocks.count(BB)) {
- // We hit our node again, meaning we had a cycle, we must insert a phi
- // node to break it so we have an operand. The only case this will
- // insert useless phis is if we have irreducible control flow.
- return MSSA->createMemoryPhi(BB);
- } else if (VisitedBlocks.insert(BB).second) {
- // Mark us visited so we can detect a cycle
- SmallVector<MemoryAccess *, 8> PhiOps;
-
- // Recurse to get the values in our predecessors for placement of a
- // potential phi node. This will insert phi nodes if we cycle in order to
- // break the cycle and have an operand.
- for (auto *Pred : predecessors(BB))
- PhiOps.push_back(getPreviousDefFromEnd(Pred));
-
- // Now try to simplify the ops to avoid placing a phi.
- // This may return null if we never created a phi yet, that's okay
- MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
- bool PHIExistsButNeedsUpdate = false;
- // See if the existing phi operands match what we need.
- // Unlike normal SSA, we only allow one phi node per block, so we can't just
- // create a new one.
- if (Phi && Phi->getNumOperands() != 0)
- if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
- PHIExistsButNeedsUpdate = true;
- }
-
- // See if we can avoid the phi by simplifying it.
- auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
- // If we couldn't simplify, we may have to create a phi
- if (Result == Phi) {
- if (!Phi)
- Phi = MSSA->createMemoryPhi(BB);
-
- // These will have been filled in by the recursive read we did above.
- if (PHIExistsButNeedsUpdate) {
- std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin());
- std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
- } else {
- unsigned i = 0;
- for (auto *Pred : predecessors(BB))
- Phi->addIncoming(PhiOps[i++], Pred);
- }
-
- Result = Phi;
- }
- if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Result))
- InsertedPHIs.push_back(MP);
- // Set ourselves up for the next variable by resetting visited state.
- VisitedBlocks.erase(BB);
- return Result;
- }
- llvm_unreachable("Should have hit one of the three cases above");
-}
-
-// This starts at the memory access, and goes backwards in the block to find the
-// previous definition. If a definition is not found the block of the access,
-// it continues globally, creating phi nodes to ensure we have a single
-// definition.
-MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
- auto *LocalResult = getPreviousDefInBlock(MA);
-
- return LocalResult ? LocalResult : getPreviousDefRecursive(MA->getBlock());
-}
-
-// This starts at the memory access, and goes backwards in the block to the find
-// the previous definition. If the definition is not found in the block of the
-// access, it returns nullptr.
-MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
- auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
-
- // It's possible there are no defs, or we got handed the first def to start.
- if (Defs) {
- // If this is a def, we can just use the def iterators.
- if (!isa<MemoryUse>(MA)) {
- auto Iter = MA->getReverseDefsIterator();
- ++Iter;
- if (Iter != Defs->rend())
- return &*Iter;
- } else {
- // Otherwise, have to walk the all access iterator.
- auto Iter = MA->getReverseIterator();
- ++Iter;
- while (&*Iter != &*Defs->begin()) {
- if (!isa<MemoryUse>(*Iter))
- return &*Iter;
- --Iter;
- }
- // At this point it must be pointing at firstdef
- assert(&*Iter == &*Defs->begin() &&
- "Should have hit first def walking backwards");
- return &*Iter;
- }
- }
- return nullptr;
-}
-
-// This starts at the end of block
-MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(BasicBlock *BB) {
- auto *Defs = MSSA->getWritableBlockDefs(BB);
-
- if (Defs)
- return &*Defs->rbegin();
-
- return getPreviousDefRecursive(BB);
-}
-// Recurse over a set of phi uses to eliminate the trivial ones
-MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
- if (!Phi)
- return nullptr;
- TrackingVH<MemoryAccess> Res(Phi);
- SmallVector<TrackingVH<Value>, 8> Uses;
- std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
- for (auto &U : Uses) {
- if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
- auto OperRange = UsePhi->operands();
- tryRemoveTrivialPhi(UsePhi, OperRange);
- }
- }
- return Res;
-}
-
-// Eliminate trivial phis
-// Phis are trivial if they are defined either by themselves, or all the same
-// argument.
-// IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
-// We recursively try to remove them.
-template <class RangeType>
-MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
- RangeType &Operands) {
- // Detect equal or self arguments
- MemoryAccess *Same = nullptr;
- for (auto &Op : Operands) {
- // If the same or self, good so far
- if (Op == Phi || Op == Same)
- continue;
- // not the same, return the phi since it's not eliminatable by us
- if (Same)
- return Phi;
- Same = cast<MemoryAccess>(Op);
- }
- // Never found a non-self reference, the phi is undef
- if (Same == nullptr)
- return MSSA->getLiveOnEntryDef();
- if (Phi) {
- Phi->replaceAllUsesWith(Same);
- removeMemoryAccess(Phi);
- }
-
- // We should only end up recursing in case we replaced something, in which
- // case, we may have made other Phis trivial.
- return recursePhi(Same);
-}
-
-void MemorySSAUpdater::insertUse(MemoryUse *MU) {
- InsertedPHIs.clear();
- MU->setDefiningAccess(getPreviousDef(MU));
- // Unlike for defs, there is no extra work to do. Because uses do not create
- // new may-defs, there are only two cases:
- //
- // 1. There was a def already below us, and therefore, we should not have
- // created a phi node because it was already needed for the def.
- //
- // 2. There is no def below us, and therefore, there is no extra renaming work
- // to do.
-}
-
-// Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
-void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
- MemoryAccess *NewDef) {
- // Replace any operand with us an incoming block with the new defining
- // access.
- int i = MP->getBasicBlockIndex(BB);
- assert(i != -1 && "Should have found the basic block in the phi");
- // We can't just compare i against getNumOperands since one is signed and the
- // other not. So use it to index into the block iterator.
- for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
- ++BBIter) {
- if (*BBIter != BB)
- break;
- MP->setIncomingValue(i, NewDef);
- ++i;
- }
-}
-
-// A brief description of the algorithm:
-// First, we compute what should define the new def, using the SSA
-// construction algorithm.
-// Then, we update the defs below us (and any new phi nodes) in the graph to
-// point to the correct new defs, to ensure we only have one variable, and no
-// disconnected stores.
-void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
- InsertedPHIs.clear();
-
- // See if we had a local def, and if not, go hunting.
- MemoryAccess *DefBefore = getPreviousDefInBlock(MD);
- bool DefBeforeSameBlock = DefBefore != nullptr;
- if (!DefBefore)
- DefBefore = getPreviousDefRecursive(MD->getBlock());
-
- // There is a def before us, which means we can replace any store/phi uses
- // of that thing with us, since we are in the way of whatever was there
- // before.
- // We now define that def's memorydefs and memoryphis
- if (DefBeforeSameBlock) {
- for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end();
- UI != UE;) {
- Use &U = *UI++;
- // Leave the uses alone
- if (isa<MemoryUse>(U.getUser()))
- continue;
- U.set(MD);
- }
- }
-
- // and that def is now our defining access.
- // We change them in this order otherwise we will appear in the use list
- // above and reset ourselves.
- MD->setDefiningAccess(DefBefore);
-
- SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(),
- InsertedPHIs.end());
- if (!DefBeforeSameBlock) {
- // If there was a local def before us, we must have the same effect it
- // did. Because every may-def is the same, any phis/etc we would create, it
- // would also have created. If there was no local def before us, we
- // performed a global update, and have to search all successors and make
- // sure we update the first def in each of them (following all paths until
- // we hit the first def along each path). This may also insert phi nodes.
- // TODO: There are other cases we can skip this work, such as when we have a
- // single successor, and only used a straight line of single pred blocks
- // backwards to find the def. To make that work, we'd have to track whether
- // getDefRecursive only ever used the single predecessor case. These types
- // of paths also only exist in between CFG simplifications.
- FixupList.push_back(MD);
- }
-
- while (!FixupList.empty()) {
- unsigned StartingPHISize = InsertedPHIs.size();
- fixupDefs(FixupList);
- FixupList.clear();
- // Put any new phis on the fixup list, and process them
- FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end());
- }
- // Now that all fixups are done, rename all uses if we are asked.
- if (RenameUses) {
- SmallPtrSet<BasicBlock *, 16> Visited;
- BasicBlock *StartBlock = MD->getBlock();
- // We are guaranteed there is a def in the block, because we just got it
- // handed to us in this function.
- MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
- // Convert to incoming value if it's a memorydef. A phi *is* already an
- // incoming value.
- if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
- FirstDef = MD->getDefiningAccess();
-
- MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
- // We just inserted a phi into this block, so the incoming value will become
- // the phi anyway, so it does not matter what we pass.
- for (auto *MP : InsertedPHIs)
- MSSA->renamePass(MP->getBlock(), nullptr, Visited);
- }
-}
-
-void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) {
- SmallPtrSet<const BasicBlock *, 8> Seen;
- SmallVector<const BasicBlock *, 16> Worklist;
- for (auto *NewDef : Vars) {
- // First, see if there is a local def after the operand.
- auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
- auto DefIter = NewDef->getDefsIterator();
-
- // If there is a local def after us, we only have to rename that.
- if (++DefIter != Defs->end()) {
- cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
- continue;
- }
-
- // Otherwise, we need to search down through the CFG.
- // For each of our successors, handle it directly if their is a phi, or
- // place on the fixup worklist.
- for (const auto *S : successors(NewDef->getBlock())) {
- if (auto *MP = MSSA->getMemoryAccess(S))
- setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
- else
- Worklist.push_back(S);
- }
-
- while (!Worklist.empty()) {
- const BasicBlock *FixupBlock = Worklist.back();
- Worklist.pop_back();
-
- // Get the first def in the block that isn't a phi node.
- if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
- auto *FirstDef = &*Defs->begin();
- // The loop above and below should have taken care of phi nodes
- assert(!isa<MemoryPhi>(FirstDef) &&
- "Should have already handled phi nodes!");
- // We are now this def's defining access, make sure we actually dominate
- // it
- assert(MSSA->dominates(NewDef, FirstDef) &&
- "Should have dominated the new access");
-
- // This may insert new phi nodes, because we are not guaranteed the
- // block we are processing has a single pred, and depending where the
- // store was inserted, it may require phi nodes below it.
- cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
- return;
- }
- // We didn't find a def, so we must continue.
- for (const auto *S : successors(FixupBlock)) {
- // If there is a phi node, handle it.
- // Otherwise, put the block on the worklist
- if (auto *MP = MSSA->getMemoryAccess(S))
- setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
- else {
- // If we cycle, we should have ended up at a phi node that we already
- // processed. FIXME: Double check this
- if (!Seen.insert(S).second)
- continue;
- Worklist.push_back(S);
- }
- }
- }
- }
-}
-
-// Move What before Where in the MemorySSA IR.
-template <class WhereType>
-void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
- WhereType Where) {
- // Replace all our users with our defining access.
- What->replaceAllUsesWith(What->getDefiningAccess());
-
- // Let MemorySSA take care of moving it around in the lists.
- MSSA->moveTo(What, BB, Where);
-
- // Now reinsert it into the IR and do whatever fixups needed.
- if (auto *MD = dyn_cast<MemoryDef>(What))
- insertDef(MD);
- else
- insertUse(cast<MemoryUse>(What));
-}
-
-// Move What before Where in the MemorySSA IR.
-void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
- moveTo(What, Where->getBlock(), Where->getIterator());
-}
-
-// Move What after Where in the MemorySSA IR.
-void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
- moveTo(What, Where->getBlock(), ++Where->getIterator());
-}
-
-void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
- MemorySSA::InsertionPlace Where) {
- return moveTo(What, BB, Where);
-}
-
-/// \brief If all arguments of a MemoryPHI are defined by the same incoming
-/// argument, return that argument.
-static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
- MemoryAccess *MA = nullptr;
-
- for (auto &Arg : MP->operands()) {
- if (!MA)
- MA = cast<MemoryAccess>(Arg);
- else if (MA != Arg)
- return nullptr;
- }
- return MA;
-}
-void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) {
- assert(!MSSA->isLiveOnEntryDef(MA) &&
- "Trying to remove the live on entry def");
- // We can only delete phi nodes if they have no uses, or we can replace all
- // uses with a single definition.
- MemoryAccess *NewDefTarget = nullptr;
- if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
- // Note that it is sufficient to know that all edges of the phi node have
- // the same argument. If they do, by the definition of dominance frontiers
- // (which we used to place this phi), that argument must dominate this phi,
- // and thus, must dominate the phi's uses, and so we will not hit the assert
- // below.
- NewDefTarget = onlySingleValue(MP);
- assert((NewDefTarget || MP->use_empty()) &&
- "We can't delete this memory phi");
- } else {
- NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
- }
-
- // Re-point the uses at our defining access
- if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
- // Reset optimized on users of this store, and reset the uses.
- // A few notes:
- // 1. This is a slightly modified version of RAUW to avoid walking the
- // uses twice here.
- // 2. If we wanted to be complete, we would have to reset the optimized
- // flags on users of phi nodes if doing the below makes a phi node have all
- // the same arguments. Instead, we prefer users to removeMemoryAccess those
- // phi nodes, because doing it here would be N^3.
- if (MA->hasValueHandle())
- ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
- // Note: We assume MemorySSA is not used in metadata since it's not really
- // part of the IR.
-
- while (!MA->use_empty()) {
- Use &U = *MA->use_begin();
- if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
- MUD->resetOptimized();
- U.set(NewDefTarget);
- }
- }
-
- // The call below to erase will destroy MA, so we can't change the order we
- // are doing things here
- MSSA->removeFromLookups(MA);
- MSSA->removeFromLists(MA);
-}
-
-MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
- Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
- MemorySSA::InsertionPlace Point) {
- MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
- MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
- return NewAccess;
-}
-
-MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
- Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
- assert(I->getParent() == InsertPt->getBlock() &&
- "New and old access must be in the same block");
- MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
- MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
- InsertPt->getIterator());
- return NewAccess;
-}
-
-MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
- Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
- assert(I->getParent() == InsertPt->getBlock() &&
- "New and old access must be in the same block");
- MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
- MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
- ++InsertPt->getIterator());
- return NewAccess;
-}
-
-} // namespace llvm
diff --git a/llvm/lib/Transforms/Utils/Utils.cpp b/llvm/lib/Transforms/Utils/Utils.cpp
index dd47c5532c5..7106483c3bd 100644
--- a/llvm/lib/Transforms/Utils/Utils.cpp
+++ b/llvm/lib/Transforms/Utils/Utils.cpp
@@ -35,8 +35,6 @@ void llvm::initializeTransformUtils(PassRegistry &Registry) {
initializeUnifyFunctionExitNodesPass(Registry);
initializeInstSimplifierPass(Registry);
initializeMetaRenamerPass(Registry);
- initializeMemorySSAWrapperPassPass(Registry);
- initializeMemorySSAPrinterLegacyPassPass(Registry);
initializeStripGCRelocatesPass(Registry);
initializePredicateInfoPrinterLegacyPassPass(Registry);
}
OpenPOWER on IntegriCloud