diff options
Diffstat (limited to 'llvm/lib/Transforms/Utils/MemorySSAUpdater.cpp')
-rw-r--r-- | llvm/lib/Transforms/Utils/MemorySSAUpdater.cpp | 494 |
1 files changed, 0 insertions, 494 deletions
diff --git a/llvm/lib/Transforms/Utils/MemorySSAUpdater.cpp b/llvm/lib/Transforms/Utils/MemorySSAUpdater.cpp deleted file mode 100644 index c396bd73504..00000000000 --- a/llvm/lib/Transforms/Utils/MemorySSAUpdater.cpp +++ /dev/null @@ -1,494 +0,0 @@ -//===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------===// -// -// This file implements the MemorySSAUpdater class. -// -//===----------------------------------------------------------------===// -#include "llvm/Transforms/Utils/MemorySSAUpdater.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/FormattedStream.h" -#include "llvm/Transforms/Utils/MemorySSA.h" -#include <algorithm> - -#define DEBUG_TYPE "memoryssa" -using namespace llvm; -namespace llvm { -// This is the marker algorithm from "Simple and Efficient Construction of -// Static Single Assignment Form" -// The simple, non-marker algorithm places phi nodes at any join -// Here, we place markers, and only place phi nodes if they end up necessary. -// They are only necessary if they break a cycle (IE we recursively visit -// ourselves again), or we discover, while getting the value of the operands, -// that there are two or more definitions needing to be merged. -// This still will leave non-minimal form in the case of irreducible control -// flow, where phi nodes may be in cycles with themselves, but unnecessary. -MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(BasicBlock *BB) { - // Single predecessor case, just recurse, we can only have one definition. - if (BasicBlock *Pred = BB->getSinglePredecessor()) { - return getPreviousDefFromEnd(Pred); - } else if (VisitedBlocks.count(BB)) { - // We hit our node again, meaning we had a cycle, we must insert a phi - // node to break it so we have an operand. The only case this will - // insert useless phis is if we have irreducible control flow. - return MSSA->createMemoryPhi(BB); - } else if (VisitedBlocks.insert(BB).second) { - // Mark us visited so we can detect a cycle - SmallVector<MemoryAccess *, 8> PhiOps; - - // Recurse to get the values in our predecessors for placement of a - // potential phi node. This will insert phi nodes if we cycle in order to - // break the cycle and have an operand. - for (auto *Pred : predecessors(BB)) - PhiOps.push_back(getPreviousDefFromEnd(Pred)); - - // Now try to simplify the ops to avoid placing a phi. - // This may return null if we never created a phi yet, that's okay - MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); - bool PHIExistsButNeedsUpdate = false; - // See if the existing phi operands match what we need. - // Unlike normal SSA, we only allow one phi node per block, so we can't just - // create a new one. - if (Phi && Phi->getNumOperands() != 0) - if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { - PHIExistsButNeedsUpdate = true; - } - - // See if we can avoid the phi by simplifying it. - auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); - // If we couldn't simplify, we may have to create a phi - if (Result == Phi) { - if (!Phi) - Phi = MSSA->createMemoryPhi(BB); - - // These will have been filled in by the recursive read we did above. - if (PHIExistsButNeedsUpdate) { - std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin()); - std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); - } else { - unsigned i = 0; - for (auto *Pred : predecessors(BB)) - Phi->addIncoming(PhiOps[i++], Pred); - } - - Result = Phi; - } - if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Result)) - InsertedPHIs.push_back(MP); - // Set ourselves up for the next variable by resetting visited state. - VisitedBlocks.erase(BB); - return Result; - } - llvm_unreachable("Should have hit one of the three cases above"); -} - -// This starts at the memory access, and goes backwards in the block to find the -// previous definition. If a definition is not found the block of the access, -// it continues globally, creating phi nodes to ensure we have a single -// definition. -MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { - auto *LocalResult = getPreviousDefInBlock(MA); - - return LocalResult ? LocalResult : getPreviousDefRecursive(MA->getBlock()); -} - -// This starts at the memory access, and goes backwards in the block to the find -// the previous definition. If the definition is not found in the block of the -// access, it returns nullptr. -MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { - auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); - - // It's possible there are no defs, or we got handed the first def to start. - if (Defs) { - // If this is a def, we can just use the def iterators. - if (!isa<MemoryUse>(MA)) { - auto Iter = MA->getReverseDefsIterator(); - ++Iter; - if (Iter != Defs->rend()) - return &*Iter; - } else { - // Otherwise, have to walk the all access iterator. - auto Iter = MA->getReverseIterator(); - ++Iter; - while (&*Iter != &*Defs->begin()) { - if (!isa<MemoryUse>(*Iter)) - return &*Iter; - --Iter; - } - // At this point it must be pointing at firstdef - assert(&*Iter == &*Defs->begin() && - "Should have hit first def walking backwards"); - return &*Iter; - } - } - return nullptr; -} - -// This starts at the end of block -MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(BasicBlock *BB) { - auto *Defs = MSSA->getWritableBlockDefs(BB); - - if (Defs) - return &*Defs->rbegin(); - - return getPreviousDefRecursive(BB); -} -// Recurse over a set of phi uses to eliminate the trivial ones -MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { - if (!Phi) - return nullptr; - TrackingVH<MemoryAccess> Res(Phi); - SmallVector<TrackingVH<Value>, 8> Uses; - std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); - for (auto &U : Uses) { - if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) { - auto OperRange = UsePhi->operands(); - tryRemoveTrivialPhi(UsePhi, OperRange); - } - } - return Res; -} - -// Eliminate trivial phis -// Phis are trivial if they are defined either by themselves, or all the same -// argument. -// IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) -// We recursively try to remove them. -template <class RangeType> -MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, - RangeType &Operands) { - // Detect equal or self arguments - MemoryAccess *Same = nullptr; - for (auto &Op : Operands) { - // If the same or self, good so far - if (Op == Phi || Op == Same) - continue; - // not the same, return the phi since it's not eliminatable by us - if (Same) - return Phi; - Same = cast<MemoryAccess>(Op); - } - // Never found a non-self reference, the phi is undef - if (Same == nullptr) - return MSSA->getLiveOnEntryDef(); - if (Phi) { - Phi->replaceAllUsesWith(Same); - removeMemoryAccess(Phi); - } - - // We should only end up recursing in case we replaced something, in which - // case, we may have made other Phis trivial. - return recursePhi(Same); -} - -void MemorySSAUpdater::insertUse(MemoryUse *MU) { - InsertedPHIs.clear(); - MU->setDefiningAccess(getPreviousDef(MU)); - // Unlike for defs, there is no extra work to do. Because uses do not create - // new may-defs, there are only two cases: - // - // 1. There was a def already below us, and therefore, we should not have - // created a phi node because it was already needed for the def. - // - // 2. There is no def below us, and therefore, there is no extra renaming work - // to do. -} - -// Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. -void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, - MemoryAccess *NewDef) { - // Replace any operand with us an incoming block with the new defining - // access. - int i = MP->getBasicBlockIndex(BB); - assert(i != -1 && "Should have found the basic block in the phi"); - // We can't just compare i against getNumOperands since one is signed and the - // other not. So use it to index into the block iterator. - for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); - ++BBIter) { - if (*BBIter != BB) - break; - MP->setIncomingValue(i, NewDef); - ++i; - } -} - -// A brief description of the algorithm: -// First, we compute what should define the new def, using the SSA -// construction algorithm. -// Then, we update the defs below us (and any new phi nodes) in the graph to -// point to the correct new defs, to ensure we only have one variable, and no -// disconnected stores. -void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { - InsertedPHIs.clear(); - - // See if we had a local def, and if not, go hunting. - MemoryAccess *DefBefore = getPreviousDefInBlock(MD); - bool DefBeforeSameBlock = DefBefore != nullptr; - if (!DefBefore) - DefBefore = getPreviousDefRecursive(MD->getBlock()); - - // There is a def before us, which means we can replace any store/phi uses - // of that thing with us, since we are in the way of whatever was there - // before. - // We now define that def's memorydefs and memoryphis - if (DefBeforeSameBlock) { - for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end(); - UI != UE;) { - Use &U = *UI++; - // Leave the uses alone - if (isa<MemoryUse>(U.getUser())) - continue; - U.set(MD); - } - } - - // and that def is now our defining access. - // We change them in this order otherwise we will appear in the use list - // above and reset ourselves. - MD->setDefiningAccess(DefBefore); - - SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(), - InsertedPHIs.end()); - if (!DefBeforeSameBlock) { - // If there was a local def before us, we must have the same effect it - // did. Because every may-def is the same, any phis/etc we would create, it - // would also have created. If there was no local def before us, we - // performed a global update, and have to search all successors and make - // sure we update the first def in each of them (following all paths until - // we hit the first def along each path). This may also insert phi nodes. - // TODO: There are other cases we can skip this work, such as when we have a - // single successor, and only used a straight line of single pred blocks - // backwards to find the def. To make that work, we'd have to track whether - // getDefRecursive only ever used the single predecessor case. These types - // of paths also only exist in between CFG simplifications. - FixupList.push_back(MD); - } - - while (!FixupList.empty()) { - unsigned StartingPHISize = InsertedPHIs.size(); - fixupDefs(FixupList); - FixupList.clear(); - // Put any new phis on the fixup list, and process them - FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end()); - } - // Now that all fixups are done, rename all uses if we are asked. - if (RenameUses) { - SmallPtrSet<BasicBlock *, 16> Visited; - BasicBlock *StartBlock = MD->getBlock(); - // We are guaranteed there is a def in the block, because we just got it - // handed to us in this function. - MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); - // Convert to incoming value if it's a memorydef. A phi *is* already an - // incoming value. - if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) - FirstDef = MD->getDefiningAccess(); - - MSSA->renamePass(MD->getBlock(), FirstDef, Visited); - // We just inserted a phi into this block, so the incoming value will become - // the phi anyway, so it does not matter what we pass. - for (auto *MP : InsertedPHIs) - MSSA->renamePass(MP->getBlock(), nullptr, Visited); - } -} - -void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) { - SmallPtrSet<const BasicBlock *, 8> Seen; - SmallVector<const BasicBlock *, 16> Worklist; - for (auto *NewDef : Vars) { - // First, see if there is a local def after the operand. - auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); - auto DefIter = NewDef->getDefsIterator(); - - // If there is a local def after us, we only have to rename that. - if (++DefIter != Defs->end()) { - cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); - continue; - } - - // Otherwise, we need to search down through the CFG. - // For each of our successors, handle it directly if their is a phi, or - // place on the fixup worklist. - for (const auto *S : successors(NewDef->getBlock())) { - if (auto *MP = MSSA->getMemoryAccess(S)) - setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); - else - Worklist.push_back(S); - } - - while (!Worklist.empty()) { - const BasicBlock *FixupBlock = Worklist.back(); - Worklist.pop_back(); - - // Get the first def in the block that isn't a phi node. - if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { - auto *FirstDef = &*Defs->begin(); - // The loop above and below should have taken care of phi nodes - assert(!isa<MemoryPhi>(FirstDef) && - "Should have already handled phi nodes!"); - // We are now this def's defining access, make sure we actually dominate - // it - assert(MSSA->dominates(NewDef, FirstDef) && - "Should have dominated the new access"); - - // This may insert new phi nodes, because we are not guaranteed the - // block we are processing has a single pred, and depending where the - // store was inserted, it may require phi nodes below it. - cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); - return; - } - // We didn't find a def, so we must continue. - for (const auto *S : successors(FixupBlock)) { - // If there is a phi node, handle it. - // Otherwise, put the block on the worklist - if (auto *MP = MSSA->getMemoryAccess(S)) - setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); - else { - // If we cycle, we should have ended up at a phi node that we already - // processed. FIXME: Double check this - if (!Seen.insert(S).second) - continue; - Worklist.push_back(S); - } - } - } - } -} - -// Move What before Where in the MemorySSA IR. -template <class WhereType> -void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, - WhereType Where) { - // Replace all our users with our defining access. - What->replaceAllUsesWith(What->getDefiningAccess()); - - // Let MemorySSA take care of moving it around in the lists. - MSSA->moveTo(What, BB, Where); - - // Now reinsert it into the IR and do whatever fixups needed. - if (auto *MD = dyn_cast<MemoryDef>(What)) - insertDef(MD); - else - insertUse(cast<MemoryUse>(What)); -} - -// Move What before Where in the MemorySSA IR. -void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { - moveTo(What, Where->getBlock(), Where->getIterator()); -} - -// Move What after Where in the MemorySSA IR. -void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { - moveTo(What, Where->getBlock(), ++Where->getIterator()); -} - -void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, - MemorySSA::InsertionPlace Where) { - return moveTo(What, BB, Where); -} - -/// \brief If all arguments of a MemoryPHI are defined by the same incoming -/// argument, return that argument. -static MemoryAccess *onlySingleValue(MemoryPhi *MP) { - MemoryAccess *MA = nullptr; - - for (auto &Arg : MP->operands()) { - if (!MA) - MA = cast<MemoryAccess>(Arg); - else if (MA != Arg) - return nullptr; - } - return MA; -} -void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) { - assert(!MSSA->isLiveOnEntryDef(MA) && - "Trying to remove the live on entry def"); - // We can only delete phi nodes if they have no uses, or we can replace all - // uses with a single definition. - MemoryAccess *NewDefTarget = nullptr; - if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { - // Note that it is sufficient to know that all edges of the phi node have - // the same argument. If they do, by the definition of dominance frontiers - // (which we used to place this phi), that argument must dominate this phi, - // and thus, must dominate the phi's uses, and so we will not hit the assert - // below. - NewDefTarget = onlySingleValue(MP); - assert((NewDefTarget || MP->use_empty()) && - "We can't delete this memory phi"); - } else { - NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); - } - - // Re-point the uses at our defining access - if (!isa<MemoryUse>(MA) && !MA->use_empty()) { - // Reset optimized on users of this store, and reset the uses. - // A few notes: - // 1. This is a slightly modified version of RAUW to avoid walking the - // uses twice here. - // 2. If we wanted to be complete, we would have to reset the optimized - // flags on users of phi nodes if doing the below makes a phi node have all - // the same arguments. Instead, we prefer users to removeMemoryAccess those - // phi nodes, because doing it here would be N^3. - if (MA->hasValueHandle()) - ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); - // Note: We assume MemorySSA is not used in metadata since it's not really - // part of the IR. - - while (!MA->use_empty()) { - Use &U = *MA->use_begin(); - if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) - MUD->resetOptimized(); - U.set(NewDefTarget); - } - } - - // The call below to erase will destroy MA, so we can't change the order we - // are doing things here - MSSA->removeFromLookups(MA); - MSSA->removeFromLists(MA); -} - -MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( - Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, - MemorySSA::InsertionPlace Point) { - MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); - MSSA->insertIntoListsForBlock(NewAccess, BB, Point); - return NewAccess; -} - -MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( - Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { - assert(I->getParent() == InsertPt->getBlock() && - "New and old access must be in the same block"); - MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); - MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), - InsertPt->getIterator()); - return NewAccess; -} - -MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( - Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { - assert(I->getParent() == InsertPt->getBlock() && - "New and old access must be in the same block"); - MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); - MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), - ++InsertPt->getIterator()); - return NewAccess; -} - -} // namespace llvm |