summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms')
-rw-r--r--llvm/lib/Transforms/IPO/PassManagerBuilder.cpp11
-rw-r--r--llvm/lib/Transforms/Scalar/CMakeLists.txt1
-rw-r--r--llvm/lib/Transforms/Scalar/Scalar.cpp2
-rw-r--r--llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp626
4 files changed, 639 insertions, 1 deletions
diff --git a/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp b/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
index 590fabf8808..20359457261 100644
--- a/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
+++ b/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
@@ -38,6 +38,7 @@
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
+#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
#include "llvm/Transforms/Vectorize.h"
using namespace llvm;
@@ -145,6 +146,11 @@ static cl::opt<bool>
cl::Hidden,
cl::desc("Disable shrink-wrap library calls"));
+static cl::opt<bool>
+ EnableSimpleLoopUnswitch("enable-simple-loop-unswitch", cl::init(false),
+ cl::Hidden,
+ cl::desc("Enable the simple loop unswitch pass."));
+
PassManagerBuilder::PassManagerBuilder() {
OptLevel = 2;
SizeLevel = 0;
@@ -318,7 +324,10 @@ void PassManagerBuilder::addFunctionSimplificationPasses(
// Rotate Loop - disable header duplication at -Oz
MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
MPM.add(createLICMPass()); // Hoist loop invariants
- MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
+ if (EnableSimpleLoopUnswitch)
+ MPM.add(createSimpleLoopUnswitchLegacyPass());
+ else
+ MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
MPM.add(createCFGSimplificationPass());
addInstructionCombiningPass(MPM);
MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars
diff --git a/llvm/lib/Transforms/Scalar/CMakeLists.txt b/llvm/lib/Transforms/Scalar/CMakeLists.txt
index b323ab3bd44..52339075876 100644
--- a/llvm/lib/Transforms/Scalar/CMakeLists.txt
+++ b/llvm/lib/Transforms/Scalar/CMakeLists.txt
@@ -55,6 +55,7 @@ add_llvm_library(LLVMScalarOpts
Scalar.cpp
Scalarizer.cpp
SeparateConstOffsetFromGEP.cpp
+ SimpleLoopUnswitch.cpp
SimplifyCFGPass.cpp
Sink.cpp
SpeculativeExecution.cpp
diff --git a/llvm/lib/Transforms/Scalar/Scalar.cpp b/llvm/lib/Transforms/Scalar/Scalar.cpp
index 00e3c95f6f0..52201d8f3e5 100644
--- a/llvm/lib/Transforms/Scalar/Scalar.cpp
+++ b/llvm/lib/Transforms/Scalar/Scalar.cpp
@@ -21,6 +21,7 @@
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/Transforms/Scalar/GVN.h"
+#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
@@ -83,6 +84,7 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) {
initializeCFGSimplifyPassPass(Registry);
initializeLateCFGSimplifyPassPass(Registry);
initializeStructurizeCFGPass(Registry);
+ initializeSimpleLoopUnswitchLegacyPassPass(Registry);
initializeSinkingLegacyPassPass(Registry);
initializeTailCallElimPass(Registry);
initializeSeparateConstOffsetFromGEPPass(Registry);
diff --git a/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp b/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp
new file mode 100644
index 00000000000..fb1b47c4827
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp
@@ -0,0 +1,626 @@
+//===-- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Scalar/LoopPassManager.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+
+#define DEBUG_TYPE "simple-loop-unswitch"
+
+using namespace llvm;
+
+STATISTIC(NumBranches, "Number of branches unswitched");
+STATISTIC(NumSwitches, "Number of switches unswitched");
+STATISTIC(NumTrivial, "Number of unswitches that are trivial");
+
+static void replaceLoopUsesWithConstant(Loop &L, Value &LIC,
+ Constant &Replacement) {
+ assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
+
+ // Replace uses of LIC in the loop with the given constant.
+ for (auto UI = LIC.use_begin(), UE = LIC.use_end(); UI != UE;) {
+ // Grab the use and walk past it so we can clobber it in the use list.
+ Use *U = &*UI++;
+ Instruction *UserI = dyn_cast<Instruction>(U->getUser());
+ if (!UserI || !L.contains(UserI))
+ continue;
+
+ // Replace this use within the loop body.
+ *U = &Replacement;
+ }
+}
+
+/// Update the dominator tree after removing one exiting predecessor of a loop
+/// exit block.
+static void updateLoopExitIDom(BasicBlock *LoopExitBB, Loop &L,
+ DominatorTree &DT) {
+ assert(pred_begin(LoopExitBB) != pred_end(LoopExitBB) &&
+ "Cannot have empty predecessors of the loop exit block if we split "
+ "off a block to unswitch!");
+
+ BasicBlock *IDom = *pred_begin(LoopExitBB);
+ // Walk all of the other predecessors finding the nearest common dominator
+ // until all predecessors are covered or we reach the loop header. The loop
+ // header necessarily dominates all loop exit blocks in loop simplified form
+ // so we can early-exit the moment we hit that block.
+ for (auto PI = std::next(pred_begin(LoopExitBB)), PE = pred_end(LoopExitBB);
+ PI != PE && IDom != L.getHeader(); ++PI)
+ IDom = DT.findNearestCommonDominator(IDom, *PI);
+
+ DT.changeImmediateDominator(LoopExitBB, IDom);
+}
+
+/// Update the dominator tree after unswitching a particular former exit block.
+///
+/// This handles the full update of the dominator tree after hoisting a block
+/// that previously was an exit block (or split off of an exit block) up to be
+/// reached from the new immediate dominator of the preheader.
+///
+/// The common case is simple -- we just move the unswitched block to have an
+/// immediate dominator of the old preheader. But in complex cases, there may
+/// be other blocks reachable from the unswitched block that are immediately
+/// dominated by some node between the unswitched one and the old preheader.
+/// All of these also need to be hoisted in the dominator tree. We also want to
+/// minimize queries to the dominator tree because each step of this
+/// invalidates any DFS numbers that would make queries fast.
+static void updateDTAfterUnswitch(BasicBlock *UnswitchedBB, BasicBlock *OldPH,
+ DominatorTree &DT) {
+ DomTreeNode *OldPHNode = DT[OldPH];
+ DomTreeNode *UnswitchedNode = DT[UnswitchedBB];
+ // If the dominator tree has already been updated for this unswitched node,
+ // we're done. This makes it easier to use this routine if there are multiple
+ // paths to the same unswitched destination.
+ if (UnswitchedNode->getIDom() == OldPHNode)
+ return;
+
+ // First collect the domtree nodes that we are hoisting over. These are the
+ // set of nodes which may have children that need to be hoisted as well.
+ SmallPtrSet<DomTreeNode *, 4> DomChain;
+ for (auto *IDom = UnswitchedNode->getIDom(); IDom != OldPHNode;
+ IDom = IDom->getIDom())
+ DomChain.insert(IDom);
+
+ // The unswitched block ends up immediately dominated by the old preheader --
+ // regardless of whether it is the loop exit block or split off of the loop
+ // exit block.
+ DT.changeImmediateDominator(UnswitchedNode, OldPHNode);
+
+ // Blocks reachable from the unswitched block may need to change their IDom
+ // as well.
+ SmallSetVector<BasicBlock *, 4> Worklist;
+ for (auto *SuccBB : successors(UnswitchedBB))
+ Worklist.insert(SuccBB);
+
+ // Walk the worklist. We grow the list in the loop and so must recompute size.
+ for (int i = 0; i < (int)Worklist.size(); ++i) {
+ auto *BB = Worklist[i];
+
+ DomTreeNode *Node = DT[BB];
+ assert(!DomChain.count(Node) &&
+ "Cannot be dominated by a block you can reach!");
+ // If this block doesn't have an immediate dominator somewhere in the chain
+ // we hoisted over, then its position in the domtree hasn't changed. Either
+ // it is above the region hoisted and still valid, or it is below the
+ // hoisted block and so was trivially updated. This also applies to
+ // everything reachable from this block so we're completely done with the
+ // it.
+ if (!DomChain.count(Node->getIDom()))
+ continue;
+
+ // We need to change the IDom for this node but also walk its successors
+ // which could have similar dominance position.
+ DT.changeImmediateDominator(Node, OldPHNode);
+ for (auto *SuccBB : successors(BB))
+ Worklist.insert(SuccBB);
+ }
+}
+
+/// Unswitch a trivial branch if the condition is loop invariant.
+///
+/// This routine should only be called when loop code leading to the branch has
+/// been validated as trivial (no side effects). This routine checks if the
+/// condition is invariant and one of the successors is a loop exit. This
+/// allows us to unswitch without duplicating the loop, making it trivial.
+///
+/// If this routine fails to unswitch the branch it returns false.
+///
+/// If the branch can be unswitched, this routine splits the preheader and
+/// hoists the branch above that split. Preserves loop simplified form
+/// (splitting the exit block as necessary). It simplifies the branch within
+/// the loop to an unconditional branch but doesn't remove it entirely. Further
+/// cleanup can be done with some simplify-cfg like pass.
+static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
+ LoopInfo &LI) {
+ assert(BI.isConditional() && "Can only unswitch a conditional branch!");
+ DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
+
+ Value *LoopCond = BI.getCondition();
+
+ // Need a trivial loop condition to unswitch.
+ if (!L.isLoopInvariant(LoopCond))
+ return false;
+
+ // FIXME: We should compute this once at the start and update it!
+ SmallVector<BasicBlock *, 16> ExitBlocks;
+ L.getExitBlocks(ExitBlocks);
+ SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(),
+ ExitBlocks.end());
+
+ // Check to see if a successor of the branch is guaranteed to
+ // exit through a unique exit block without having any
+ // side-effects. If so, determine the value of Cond that causes
+ // it to do this.
+ ConstantInt *CondVal = ConstantInt::getTrue(BI.getContext());
+ ConstantInt *Replacement = ConstantInt::getFalse(BI.getContext());
+ int LoopExitSuccIdx = 0;
+ auto *LoopExitBB = BI.getSuccessor(0);
+ if (!ExitBlockSet.count(LoopExitBB)) {
+ std::swap(CondVal, Replacement);
+ LoopExitSuccIdx = 1;
+ LoopExitBB = BI.getSuccessor(1);
+ if (!ExitBlockSet.count(LoopExitBB))
+ return false;
+ }
+ auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
+ assert(L.contains(ContinueBB) &&
+ "Cannot have both successors exit and still be in the loop!");
+
+ // If the loop exit block contains phi nodes, this isn't trivial.
+ // FIXME: We should examine the PHI to determine whether or not we can handle
+ // it trivially.
+ if (isa<PHINode>(LoopExitBB->begin()))
+ return false;
+
+ DEBUG(dbgs() << " unswitching trivial branch when: " << CondVal
+ << " == " << LoopCond << "\n");
+
+ // Split the preheader, so that we know that there is a safe place to insert
+ // the conditional branch. We will change the preheader to have a conditional
+ // branch on LoopCond.
+ BasicBlock *OldPH = L.getLoopPreheader();
+ BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
+
+ // Now that we have a place to insert the conditional branch, create a place
+ // to branch to: this is the exit block out of the loop that we are
+ // unswitching. We need to split this if there are other loop predecessors.
+ // Because the loop is in simplified form, *any* other predecessor is enough.
+ BasicBlock *UnswitchedBB;
+ if (BasicBlock *PredBB = LoopExitBB->getUniquePredecessor()) {
+ (void)PredBB;
+ assert(PredBB == BI.getParent() && "A branch's parent is't a predecessor!");
+ UnswitchedBB = LoopExitBB;
+ } else {
+ UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
+ }
+
+ BasicBlock *ParentBB = BI.getParent();
+
+ // Now splice the branch to gate reaching the new preheader and re-point its
+ // successors.
+ OldPH->getInstList().splice(std::prev(OldPH->end()),
+ BI.getParent()->getInstList(), BI);
+ OldPH->getTerminator()->eraseFromParent();
+ BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
+ BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
+
+ // Create a new unconditional branch that will continue the loop as a new
+ // terminator.
+ BranchInst::Create(ContinueBB, ParentBB);
+
+ // Now we need to update the dominator tree.
+ updateDTAfterUnswitch(UnswitchedBB, OldPH, DT);
+ // But if we split something off of the loop exit block then we also removed
+ // one of the predecessors for the loop exit block and may need to update its
+ // idom.
+ if (UnswitchedBB != LoopExitBB)
+ updateLoopExitIDom(LoopExitBB, L, DT);
+
+ // Since this is an i1 condition we can also trivially replace uses of it
+ // within the loop with a constant.
+ replaceLoopUsesWithConstant(L, *LoopCond, *Replacement);
+
+ ++NumTrivial;
+ ++NumBranches;
+ return true;
+}
+
+/// Unswitch a trivial switch if the condition is loop invariant.
+///
+/// This routine should only be called when loop code leading to the switch has
+/// been validated as trivial (no side effects). This routine checks if the
+/// condition is invariant and that at least one of the successors is a loop
+/// exit. This allows us to unswitch without duplicating the loop, making it
+/// trivial.
+///
+/// If this routine fails to unswitch the switch it returns false.
+///
+/// If the switch can be unswitched, this routine splits the preheader and
+/// copies the switch above that split. If the default case is one of the
+/// exiting cases, it copies the non-exiting cases and points them at the new
+/// preheader. If the default case is not exiting, it copies the exiting cases
+/// and points the default at the preheader. It preserves loop simplified form
+/// (splitting the exit blocks as necessary). It simplifies the switch within
+/// the loop by removing now-dead cases. If the default case is one of those
+/// unswitched, it replaces its destination with a new basic block containing
+/// only unreachable. Such basic blocks, while technically loop exits, are not
+/// considered for unswitching so this is a stable transform and the same
+/// switch will not be revisited. If after unswitching there is only a single
+/// in-loop successor, the switch is further simplified to an unconditional
+/// branch. Still more cleanup can be done with some simplify-cfg like pass.
+static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
+ LoopInfo &LI) {
+ DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
+ Value *LoopCond = SI.getCondition();
+
+ // If this isn't switching on an invariant condition, we can't unswitch it.
+ if (!L.isLoopInvariant(LoopCond))
+ return false;
+
+ // FIXME: We should compute this once at the start and update it!
+ SmallVector<BasicBlock *, 16> ExitBlocks;
+ L.getExitBlocks(ExitBlocks);
+ SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(),
+ ExitBlocks.end());
+
+ SmallVector<int, 4> ExitCaseIndices;
+ for (auto Case : SI.cases()) {
+ auto *SuccBB = Case.getCaseSuccessor();
+ if (ExitBlockSet.count(SuccBB) && !isa<PHINode>(SuccBB->begin()))
+ ExitCaseIndices.push_back(Case.getCaseIndex());
+ }
+ BasicBlock *DefaultExitBB = nullptr;
+ if (ExitBlockSet.count(SI.getDefaultDest()) &&
+ !isa<PHINode>(SI.getDefaultDest()->begin()) &&
+ !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
+ DefaultExitBB = SI.getDefaultDest();
+ else if (ExitCaseIndices.empty())
+ return false;
+
+ DEBUG(dbgs() << " unswitching trivial cases...\n");
+
+ SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
+ ExitCases.reserve(ExitCaseIndices.size());
+ // We walk the case indices backwards so that we remove the last case first
+ // and don't disrupt the earlier indices.
+ for (unsigned Index : reverse(ExitCaseIndices)) {
+ auto CaseI = SI.case_begin() + Index;
+ // Save the value of this case.
+ ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
+ // Delete the unswitched cases.
+ SI.removeCase(CaseI);
+ }
+
+ // Check if after this all of the remaining cases point at the same
+ // successor.
+ BasicBlock *CommonSuccBB = nullptr;
+ if (SI.getNumCases() > 0 &&
+ std::all_of(std::next(SI.case_begin()), SI.case_end(),
+ [&SI](const SwitchInst::CaseHandle &Case) {
+ return Case.getCaseSuccessor() ==
+ SI.case_begin()->getCaseSuccessor();
+ }))
+ CommonSuccBB = SI.case_begin()->getCaseSuccessor();
+
+ if (DefaultExitBB) {
+ // We can't remove the default edge so replace it with an edge to either
+ // the single common remaining successor (if we have one) or an unreachable
+ // block.
+ if (CommonSuccBB) {
+ SI.setDefaultDest(CommonSuccBB);
+ } else {
+ BasicBlock *ParentBB = SI.getParent();
+ BasicBlock *UnreachableBB = BasicBlock::Create(
+ ParentBB->getContext(),
+ Twine(ParentBB->getName()) + ".unreachable_default",
+ ParentBB->getParent());
+ new UnreachableInst(ParentBB->getContext(), UnreachableBB);
+ SI.setDefaultDest(UnreachableBB);
+ DT.addNewBlock(UnreachableBB, ParentBB);
+ }
+ } else {
+ // If we're not unswitching the default, we need it to match any cases to
+ // have a common successor or if we have no cases it is the common
+ // successor.
+ if (SI.getNumCases() == 0)
+ CommonSuccBB = SI.getDefaultDest();
+ else if (SI.getDefaultDest() != CommonSuccBB)
+ CommonSuccBB = nullptr;
+ }
+
+ // Split the preheader, so that we know that there is a safe place to insert
+ // the switch.
+ BasicBlock *OldPH = L.getLoopPreheader();
+ BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
+ OldPH->getTerminator()->eraseFromParent();
+
+ // Now add the unswitched switch.
+ auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
+
+ // Split any exit blocks with remaining in-loop predecessors. We walk in
+ // reverse so that we split in the same order as the cases appeared. This is
+ // purely for convenience of reading the resulting IR, but it doesn't cost
+ // anything really.
+ SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
+ // Handle the default exit if necessary.
+ // FIXME: It'd be great if we could merge this with the loop below but LLVM's
+ // ranges aren't quite powerful enough yet.
+ if (DefaultExitBB && !pred_empty(DefaultExitBB)) {
+ auto *SplitBB =
+ SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
+ updateLoopExitIDom(DefaultExitBB, L, DT);
+ DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
+ }
+ // Note that we must use a reference in the for loop so that we update the
+ // container.
+ for (auto &CasePair : reverse(ExitCases)) {
+ // Grab a reference to the exit block in the pair so that we can update it.
+ BasicBlock *&ExitBB = CasePair.second;
+
+ // If this case is the last edge into the exit block, we can simply reuse it
+ // as it will no longer be a loop exit. No mapping necessary.
+ if (pred_empty(ExitBB))
+ continue;
+
+ // Otherwise we need to split the exit block so that we retain an exit
+ // block from the loop and a target for the unswitched condition.
+ BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
+ if (!SplitExitBB) {
+ // If this is the first time we see this, do the split and remember it.
+ SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
+ updateLoopExitIDom(ExitBB, L, DT);
+ }
+ ExitBB = SplitExitBB;
+ }
+
+ // Now add the unswitched cases. We do this in reverse order as we built them
+ // in reverse order.
+ for (auto CasePair : reverse(ExitCases)) {
+ ConstantInt *CaseVal = CasePair.first;
+ BasicBlock *UnswitchedBB = CasePair.second;
+
+ NewSI->addCase(CaseVal, UnswitchedBB);
+ updateDTAfterUnswitch(UnswitchedBB, OldPH, DT);
+ }
+
+ // If the default was unswitched, re-point it and add explicit cases for
+ // entering the loop.
+ if (DefaultExitBB) {
+ NewSI->setDefaultDest(DefaultExitBB);
+ updateDTAfterUnswitch(DefaultExitBB, OldPH, DT);
+
+ // We removed all the exit cases, so we just copy the cases to the
+ // unswitched switch.
+ for (auto Case : SI.cases())
+ NewSI->addCase(Case.getCaseValue(), NewPH);
+ }
+
+ // If we ended up with a common successor for every path through the switch
+ // after unswitching, rewrite it to an unconditional branch to make it easy
+ // to recognize. Otherwise we potentially have to recognize the default case
+ // pointing at unreachable and other complexity.
+ if (CommonSuccBB) {
+ BasicBlock *BB = SI.getParent();
+ SI.eraseFromParent();
+ BranchInst::Create(CommonSuccBB, BB);
+ }
+
+ DT.verifyDomTree();
+ ++NumTrivial;
+ ++NumSwitches;
+ return true;
+}
+
+/// This routine scans the loop to find a branch or switch which occurs before
+/// any side effects occur. These can potentially be unswitched without
+/// duplicating the loop. If a branch or switch is successfully unswitched the
+/// scanning continues to see if subsequent branches or switches have become
+/// trivial. Once all trivial candidates have been unswitched, this routine
+/// returns.
+///
+/// The return value indicates whether anything was unswitched (and therefore
+/// changed).
+static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
+ LoopInfo &LI) {
+ bool Changed = false;
+
+ // If loop header has only one reachable successor we should keep looking for
+ // trivial condition candidates in the successor as well. An alternative is
+ // to constant fold conditions and merge successors into loop header (then we
+ // only need to check header's terminator). The reason for not doing this in
+ // LoopUnswitch pass is that it could potentially break LoopPassManager's
+ // invariants. Folding dead branches could either eliminate the current loop
+ // or make other loops unreachable. LCSSA form might also not be preserved
+ // after deleting branches. The following code keeps traversing loop header's
+ // successors until it finds the trivial condition candidate (condition that
+ // is not a constant). Since unswitching generates branches with constant
+ // conditions, this scenario could be very common in practice.
+ BasicBlock *CurrentBB = L.getHeader();
+ SmallPtrSet<BasicBlock *, 8> Visited;
+ Visited.insert(CurrentBB);
+ do {
+ // Check if there are any side-effecting instructions (e.g. stores, calls,
+ // volatile loads) in the part of the loop that the code *would* execute
+ // without unswitching.
+ if (llvm::any_of(*CurrentBB,
+ [](Instruction &I) { return I.mayHaveSideEffects(); }))
+ return Changed;
+
+ TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
+
+ if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
+ // Don't bother trying to unswitch past a switch with a constant
+ // condition. This should be removed prior to running this pass by
+ // simplify-cfg.
+ if (isa<Constant>(SI->getCondition()))
+ return Changed;
+
+ if (!unswitchTrivialSwitch(L, *SI, DT, LI))
+ // Coludn't unswitch this one so we're done.
+ return Changed;
+
+ // Mark that we managed to unswitch something.
+ Changed = true;
+
+ // If unswitching turned the terminator into an unconditional branch then
+ // we can continue. The unswitching logic specifically works to fold any
+ // cases it can into an unconditional branch to make it easier to
+ // recognize here.
+ auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
+ if (!BI || BI->isConditional())
+ return Changed;
+
+ CurrentBB = BI->getSuccessor(0);
+ continue;
+ }
+
+ auto *BI = dyn_cast<BranchInst>(CurrentTerm);
+ if (!BI)
+ // We do not understand other terminator instructions.
+ return Changed;
+
+ // Don't bother trying to unswitch past an unconditional branch or a branch
+ // with a constant value. These should be removed by simplify-cfg prior to
+ // running this pass.
+ if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
+ return Changed;
+
+ // Found a trivial condition candidate: non-foldable conditional branch. If
+ // we fail to unswitch this, we can't do anything else that is trivial.
+ if (!unswitchTrivialBranch(L, *BI, DT, LI))
+ return Changed;
+
+ // Mark that we managed to unswitch something.
+ Changed = true;
+
+ // We unswitched the branch. This should always leave us with an
+ // unconditional branch that we can follow now.
+ BI = cast<BranchInst>(CurrentBB->getTerminator());
+ assert(!BI->isConditional() &&
+ "Cannot form a conditional branch by unswitching1");
+ CurrentBB = BI->getSuccessor(0);
+
+ // When continuing, if we exit the loop or reach a previous visited block,
+ // then we can not reach any trivial condition candidates (unfoldable
+ // branch instructions or switch instructions) and no unswitch can happen.
+ } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
+
+ return Changed;
+}
+
+/// Unswitch control flow predicated on loop invariant conditions.
+///
+/// This first hoists all branches or switches which are trivial (IE, do not
+/// require duplicating any part of the loop) out of the loop body. It then
+/// looks at other loop invariant control flows and tries to unswitch those as
+/// well by cloning the loop if the result is small enough.
+static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
+ AssumptionCache &AC) {
+ assert(L.isLCSSAForm(DT) &&
+ "Loops must be in LCSSA form before unswitching.");
+ bool Changed = false;
+
+ // Must be in loop simplified form: we need a preheader and dedicated exits.
+ if (!L.isLoopSimplifyForm())
+ return false;
+
+ // Try trivial unswitch first before loop over other basic blocks in the loop.
+ Changed |= unswitchAllTrivialConditions(L, DT, LI);
+
+ // FIXME: Add support for non-trivial unswitching by cloning the loop.
+
+ return Changed;
+}
+
+PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
+ LoopStandardAnalysisResults &AR,
+ LPMUpdater &U) {
+ Function &F = *L.getHeader()->getParent();
+ (void)F;
+
+ DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L << "\n");
+
+ if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC))
+ return PreservedAnalyses::all();
+
+#ifndef NDEBUG
+ // Historically this pass has had issues with the dominator tree so verify it
+ // in asserts builds.
+ AR.DT.verifyDomTree();
+#endif
+ return getLoopPassPreservedAnalyses();
+}
+
+namespace {
+class SimpleLoopUnswitchLegacyPass : public LoopPass {
+public:
+ static char ID; // Pass ID, replacement for typeid
+ explicit SimpleLoopUnswitchLegacyPass() : LoopPass(ID) {
+ initializeSimpleLoopUnswitchLegacyPassPass(
+ *PassRegistry::getPassRegistry());
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+ getLoopAnalysisUsage(AU);
+ }
+};
+} // namespace
+
+bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
+ if (skipLoop(L))
+ return false;
+
+ Function &F = *L->getHeader()->getParent();
+
+ DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L << "\n");
+
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+
+ bool Changed = unswitchLoop(*L, DT, LI, AC);
+
+#ifndef NDEBUG
+ // Historically this pass has had issues with the dominator tree so verify it
+ // in asserts builds.
+ DT.verifyDomTree();
+#endif
+ return Changed;
+}
+
+char SimpleLoopUnswitchLegacyPass::ID = 0;
+INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
+ "Simple unswitch loops", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(LoopPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
+ "Simple unswitch loops", false, false)
+
+Pass *llvm::createSimpleLoopUnswitchLegacyPass() {
+ return new SimpleLoopUnswitchLegacyPass();
+}
OpenPOWER on IntegriCloud