summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/Scalar
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Scalar')
-rw-r--r--llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp7
-rw-r--r--llvm/lib/Transforms/Scalar/BDCE.cpp31
-rw-r--r--llvm/lib/Transforms/Scalar/ConstantProp.cpp3
-rw-r--r--llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp6
-rw-r--r--llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp57
-rw-r--r--llvm/lib/Transforms/Scalar/EarlyCSE.cpp14
-rw-r--r--llvm/lib/Transforms/Scalar/GVN.cpp130
-rw-r--r--llvm/lib/Transforms/Scalar/IndVarSimplify.cpp34
-rw-r--r--llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp9
-rw-r--r--llvm/lib/Transforms/Scalar/JumpThreading.cpp12
-rw-r--r--llvm/lib/Transforms/Scalar/LICM.cpp77
-rw-r--r--llvm/lib/Transforms/Scalar/LoadCombine.cpp30
-rw-r--r--llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp10
-rw-r--r--llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp2
-rw-r--r--llvm/lib/Transforms/Scalar/LoopRerollPass.cpp27
-rw-r--r--llvm/lib/Transforms/Scalar/LoopRotation.cpp7
-rw-r--r--llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp7
-rw-r--r--llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp5
-rw-r--r--llvm/lib/Transforms/Scalar/LoopUnswitch.cpp4
-rw-r--r--llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp83
-rw-r--r--llvm/lib/Transforms/Scalar/SCCP.cpp2
-rw-r--r--llvm/lib/Transforms/Scalar/SROA.cpp82
-rw-r--r--llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp189
-rw-r--r--llvm/lib/Transforms/Scalar/Scalarizer.cpp23
-rw-r--r--llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp56
-rw-r--r--llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp17
-rw-r--r--llvm/lib/Transforms/Scalar/Sink.cpp4
-rw-r--r--llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp7
28 files changed, 450 insertions, 485 deletions
diff --git a/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp b/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp
index 9b74648ea46..f2c91e5146d 100644
--- a/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp
+++ b/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp
@@ -31,7 +31,6 @@
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@@ -72,7 +71,6 @@ struct AlignmentFromAssumptions : public FunctionPass {
ScalarEvolution *SE;
DominatorTree *DT;
- const DataLayout *DL;
bool extractAlignmentInfo(CallInst *I, Value *&AAPtr, const SCEV *&AlignSCEV,
const SCEV *&OffSCEV);
@@ -317,7 +315,7 @@ bool AlignmentFromAssumptions::processAssumption(CallInst *ACall) {
continue;
if (Instruction *K = dyn_cast<Instruction>(J))
- if (isValidAssumeForContext(ACall, K, DL, DT))
+ if (isValidAssumeForContext(ACall, K, DT))
WorkList.push_back(K);
}
@@ -401,7 +399,7 @@ bool AlignmentFromAssumptions::processAssumption(CallInst *ACall) {
Visited.insert(J);
for (User *UJ : J->users()) {
Instruction *K = cast<Instruction>(UJ);
- if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DL, DT))
+ if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT))
WorkList.push_back(K);
}
}
@@ -414,7 +412,6 @@ bool AlignmentFromAssumptions::runOnFunction(Function &F) {
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
SE = &getAnalysis<ScalarEvolution>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- DL = &F.getParent()->getDataLayout();
NewDestAlignments.clear();
NewSrcAlignments.clear();
diff --git a/llvm/lib/Transforms/Scalar/BDCE.cpp b/llvm/lib/Transforms/Scalar/BDCE.cpp
index 3ae05be3dda..09c605e7673 100644
--- a/llvm/lib/Transforms/Scalar/BDCE.cpp
+++ b/llvm/lib/Transforms/Scalar/BDCE.cpp
@@ -64,7 +64,6 @@ struct BDCE : public FunctionPass {
APInt &KnownZero2, APInt &KnownOne2);
AssumptionCache *AC;
- const DataLayout *DL;
DominatorTree *DT;
};
}
@@ -95,20 +94,21 @@ void BDCE::determineLiveOperandBits(const Instruction *UserI,
// however, want to do this twice, so we cache the result in APInts that live
// in the caller. For the two-relevant-operands case, both operand values are
// provided here.
- auto ComputeKnownBits = [&](unsigned BitWidth, const Value *V1,
- const Value *V2) {
- KnownZero = APInt(BitWidth, 0);
- KnownOne = APInt(BitWidth, 0);
- computeKnownBits(const_cast<Value*>(V1), KnownZero, KnownOne, DL, 0, AC,
- UserI, DT);
-
- if (V2) {
- KnownZero2 = APInt(BitWidth, 0);
- KnownOne2 = APInt(BitWidth, 0);
- computeKnownBits(const_cast<Value*>(V2), KnownZero2, KnownOne2, DL, 0, AC,
- UserI, DT);
- }
- };
+ auto ComputeKnownBits =
+ [&](unsigned BitWidth, const Value *V1, const Value *V2) {
+ const DataLayout &DL = I->getModule()->getDataLayout();
+ KnownZero = APInt(BitWidth, 0);
+ KnownOne = APInt(BitWidth, 0);
+ computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
+ AC, UserI, DT);
+
+ if (V2) {
+ KnownZero2 = APInt(BitWidth, 0);
+ KnownOne2 = APInt(BitWidth, 0);
+ computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
+ 0, AC, UserI, DT);
+ }
+ };
switch (UserI->getOpcode()) {
default: break;
@@ -263,7 +263,6 @@ bool BDCE::runOnFunction(Function& F) {
return false;
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- DL = &F.getParent()->getDataLayout();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
DenseMap<Instruction *, APInt> AliveBits;
diff --git a/llvm/lib/Transforms/Scalar/ConstantProp.cpp b/llvm/lib/Transforms/Scalar/ConstantProp.cpp
index 9355444547b..c974ebb9456 100644
--- a/llvm/lib/Transforms/Scalar/ConstantProp.cpp
+++ b/llvm/lib/Transforms/Scalar/ConstantProp.cpp
@@ -22,7 +22,6 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/IR/Constant.h"
-#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/Pass.h"
@@ -77,7 +76,7 @@ bool ConstantPropagation::runOnFunction(Function &F) {
WorkList.erase(WorkList.begin()); // Get an element from the worklist...
if (!I->use_empty()) // Don't muck with dead instructions...
- if (Constant *C = ConstantFoldInstruction(I, &DL, TLI)) {
+ if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
// Add all of the users of this instruction to the worklist, they might
// be constant propagatable now...
for (User *U : I->users())
diff --git a/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp b/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
index 5a3b5cf34cc..912d527402a 100644
--- a/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
+++ b/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp
@@ -19,6 +19,7 @@
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@@ -126,8 +127,9 @@ bool CorrelatedValuePropagation::processPHI(PHINode *P) {
Changed = true;
}
- // FIXME: Provide DL, TLI, DT, AT to SimplifyInstruction.
- if (Value *V = SimplifyInstruction(P)) {
+ // FIXME: Provide TLI, DT, AT to SimplifyInstruction.
+ const DataLayout &DL = BB->getModule()->getDataLayout();
+ if (Value *V = SimplifyInstruction(P, DL)) {
P->replaceAllUsesWith(V);
P->eraseFromParent();
Changed = true;
diff --git a/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp b/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
index c2ce1d54f89..4483f3a9565 100644
--- a/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
+++ b/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
@@ -78,7 +78,8 @@ namespace {
bool HandleFree(CallInst *F);
bool handleEndBlock(BasicBlock &BB);
void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
- SmallSetVector<Value*, 16> &DeadStackObjects);
+ SmallSetVector<Value *, 16> &DeadStackObjects,
+ const DataLayout &DL);
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
@@ -194,18 +195,12 @@ static bool hasMemoryWrite(Instruction *I, const TargetLibraryInfo *TLI) {
/// describe the memory operations for this instruction.
static AliasAnalysis::Location
getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
- const DataLayout *DL = AA.getDataLayout();
if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
return AA.getLocation(SI);
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
// memcpy/memmove/memset.
AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
- // If we don't have target data around, an unknown size in Location means
- // that we should use the size of the pointee type. This isn't valid for
- // memset/memcpy, which writes more than an i8.
- if (Loc.Size == AliasAnalysis::UnknownSize && DL == nullptr)
- return AliasAnalysis::Location();
return Loc;
}
@@ -215,11 +210,6 @@ getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
switch (II->getIntrinsicID()) {
default: return AliasAnalysis::Location(); // Unhandled intrinsic.
case Intrinsic::init_trampoline:
- // If we don't have target data around, an unknown size in Location means
- // that we should use the size of the pointee type. This isn't valid for
- // init.trampoline, which writes more than an i8.
- if (!DL) return AliasAnalysis::Location();
-
// FIXME: We don't know the size of the trampoline, so we can't really
// handle it here.
return AliasAnalysis::Location(II->getArgOperand(0));
@@ -321,9 +311,10 @@ static Value *getStoredPointerOperand(Instruction *I) {
return CS.getArgument(0);
}
-static uint64_t getPointerSize(const Value *V, AliasAnalysis &AA) {
+static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
+ const TargetLibraryInfo *TLI) {
uint64_t Size;
- if (getObjectSize(V, Size, AA.getDataLayout(), AA.getTargetLibraryInfo()))
+ if (getObjectSize(V, Size, DL, TLI))
return Size;
return AliasAnalysis::UnknownSize;
}
@@ -343,10 +334,9 @@ namespace {
/// overwritten by 'Later', or 'OverwriteUnknown' if nothing can be determined
static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
const AliasAnalysis::Location &Earlier,
- AliasAnalysis &AA,
- int64_t &EarlierOff,
- int64_t &LaterOff) {
- const DataLayout *DL = AA.getDataLayout();
+ const DataLayout &DL,
+ const TargetLibraryInfo *TLI,
+ int64_t &EarlierOff, int64_t &LaterOff) {
const Value *P1 = Earlier.Ptr->stripPointerCasts();
const Value *P2 = Later.Ptr->stripPointerCasts();
@@ -367,7 +357,7 @@ static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
// Otherwise, we have to have size information, and the later store has to be
// larger than the earlier one.
if (Later.Size == AliasAnalysis::UnknownSize ||
- Earlier.Size == AliasAnalysis::UnknownSize || DL == nullptr)
+ Earlier.Size == AliasAnalysis::UnknownSize)
return OverwriteUnknown;
// Check to see if the later store is to the entire object (either a global,
@@ -382,7 +372,7 @@ static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
return OverwriteUnknown;
// If the "Later" store is to a recognizable object, get its size.
- uint64_t ObjectSize = getPointerSize(UO2, AA);
+ uint64_t ObjectSize = getPointerSize(UO2, DL, TLI);
if (ObjectSize != AliasAnalysis::UnknownSize)
if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
return OverwriteComplete;
@@ -560,8 +550,10 @@ bool DSE::runOnBasicBlock(BasicBlock &BB) {
if (isRemovable(DepWrite) &&
!isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
int64_t InstWriteOffset, DepWriteOffset;
- OverwriteResult OR = isOverwrite(Loc, DepLoc, *AA,
- DepWriteOffset, InstWriteOffset);
+ const DataLayout &DL = BB.getModule()->getDataLayout();
+ OverwriteResult OR =
+ isOverwrite(Loc, DepLoc, DL, AA->getTargetLibraryInfo(),
+ DepWriteOffset, InstWriteOffset);
if (OR == OverwriteComplete) {
DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: "
<< *DepWrite << "\n KILLER: " << *Inst << '\n');
@@ -655,6 +647,7 @@ bool DSE::HandleFree(CallInst *F) {
AliasAnalysis::Location Loc = AliasAnalysis::Location(F->getOperand(0));
SmallVector<BasicBlock *, 16> Blocks;
Blocks.push_back(F->getParent());
+ const DataLayout &DL = F->getModule()->getDataLayout();
while (!Blocks.empty()) {
BasicBlock *BB = Blocks.pop_back_val();
@@ -668,7 +661,7 @@ bool DSE::HandleFree(CallInst *F) {
break;
Value *DepPointer =
- GetUnderlyingObject(getStoredPointerOperand(Dependency));
+ GetUnderlyingObject(getStoredPointerOperand(Dependency), DL);
// Check for aliasing.
if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
@@ -728,6 +721,8 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
if (AI->hasByValOrInAllocaAttr())
DeadStackObjects.insert(AI);
+ const DataLayout &DL = BB.getModule()->getDataLayout();
+
// Scan the basic block backwards
for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
--BBI;
@@ -736,7 +731,7 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
if (hasMemoryWrite(BBI, TLI) && isRemovable(BBI)) {
// See through pointer-to-pointer bitcasts
SmallVector<Value *, 4> Pointers;
- GetUnderlyingObjects(getStoredPointerOperand(BBI), Pointers);
+ GetUnderlyingObjects(getStoredPointerOperand(BBI), Pointers, DL);
// Stores to stack values are valid candidates for removal.
bool AllDead = true;
@@ -799,8 +794,8 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
// the call is live.
DeadStackObjects.remove_if([&](Value *I) {
// See if the call site touches the value.
- AliasAnalysis::ModRefResult A =
- AA->getModRefInfo(CS, I, getPointerSize(I, *AA));
+ AliasAnalysis::ModRefResult A = AA->getModRefInfo(
+ CS, I, getPointerSize(I, DL, AA->getTargetLibraryInfo()));
return A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref;
});
@@ -835,7 +830,7 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
// Remove any allocas from the DeadPointer set that are loaded, as this
// makes any stores above the access live.
- RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
+ RemoveAccessedObjects(LoadedLoc, DeadStackObjects, DL);
// If all of the allocas were clobbered by the access then we're not going
// to find anything else to process.
@@ -850,8 +845,9 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
/// of the stack objects in the DeadStackObjects set. If so, they become live
/// because the location is being loaded.
void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
- SmallSetVector<Value*, 16> &DeadStackObjects) {
- const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
+ SmallSetVector<Value *, 16> &DeadStackObjects,
+ const DataLayout &DL) {
+ const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL);
// A constant can't be in the dead pointer set.
if (isa<Constant>(UnderlyingPointer))
@@ -867,7 +863,8 @@ void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
// Remove objects that could alias LoadedLoc.
DeadStackObjects.remove_if([&](Value *I) {
// See if the loaded location could alias the stack location.
- AliasAnalysis::Location StackLoc(I, getPointerSize(I, *AA));
+ AliasAnalysis::Location StackLoc(
+ I, getPointerSize(I, DL, AA->getTargetLibraryInfo()));
return !AA->isNoAlias(StackLoc, LoadedLoc);
});
}
diff --git a/llvm/lib/Transforms/Scalar/EarlyCSE.cpp b/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
index 3f8089c5bbf..742721279bf 100644
--- a/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
+++ b/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
@@ -263,7 +263,6 @@ namespace {
class EarlyCSE {
public:
Function &F;
- const DataLayout *DL;
const TargetLibraryInfo &TLI;
const TargetTransformInfo &TTI;
DominatorTree &DT;
@@ -308,11 +307,10 @@ public:
unsigned CurrentGeneration;
/// \brief Set up the EarlyCSE runner for a particular function.
- EarlyCSE(Function &F, const DataLayout *DL, const TargetLibraryInfo &TLI,
+ EarlyCSE(Function &F, const TargetLibraryInfo &TLI,
const TargetTransformInfo &TTI, DominatorTree &DT,
AssumptionCache &AC)
- : F(F), DL(DL), TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {
- }
+ : F(F), TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {}
bool run();
@@ -469,6 +467,7 @@ bool EarlyCSE::processNode(DomTreeNode *Node) {
Instruction *LastStore = nullptr;
bool Changed = false;
+ const DataLayout &DL = BB->getModule()->getDataLayout();
// See if any instructions in the block can be eliminated. If so, do it. If
// not, add them to AvailableValues.
@@ -685,14 +684,12 @@ bool EarlyCSE::run() {
PreservedAnalyses EarlyCSEPass::run(Function &F,
AnalysisManager<Function> *AM) {
- const DataLayout &DL = F.getParent()->getDataLayout();
-
auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
auto &TTI = AM->getResult<TargetIRAnalysis>(F);
auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
auto &AC = AM->getResult<AssumptionAnalysis>(F);
- EarlyCSE CSE(F, &DL, TLI, TTI, DT, AC);
+ EarlyCSE CSE(F, TLI, TTI, DT, AC);
if (!CSE.run())
return PreservedAnalyses::all();
@@ -724,13 +721,12 @@ public:
if (skipOptnoneFunction(F))
return false;
- auto &DL = F.getParent()->getDataLayout();
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- EarlyCSE CSE(F, &DL, TLI, TTI, DT, AC);
+ EarlyCSE CSE(F, TLI, TTI, DT, AC);
return CSE.run();
}
diff --git a/llvm/lib/Transforms/Scalar/GVN.cpp b/llvm/lib/Transforms/Scalar/GVN.cpp
index 2c00d694ab7..4e3bd7f5bb5 100644
--- a/llvm/lib/Transforms/Scalar/GVN.cpp
+++ b/llvm/lib/Transforms/Scalar/GVN.cpp
@@ -584,14 +584,13 @@ namespace {
/// Emit code into this block to adjust the value defined here to the
/// specified type. This handles various coercion cases.
- Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const;
+ Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const;
};
class GVN : public FunctionPass {
bool NoLoads;
MemoryDependenceAnalysis *MD;
DominatorTree *DT;
- const DataLayout *DL;
const TargetLibraryInfo *TLI;
AssumptionCache *AC;
SetVector<BasicBlock *> DeadBlocks;
@@ -630,7 +629,6 @@ namespace {
InstrsToErase.push_back(I);
}
- const DataLayout *getDataLayout() const { return DL; }
DominatorTree &getDominatorTree() const { return *DT; }
AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
MemoryDependenceAnalysis &getMemDep() const { return *MD; }
@@ -956,8 +954,9 @@ static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
return -1;
int64_t StoreOffset = 0, LoadOffset = 0;
- Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&DL);
- Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &DL);
+ Value *StoreBase =
+ GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
+ Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
if (StoreBase != LoadBase)
return -1;
@@ -1021,13 +1020,13 @@ static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
/// This function is called when we have a
/// memdep query of a load that ends up being a clobbering store.
static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
- StoreInst *DepSI,
- const DataLayout &DL) {
+ StoreInst *DepSI) {
// Cannot handle reading from store of first-class aggregate yet.
if (DepSI->getValueOperand()->getType()->isStructTy() ||
DepSI->getValueOperand()->getType()->isArrayTy())
return -1;
+ const DataLayout &DL = DepSI->getModule()->getDataLayout();
Value *StorePtr = DepSI->getPointerOperand();
uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
@@ -1052,11 +1051,11 @@ static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
// then we should widen it!
int64_t LoadOffs = 0;
const Value *LoadBase =
- GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &DL);
+ GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
- unsigned Size = MemoryDependenceAnalysis::
- getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, DL);
+ unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
+ LoadBase, LoadOffs, LoadSize, DepLI);
if (Size == 0) return -1;
return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL);
@@ -1086,7 +1085,7 @@ static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
Constant *Src = dyn_cast<Constant>(MTI->getSource());
if (!Src) return -1;
- GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &DL));
+ GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
if (!GV || !GV->isConstant()) return -1;
// See if the access is within the bounds of the transfer.
@@ -1104,7 +1103,7 @@ static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
- if (ConstantFoldLoadFromConstPtr(Src, &DL))
+ if (ConstantFoldLoadFromConstPtr(Src, DL))
return Offset;
return -1;
}
@@ -1157,7 +1156,7 @@ static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
Type *LoadTy, Instruction *InsertPt,
GVN &gvn) {
- const DataLayout &DL = *gvn.getDataLayout();
+ const DataLayout &DL = SrcVal->getModule()->getDataLayout();
// If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
// widen SrcVal out to a larger load.
unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType());
@@ -1265,7 +1264,7 @@ static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
- return ConstantFoldLoadFromConstPtr(Src, &DL);
+ return ConstantFoldLoadFromConstPtr(Src, DL);
}
@@ -1281,7 +1280,7 @@ static Value *ConstructSSAForLoadSet(LoadInst *LI,
gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
LI->getParent())) {
assert(!ValuesPerBlock[0].isUndefValue() && "Dead BB dominate this block");
- return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
+ return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
}
// Otherwise, we have to construct SSA form.
@@ -1289,8 +1288,6 @@ static Value *ConstructSSAForLoadSet(LoadInst *LI,
SSAUpdater SSAUpdate(&NewPHIs);
SSAUpdate.Initialize(LI->getType(), LI->getName());
- Type *LoadTy = LI->getType();
-
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
const AvailableValueInBlock &AV = ValuesPerBlock[i];
BasicBlock *BB = AV.BB;
@@ -1298,7 +1295,7 @@ static Value *ConstructSSAForLoadSet(LoadInst *LI,
if (SSAUpdate.HasValueForBlock(BB))
continue;
- SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
+ SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
}
// Perform PHI construction.
@@ -1326,16 +1323,16 @@ static Value *ConstructSSAForLoadSet(LoadInst *LI,
return V;
}
-Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
+Value *AvailableValueInBlock::MaterializeAdjustedValue(LoadInst *LI,
+ GVN &gvn) const {
Value *Res;
+ Type *LoadTy = LI->getType();
+ const DataLayout &DL = LI->getModule()->getDataLayout();
if (isSimpleValue()) {
Res = getSimpleValue();
if (Res->getType() != LoadTy) {
- const DataLayout *DL = gvn.getDataLayout();
- assert(DL && "Need target data to handle type mismatch case");
- Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
- *DL);
-
+ Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(), DL);
+
DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " "
<< *getSimpleValue() << '\n'
<< *Res << '\n' << "\n\n\n");
@@ -1353,10 +1350,8 @@ Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) c
<< *Res << '\n' << "\n\n\n");
}
} else if (isMemIntrinValue()) {
- const DataLayout *DL = gvn.getDataLayout();
- assert(DL && "Need target data to handle type mismatch case");
- Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
- LoadTy, BB->getTerminator(), *DL);
+ Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
+ BB->getTerminator(), DL);
DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
<< " " << *getMemIntrinValue() << '\n'
<< *Res << '\n' << "\n\n\n");
@@ -1383,6 +1378,7 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
// dependencies that produce an unknown value for the load (such as a call
// that could potentially clobber the load).
unsigned NumDeps = Deps.size();
+ const DataLayout &DL = LI->getModule()->getDataLayout();
for (unsigned i = 0, e = NumDeps; i != e; ++i) {
BasicBlock *DepBB = Deps[i].getBB();
MemDepResult DepInfo = Deps[i].getResult();
@@ -1409,9 +1405,9 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
// read by the load, we can extract the bits we need for the load from the
// stored value.
if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
- if (DL && Address) {
- int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
- DepSI, *DL);
+ if (Address) {
+ int Offset =
+ AnalyzeLoadFromClobberingStore(LI->getType(), Address, DepSI);
if (Offset != -1) {
ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
DepSI->getValueOperand(),
@@ -1428,9 +1424,9 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
// If this is a clobber and L is the first instruction in its block, then
// we have the first instruction in the entry block.
- if (DepLI != LI && Address && DL) {
- int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(), Address,
- DepLI, *DL);
+ if (DepLI != LI && Address) {
+ int Offset =
+ AnalyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
if (Offset != -1) {
ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
@@ -1443,9 +1439,9 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
// If the clobbering value is a memset/memcpy/memmove, see if we can
// forward a value on from it.
if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
- if (DL && Address) {
+ if (Address) {
int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
- DepMI, *DL);
+ DepMI, DL);
if (Offset != -1) {
ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
Offset));
@@ -1484,8 +1480,8 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
if (S->getValueOperand()->getType() != LI->getType()) {
// If the stored value is larger or equal to the loaded value, we can
// reuse it.
- if (!DL || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
- LI->getType(), *DL)) {
+ if (!CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
+ LI->getType(), DL)) {
UnavailableBlocks.push_back(DepBB);
continue;
}
@@ -1501,7 +1497,7 @@ void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
if (LD->getType() != LI->getType()) {
// If the stored value is larger or equal to the loaded value, we can
// reuse it.
- if (!DL || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*DL)) {
+ if (!CanCoerceMustAliasedValueToLoad(LD, LI->getType(), DL)) {
UnavailableBlocks.push_back(DepBB);
continue;
}
@@ -1613,6 +1609,7 @@ bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
// Check if the load can safely be moved to all the unavailable predecessors.
bool CanDoPRE = true;
+ const DataLayout &DL = LI->getModule()->getDataLayout();
SmallVector<Instruction*, 8> NewInsts;
for (auto &PredLoad : PredLoads) {
BasicBlock *UnavailablePred = PredLoad.first;
@@ -1833,10 +1830,11 @@ bool GVN::processLoad(LoadInst *L) {
// ... to a pointer that has been loaded from before...
MemDepResult Dep = MD->getDependency(L);
+ const DataLayout &DL = L->getModule()->getDataLayout();
// If we have a clobber and target data is around, see if this is a clobber
// that we can fix up through code synthesis.
- if (Dep.isClobber() && DL) {
+ if (Dep.isClobber()) {
// Check to see if we have something like this:
// store i32 123, i32* %P
// %A = bitcast i32* %P to i8*
@@ -1849,12 +1847,11 @@ bool GVN::processLoad(LoadInst *L) {
// access code.
Value *AvailVal = nullptr;
if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
- int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
- L->getPointerOperand(),
- DepSI, *DL);
+ int Offset = AnalyzeLoadFromClobberingStore(
+ L->getType(), L->getPointerOperand(), DepSI);
if (Offset != -1)
AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
- L->getType(), L, *DL);
+ L->getType(), L, DL);
}
// Check to see if we have something like this:
@@ -1867,9 +1864,8 @@ bool GVN::processLoad(LoadInst *L) {
if (DepLI == L)
return false;
- int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
- L->getPointerOperand(),
- DepLI, *DL);
+ int Offset = AnalyzeLoadFromClobberingLoad(
+ L->getType(), L->getPointerOperand(), DepLI, DL);
if (Offset != -1)
AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
}
@@ -1877,11 +1873,10 @@ bool GVN::processLoad(LoadInst *L) {
// If the clobbering value is a memset/memcpy/memmove, see if we can forward
// a value on from it.
if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
- int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
- L->getPointerOperand(),
- DepMI, *DL);
+ int Offset = AnalyzeLoadFromClobberingMemInst(
+ L->getType(), L->getPointerOperand(), DepMI, DL);
if (Offset != -1)
- AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *DL);
+ AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, DL);
}
if (AvailVal) {
@@ -1932,17 +1927,13 @@ bool GVN::processLoad(LoadInst *L) {
// actually have the same type. See if we know how to reuse the stored
// value (depending on its type).
if (StoredVal->getType() != L->getType()) {
- if (DL) {
- StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
- L, *DL);
- if (!StoredVal)
- return false;
-
- DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
- << '\n' << *L << "\n\n\n");
- }
- else
+ StoredVal =
+ CoerceAvailableValueToLoadType(StoredVal, L->getType(), L, DL);
+ if (!StoredVal)
return false;
+
+ DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
+ << '\n' << *L << "\n\n\n");
}
// Remove it!
@@ -1961,17 +1952,12 @@ bool GVN::processLoad(LoadInst *L) {
// the same type. See if we know how to reuse the previously loaded value
// (depending on its type).
if (DepLI->getType() != L->getType()) {
- if (DL) {
- AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
- L, *DL);
- if (!AvailableVal)
- return false;
-
- DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
- << "\n" << *L << "\n\n\n");
- }
- else
+ AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L, DL);
+ if (!AvailableVal)
return false;
+
+ DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
+ << "\n" << *L << "\n\n\n");
}
// Remove it!
@@ -2239,6 +2225,7 @@ bool GVN::processInstruction(Instruction *I) {
// to value numbering it. Value numbering often exposes redundancies, for
// example if it determines that %y is equal to %x then the instruction
// "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
+ const DataLayout &DL = I->getModule()->getDataLayout();
if (Value *V = SimplifyInstruction(I, DL, TLI, DT, AC)) {
I->replaceAllUsesWith(V);
if (MD && V->getType()->getScalarType()->isPointerTy())
@@ -2357,7 +2344,6 @@ bool GVN::runOnFunction(Function& F) {
if (!NoLoads)
MD = &getAnalysis<MemoryDependenceAnalysis>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- DL = &F.getParent()->getDataLayout();
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
diff --git a/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp b/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
index 38519ba717c..3abd7aa748f 100644
--- a/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ b/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -73,7 +73,6 @@ namespace {
LoopInfo *LI;
ScalarEvolution *SE;
DominatorTree *DT;
- const DataLayout *DL;
TargetLibraryInfo *TLI;
const TargetTransformInfo *TTI;
@@ -82,8 +81,8 @@ namespace {
public:
static char ID; // Pass identification, replacement for typeid
- IndVarSimplify() : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr),
- DL(nullptr), Changed(false) {
+ IndVarSimplify()
+ : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) {
initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
}
@@ -663,14 +662,14 @@ namespace {
/// extended by this sign or zero extend operation. This is used to determine
/// the final width of the IV before actually widening it.
static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
- const DataLayout *DL, const TargetTransformInfo *TTI) {
+ const TargetTransformInfo *TTI) {
bool IsSigned = Cast->getOpcode() == Instruction::SExt;
if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
return;
Type *Ty = Cast->getType();
uint64_t Width = SE->getTypeSizeInBits(Ty);
- if (DL && !DL->isLegalInteger(Width))
+ if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
return;
// Cast is either an sext or zext up to this point.
@@ -1201,7 +1200,6 @@ PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
namespace {
class IndVarSimplifyVisitor : public IVVisitor {
ScalarEvolution *SE;
- const DataLayout *DL;
const TargetTransformInfo *TTI;
PHINode *IVPhi;
@@ -1209,9 +1207,9 @@ namespace {
WideIVInfo WI;
IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
- const DataLayout *DL, const TargetTransformInfo *TTI,
+ const TargetTransformInfo *TTI,
const DominatorTree *DTree)
- : SE(SCEV), DL(DL), TTI(TTI), IVPhi(IV) {
+ : SE(SCEV), TTI(TTI), IVPhi(IV) {
DT = DTree;
WI.NarrowIV = IVPhi;
if (ReduceLiveIVs)
@@ -1219,9 +1217,7 @@ namespace {
}
// Implement the interface used by simplifyUsersOfIV.
- void visitCast(CastInst *Cast) override {
- visitIVCast(Cast, WI, SE, DL, TTI);
- }
+ void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
};
}
@@ -1255,7 +1251,7 @@ void IndVarSimplify::SimplifyAndExtend(Loop *L,
PHINode *CurrIV = LoopPhis.pop_back_val();
// Information about sign/zero extensions of CurrIV.
- IndVarSimplifyVisitor Visitor(CurrIV, SE, DL, TTI, DT);
+ IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor);
@@ -1521,9 +1517,8 @@ static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
/// This is difficult in general for SCEV because of potential overflow. But we
/// could at least handle constant BECounts.
-static PHINode *
-FindLoopCounter(Loop *L, const SCEV *BECount,
- ScalarEvolution *SE, DominatorTree *DT, const DataLayout *DL) {
+static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
+ ScalarEvolution *SE, DominatorTree *DT) {
uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
Value *Cond =
@@ -1552,7 +1547,8 @@ FindLoopCounter(Loop *L, const SCEV *BECount,
// AR may be wider than BECount. With eq/ne tests overflow is immaterial.
// AR may not be a narrower type, or we may never exit.
uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
- if (PhiWidth < BCWidth || (DL && !DL->isLegalInteger(PhiWidth)))
+ if (PhiWidth < BCWidth ||
+ !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth))
continue;
const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
@@ -1896,11 +1892,11 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
SE = &getAnalysis<ScalarEvolution>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- DL = &L->getHeader()->getModule()->getDataLayout();
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
TLI = TLIP ? &TLIP->getTLI() : nullptr;
auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
DeadInsts.clear();
Changed = false;
@@ -1912,7 +1908,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
// Create a rewriter object which we'll use to transform the code with.
- SCEVExpander Rewriter(*SE, "indvars");
+ SCEVExpander Rewriter(*SE, DL, "indvars");
#ifndef NDEBUG
Rewriter.setDebugType(DEBUG_TYPE);
#endif
@@ -1941,7 +1937,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// If we have a trip count expression, rewrite the loop's exit condition
// using it. We can currently only handle loops with a single exit.
if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
- PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, DL);
+ PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
if (IndVar) {
// Check preconditions for proper SCEVExpander operation. SCEV does not
// express SCEVExpander's dependencies, such as LoopSimplify. Instead any
diff --git a/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp b/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp
index 8559e638ac3..61f3cc50257 100644
--- a/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp
+++ b/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp
@@ -791,9 +791,10 @@ LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BP
"loop variant exit count doesn't make sense!");
assert(!L.contains(LatchExit) && "expected an exit block!");
-
- Value *IndVarStartV = SCEVExpander(SE, "irce").expandCodeFor(
- IndVarStart, IndVarTy, &*Preheader->rbegin());
+ const DataLayout &DL = Preheader->getModule()->getDataLayout();
+ Value *IndVarStartV =
+ SCEVExpander(SE, DL, "irce")
+ .expandCodeFor(IndVarStart, IndVarTy, &*Preheader->rbegin());
IndVarStartV->setName("indvar.start");
LoopStructure Result;
@@ -1132,7 +1133,7 @@ bool LoopConstrainer::run() {
IntegerType *IVTy =
cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
- SCEVExpander Expander(SE, "irce");
+ SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
Instruction *InsertPt = OriginalPreheader->getTerminator();
// It would have been better to make `PreLoop' and `PostLoop'
diff --git a/llvm/lib/Transforms/Scalar/JumpThreading.cpp b/llvm/lib/Transforms/Scalar/JumpThreading.cpp
index db4174d7083..f6e43f26f99 100644
--- a/llvm/lib/Transforms/Scalar/JumpThreading.cpp
+++ b/llvm/lib/Transforms/Scalar/JumpThreading.cpp
@@ -78,7 +78,6 @@ namespace {
/// revectored to the false side of the second if.
///
class JumpThreading : public FunctionPass {
- const DataLayout *DL;
TargetLibraryInfo *TLI;
LazyValueInfo *LVI;
#ifdef NDEBUG
@@ -159,7 +158,6 @@ bool JumpThreading::runOnFunction(Function &F) {
return false;
DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
- DL = &F.getParent()->getDataLayout();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
LVI = &getAnalysis<LazyValueInfo>();
@@ -504,6 +502,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
assert(Preference == WantInteger && "Compares only produce integers");
PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
if (PN && PN->getParent() == BB) {
+ const DataLayout &DL = PN->getModule()->getDataLayout();
// We can do this simplification if any comparisons fold to true or false.
// See if any do.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
@@ -708,7 +707,8 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
// Run constant folding to see if we can reduce the condition to a simple
// constant.
if (Instruction *I = dyn_cast<Instruction>(Condition)) {
- Value *SimpleVal = ConstantFoldInstruction(I, DL, TLI);
+ Value *SimpleVal =
+ ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
if (SimpleVal) {
I->replaceAllUsesWith(SimpleVal);
I->eraseFromParent();
@@ -1520,7 +1520,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
// At this point, the IR is fully up to date and consistent. Do a quick scan
// over the new instructions and zap any that are constants or dead. This
// frequently happens because of phi translation.
- SimplifyInstructionsInBlock(NewBB, DL, TLI);
+ SimplifyInstructionsInBlock(NewBB, TLI);
// Threaded an edge!
++NumThreads;
@@ -1585,7 +1585,6 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
BasicBlock::iterator BI = BB->begin();
for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
-
// Clone the non-phi instructions of BB into PredBB, keeping track of the
// mapping and using it to remap operands in the cloned instructions.
for (; BI != BB->end(); ++BI) {
@@ -1602,7 +1601,8 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
// If this instruction can be simplified after the operands are updated,
// just use the simplified value instead. This frequently happens due to
// phi translation.
- if (Value *IV = SimplifyInstruction(New, DL)) {
+ if (Value *IV =
+ SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
delete New;
ValueMapping[BI] = IV;
} else {
diff --git a/llvm/lib/Transforms/Scalar/LICM.cpp b/llvm/lib/Transforms/Scalar/LICM.cpp
index 45bd122e072..5528a25864c 100644
--- a/llvm/lib/Transforms/Scalar/LICM.cpp
+++ b/llvm/lib/Transforms/Scalar/LICM.cpp
@@ -48,7 +48,6 @@
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
#include "llvm/IR/PredIteratorCache.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -77,21 +76,21 @@ static bool isNotUsedInLoop(Instruction &I, Loop *CurLoop);
static bool hoist(Instruction &I, BasicBlock *Preheader);
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
Loop *CurLoop, AliasSetTracker *CurAST );
-static bool isGuaranteedToExecute(Instruction &Inst, DominatorTree *DT,
- Loop *CurLoop, LICMSafetyInfo * SafetyInfo);
-static bool isSafeToExecuteUnconditionally(Instruction &Inst,DominatorTree *DT,
- const DataLayout *DL, Loop *CurLoop,
- LICMSafetyInfo * SafetyInfo);
+static bool isGuaranteedToExecute(Instruction &Inst, DominatorTree *DT,
+ Loop *CurLoop, LICMSafetyInfo *SafetyInfo);
+static bool isSafeToExecuteUnconditionally(Instruction &Inst, DominatorTree *DT,
+ Loop *CurLoop,
+ LICMSafetyInfo *SafetyInfo);
static bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
const AAMDNodes &AAInfo,
AliasSetTracker *CurAST);
static Instruction *CloneInstructionInExitBlock(Instruction &I,
BasicBlock &ExitBlock,
PHINode &PN, LoopInfo *LI);
-static bool canSinkOrHoistInst(Instruction &I, AliasAnalysis *AA,
- DominatorTree *DT, const DataLayout *DL,
- Loop *CurLoop, AliasSetTracker *CurAST,
- LICMSafetyInfo * SafetyInfo);
+static bool canSinkOrHoistInst(Instruction &I, AliasAnalysis *AA,
+ DominatorTree *DT, Loop *CurLoop,
+ AliasSetTracker *CurAST,
+ LICMSafetyInfo *SafetyInfo);
namespace {
struct LICM : public LoopPass {
@@ -131,7 +130,6 @@ namespace {
LoopInfo *LI; // Current LoopInfo
DominatorTree *DT; // Dominator Tree for the current Loop.
- const DataLayout *DL; // DataLayout for constant folding.
TargetLibraryInfo *TLI; // TargetLibraryInfo for constant folding.
// State that is updated as we process loops.
@@ -182,7 +180,6 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
AA = &getAnalysis<AliasAnalysis>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- DL = &L->getHeader()->getModule()->getDataLayout();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
@@ -235,10 +232,10 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
// instructions, we perform another pass to hoist them out of the loop.
//
if (L->hasDedicatedExits())
- Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, DL, TLI,
- CurLoop, CurAST, &SafetyInfo);
+ Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, CurLoop,
+ CurAST, &SafetyInfo);
if (Preheader)
- Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, DL, TLI,
+ Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI,
CurLoop, CurAST, &SafetyInfo);
// Now that all loop invariants have been removed from the loop, promote any
@@ -291,10 +288,9 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
/// first order w.r.t the DominatorTree. This allows us to visit uses before
/// definitions, allowing us to sink a loop body in one pass without iteration.
///
-bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
- DominatorTree *DT, const DataLayout *DL,
- TargetLibraryInfo *TLI, Loop *CurLoop,
- AliasSetTracker *CurAST, LICMSafetyInfo * SafetyInfo) {
+bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
+ DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
+ AliasSetTracker *CurAST, LICMSafetyInfo *SafetyInfo) {
// Verify inputs.
assert(N != nullptr && AA != nullptr && LI != nullptr &&
@@ -311,8 +307,8 @@ bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
// We are processing blocks in reverse dfo, so process children first.
const std::vector<DomTreeNode*> &Children = N->getChildren();
for (unsigned i = 0, e = Children.size(); i != e; ++i)
- Changed |= sinkRegion(Children[i], AA, LI, DT, DL, TLI, CurLoop,
- CurAST, SafetyInfo);
+ Changed |=
+ sinkRegion(Children[i], AA, LI, DT, TLI, CurLoop, CurAST, SafetyInfo);
// Only need to process the contents of this block if it is not part of a
// subloop (which would already have been processed).
if (inSubLoop(BB,CurLoop,LI)) return Changed;
@@ -336,8 +332,8 @@ bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
// outside of the loop. In this case, it doesn't even matter if the
// operands of the instruction are loop invariant.
//
- if (isNotUsedInLoop(I, CurLoop) &&
- canSinkOrHoistInst(I, AA, DT, DL, CurLoop, CurAST, SafetyInfo)) {
+ if (isNotUsedInLoop(I, CurLoop) &&
+ canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, SafetyInfo)) {
++II;
Changed |= sink(I, LI, DT, CurLoop, CurAST);
}
@@ -350,10 +346,9 @@ bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
/// order w.r.t the DominatorTree. This allows us to visit definitions before
/// uses, allowing us to hoist a loop body in one pass without iteration.
///
-bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
- DominatorTree *DT, const DataLayout *DL,
- TargetLibraryInfo *TLI, Loop *CurLoop,
- AliasSetTracker *CurAST, LICMSafetyInfo *SafetyInfo) {
+bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
+ DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
+ AliasSetTracker *CurAST, LICMSafetyInfo *SafetyInfo) {
// Verify inputs.
assert(N != nullptr && AA != nullptr && LI != nullptr &&
DT != nullptr && CurLoop != nullptr && CurAST != nullptr &&
@@ -372,7 +367,8 @@ bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
// Try constant folding this instruction. If all the operands are
// constants, it is technically hoistable, but it would be better to just
// fold it.
- if (Constant *C = ConstantFoldInstruction(&I, DL, TLI)) {
+ if (Constant *C = ConstantFoldInstruction(
+ &I, I.getModule()->getDataLayout(), TLI)) {
DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C << '\n');
CurAST->copyValue(&I, C);
CurAST->deleteValue(&I);
@@ -385,16 +381,16 @@ bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
// if all of the operands of the instruction are loop invariant and if it
// is safe to hoist the instruction.
//
- if (CurLoop->hasLoopInvariantOperands(&I) &&
- canSinkOrHoistInst(I, AA, DT, DL, CurLoop, CurAST, SafetyInfo) &&
- isSafeToExecuteUnconditionally(I, DT, DL, CurLoop, SafetyInfo))
+ if (CurLoop->hasLoopInvariantOperands(&I) &&
+ canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, SafetyInfo) &&
+ isSafeToExecuteUnconditionally(I, DT, CurLoop, SafetyInfo))
Changed |= hoist(I, CurLoop->getLoopPreheader());
}
const std::vector<DomTreeNode*> &Children = N->getChildren();
for (unsigned i = 0, e = Children.size(); i != e; ++i)
- Changed |= hoistRegion(Children[i], AA, LI, DT, DL, TLI, CurLoop,
- CurAST, SafetyInfo);
+ Changed |=
+ hoistRegion(Children[i], AA, LI, DT, TLI, CurLoop, CurAST, SafetyInfo);
return Changed;
}
@@ -424,10 +420,9 @@ void llvm::computeLICMSafetyInfo(LICMSafetyInfo * SafetyInfo, Loop * CurLoop) {
/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
/// instruction.
///
-bool canSinkOrHoistInst(Instruction &I, AliasAnalysis *AA,
- DominatorTree *DT, const DataLayout *DL,
- Loop *CurLoop, AliasSetTracker *CurAST,
- LICMSafetyInfo * SafetyInfo) {
+bool canSinkOrHoistInst(Instruction &I, AliasAnalysis *AA, DominatorTree *DT,
+ Loop *CurLoop, AliasSetTracker *CurAST,
+ LICMSafetyInfo *SafetyInfo) {
// Loads have extra constraints we have to verify before we can hoist them.
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
if (!LI->isUnordered())
@@ -487,7 +482,7 @@ bool canSinkOrHoistInst(Instruction &I, AliasAnalysis *AA,
!isa<InsertValueInst>(I))
return false;
- return isSafeToExecuteUnconditionally(I, DT, DL, CurLoop, SafetyInfo);
+ return isSafeToExecuteUnconditionally(I, DT, CurLoop, SafetyInfo);
}
/// Returns true if a PHINode is a trivially replaceable with an
@@ -643,10 +638,10 @@ static bool hoist(Instruction &I, BasicBlock *Preheader) {
/// or if it is a trapping instruction and is guaranteed to execute.
///
static bool isSafeToExecuteUnconditionally(Instruction &Inst, DominatorTree *DT,
- const DataLayout *DL, Loop *CurLoop,
- LICMSafetyInfo * SafetyInfo) {
+ Loop *CurLoop,
+ LICMSafetyInfo *SafetyInfo) {
// If it is not a trapping instruction, it is always safe to hoist.
- if (isSafeToSpeculativelyExecute(&Inst, DL))
+ if (isSafeToSpeculativelyExecute(&Inst))
return true;
return isGuaranteedToExecute(Inst, DT, CurLoop, SafetyInfo);
diff --git a/llvm/lib/Transforms/Scalar/LoadCombine.cpp b/llvm/lib/Transforms/Scalar/LoadCombine.cpp
index 9d543baf401..b1a08c9ee70 100644
--- a/llvm/lib/Transforms/Scalar/LoadCombine.cpp
+++ b/llvm/lib/Transforms/Scalar/LoadCombine.cpp
@@ -53,13 +53,10 @@ struct LoadPOPPair {
class LoadCombine : public BasicBlockPass {
LLVMContext *C;
- const DataLayout *DL;
AliasAnalysis *AA;
public:
- LoadCombine()
- : BasicBlockPass(ID),
- C(nullptr), DL(nullptr), AA(nullptr) {
+ LoadCombine() : BasicBlockPass(ID), C(nullptr), AA(nullptr) {
initializeSROAPass(*PassRegistry::getPassRegistry());
}
@@ -86,11 +83,6 @@ private:
bool LoadCombine::doInitialization(Function &F) {
DEBUG(dbgs() << "LoadCombine function: " << F.getName() << "\n");
C = &F.getContext();
- DL = &F.getParent()->getDataLayout();
- if (!DL) {
- DEBUG(dbgs() << " Skipping LoadCombine -- no target data!\n");
- return false;
- }
return true;
}
@@ -100,9 +92,10 @@ PointerOffsetPair LoadCombine::getPointerOffsetPair(LoadInst &LI) {
POP.Offset = 0;
while (isa<BitCastInst>(POP.Pointer) || isa<GetElementPtrInst>(POP.Pointer)) {
if (auto *GEP = dyn_cast<GetElementPtrInst>(POP.Pointer)) {
- unsigned BitWidth = DL->getPointerTypeSizeInBits(GEP->getType());
+ auto &DL = LI.getModule()->getDataLayout();
+ unsigned BitWidth = DL.getPointerTypeSizeInBits(GEP->getType());
APInt Offset(BitWidth, 0);
- if (GEP->accumulateConstantOffset(*DL, Offset))
+ if (GEP->accumulateConstantOffset(DL, Offset))
POP.Offset += Offset.getZExtValue();
else
// Can't handle GEPs with variable indices.
@@ -145,7 +138,8 @@ bool LoadCombine::aggregateLoads(SmallVectorImpl<LoadPOPPair> &Loads) {
if (PrevOffset == -1ull) {
BaseLoad = L.Load;
PrevOffset = L.POP.Offset;
- PrevSize = DL->getTypeStoreSize(L.Load->getType());
+ PrevSize = L.Load->getModule()->getDataLayout().getTypeStoreSize(
+ L.Load->getType());
AggregateLoads.push_back(L);
continue;
}
@@ -164,7 +158,8 @@ bool LoadCombine::aggregateLoads(SmallVectorImpl<LoadPOPPair> &Loads) {
// FIXME: We may want to handle this case.
continue;
PrevOffset = L.POP.Offset;
- PrevSize = DL->getTypeStoreSize(L.Load->getType());
+ PrevSize = L.Load->getModule()->getDataLayout().getTypeStoreSize(
+ L.Load->getType());
AggregateLoads.push_back(L);
}
if (combineLoads(AggregateLoads))
@@ -215,7 +210,8 @@ bool LoadCombine::combineLoads(SmallVectorImpl<LoadPOPPair> &Loads) {
for (const auto &L : Loads) {
Builder->SetInsertPoint(L.Load);
Value *V = Builder->CreateExtractInteger(
- *DL, NewLoad, cast<IntegerType>(L.Load->getType()),
+ L.Load->getModule()->getDataLayout(), NewLoad,
+ cast<IntegerType>(L.Load->getType()),
L.POP.Offset - Loads[0].POP.Offset, "combine.extract");
L.Load->replaceAllUsesWith(V);
}
@@ -225,13 +221,13 @@ bool LoadCombine::combineLoads(SmallVectorImpl<LoadPOPPair> &Loads) {
}
bool LoadCombine::runOnBasicBlock(BasicBlock &BB) {
- if (skipOptnoneFunction(BB) || !DL)
+ if (skipOptnoneFunction(BB))
return false;
AA = &getAnalysis<AliasAnalysis>();
- IRBuilder<true, TargetFolder>
- TheBuilder(BB.getContext(), TargetFolder(DL));
+ IRBuilder<true, TargetFolder> TheBuilder(
+ BB.getContext(), TargetFolder(BB.getModule()->getDataLayout()));
Builder = &TheBuilder;
DenseMap<const Value *, SmallVector<LoadPOPPair, 8>> LoadMap;
diff --git a/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
index cb20c033484..21c58297d82 100644
--- a/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
+++ b/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
@@ -935,7 +935,7 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
// header. This allows us to insert code for it in the preheader.
BasicBlock *Preheader = CurLoop->getLoopPreheader();
IRBuilder<> Builder(Preheader->getTerminator());
- SCEVExpander Expander(*SE, "loop-idiom");
+ SCEVExpander Expander(*SE, DL, "loop-idiom");
Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
@@ -961,7 +961,7 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
// pointer size if it isn't already.
- Type *IntPtr = Builder.getIntPtrTy(&DL, DestAS);
+ Type *IntPtr = Builder.getIntPtrTy(DL, DestAS);
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
@@ -1032,7 +1032,8 @@ processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
// header. This allows us to insert code for it in the preheader.
BasicBlock *Preheader = CurLoop->getLoopPreheader();
IRBuilder<> Builder(Preheader->getTerminator());
- SCEVExpander Expander(*SE, "loop-idiom");
+ const DataLayout &DL = Preheader->getModule()->getDataLayout();
+ SCEVExpander Expander(*SE, DL, "loop-idiom");
// Okay, we have a strided store "p[i]" of a loaded value. We can turn
// this into a memcpy in the loop preheader now if we want. However, this
@@ -1075,8 +1076,7 @@ processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
// pointer size if it isn't already.
- auto &DL = CurLoop->getHeader()->getModule()->getDataLayout();
- Type *IntPtrTy = Builder.getIntPtrTy(&DL, SI->getPointerAddressSpace());
+ Type *IntPtrTy = Builder.getIntPtrTy(DL, SI->getPointerAddressSpace());
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtrTy, 1),
diff --git a/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp b/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp
index 6fce2ac27c1..e1250265475 100644
--- a/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp
+++ b/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp
@@ -77,7 +77,6 @@ bool LoopInstSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
const TargetLibraryInfo *TLI =
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
@@ -109,6 +108,7 @@ bool LoopInstSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
WorklistItem Item = VisitStack.pop_back_val();
BasicBlock *BB = Item.getPointer();
bool IsSubloopHeader = Item.getInt();
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
// Simplify instructions in the current basic block.
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
diff --git a/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp b/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp
index 300b168cea8..d87781c98f3 100644
--- a/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp
+++ b/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp
@@ -160,7 +160,6 @@ namespace {
AliasAnalysis *AA;
LoopInfo *LI;
ScalarEvolution *SE;
- const DataLayout *DL;
TargetLibraryInfo *TLI;
DominatorTree *DT;
@@ -367,10 +366,8 @@ namespace {
struct DAGRootTracker {
DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
ScalarEvolution *SE, AliasAnalysis *AA,
- TargetLibraryInfo *TLI, const DataLayout *DL)
- : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI),
- DL(DL), IV(IV) {
- }
+ TargetLibraryInfo *TLI)
+ : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), IV(IV) {}
/// Stage 1: Find all the DAG roots for the induction variable.
bool findRoots();
@@ -416,7 +413,6 @@ namespace {
ScalarEvolution *SE;
AliasAnalysis *AA;
TargetLibraryInfo *TLI;
- const DataLayout *DL;
// The loop induction variable.
Instruction *IV;
@@ -1131,7 +1127,7 @@ bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
// needed because otherwise isSafeToSpeculativelyExecute returns
// false on PHI nodes.
if (!isa<PHINode>(I) && !isSimpleLoadStore(I) &&
- !isSafeToSpeculativelyExecute(I, DL))
+ !isSafeToSpeculativelyExecute(I))
// Intervening instructions cause side effects.
FutureSideEffects = true;
}
@@ -1161,11 +1157,10 @@ bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
// side effects, and this instruction might also, then we can't reorder
// them, and this matching fails. As an exception, we allow the alias
// set tracker to handle regular (simple) load/store dependencies.
- if (FutureSideEffects &&
- ((!isSimpleLoadStore(BaseInst) &&
- !isSafeToSpeculativelyExecute(BaseInst, DL)) ||
- (!isSimpleLoadStore(RootInst) &&
- !isSafeToSpeculativelyExecute(RootInst, DL)))) {
+ if (FutureSideEffects && ((!isSimpleLoadStore(BaseInst) &&
+ !isSafeToSpeculativelyExecute(BaseInst)) ||
+ (!isSimpleLoadStore(RootInst) &&
+ !isSafeToSpeculativelyExecute(RootInst)))) {
DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
" vs. " << *RootInst <<
" (side effects prevent reordering)\n");
@@ -1272,6 +1267,7 @@ void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
++J;
}
+ const DataLayout &DL = Header->getModule()->getDataLayout();
// We need to create a new induction variable for each different BaseInst.
for (auto &DRS : RootSets) {
@@ -1284,7 +1280,7 @@ void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
SE->getConstant(RealIVSCEV->getType(), 1),
L, SCEV::FlagAnyWrap));
{ // Limit the lifetime of SCEVExpander.
- SCEVExpander Expander(*SE, "reroll");
+ SCEVExpander Expander(*SE, DL, "reroll");
Value *NewIV = Expander.expandCodeFor(H, IV->getType(), Header->begin());
for (auto &KV : Uses) {
@@ -1324,7 +1320,7 @@ void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
}
}
- SimplifyInstructionsInBlock(Header, DL, TLI);
+ SimplifyInstructionsInBlock(Header, TLI);
DeleteDeadPHIs(Header, TLI);
}
@@ -1448,7 +1444,7 @@ void LoopReroll::ReductionTracker::replaceSelected() {
bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
const SCEV *IterCount,
ReductionTracker &Reductions) {
- DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DL);
+ DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI);
if (!DAGRoots.findRoots())
return false;
@@ -1477,7 +1473,6 @@ bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
SE = &getAnalysis<ScalarEvolution>();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- DL = &L->getHeader()->getModule()->getDataLayout();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
BasicBlock *Header = L->getHeader();
diff --git a/llvm/lib/Transforms/Scalar/LoopRotation.cpp b/llvm/lib/Transforms/Scalar/LoopRotation.cpp
index 4d123490537..2126b52d7fc 100644
--- a/llvm/lib/Transforms/Scalar/LoopRotation.cpp
+++ b/llvm/lib/Transforms/Scalar/LoopRotation.cpp
@@ -24,6 +24,7 @@
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
@@ -412,6 +413,8 @@ bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+
// For the rest of the instructions, either hoist to the OrigPreheader if
// possible or create a clone in the OldPreHeader if not.
TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
@@ -442,8 +445,8 @@ bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
// With the operands remapped, see if the instruction constant folds or is
// otherwise simplifyable. This commonly occurs because the entry from PHI
// nodes allows icmps and other instructions to fold.
- // FIXME: Provide DL, TLI, DT, AC to SimplifyInstruction.
- Value *V = SimplifyInstruction(C);
+ // FIXME: Provide TLI, DT, AC to SimplifyInstruction.
+ Value *V = SimplifyInstruction(C, DL);
if (V && LI->replacementPreservesLCSSAForm(C, V)) {
// If so, then delete the temporary instruction and stick the folded value
// in the map.
diff --git a/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
index 2c0769a91e4..8445d5f50c4 100644
--- a/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
+++ b/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -68,6 +68,7 @@
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -4823,7 +4824,8 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
// we can remove them after we are done working.
SmallVector<WeakVH, 16> DeadInsts;
- SCEVExpander Rewriter(SE, "lsr");
+ SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
+ "lsr");
#ifndef NDEBUG
Rewriter.setDebugType(DEBUG_TYPE);
#endif
@@ -5093,7 +5095,8 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
Changed |= DeleteDeadPHIs(L->getHeader());
if (EnablePhiElim && L->isLoopSimplifyForm()) {
SmallVector<WeakVH, 16> DeadInsts;
- SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+ SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), DL, "lsr");
#ifndef NDEBUG
Rewriter.setDebugType(DEBUG_TYPE);
#endif
diff --git a/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp b/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
index 407595e5dbb..bf06be694dc 100644
--- a/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
+++ b/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
@@ -356,11 +356,12 @@ class UnrollAnalyzer : public InstVisitor<UnrollAnalyzer, bool> {
if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
RHS = SimpleRHS;
Value *SimpleV = nullptr;
+ const DataLayout &DL = I.getModule()->getDataLayout();
if (auto FI = dyn_cast<FPMathOperator>(&I))
SimpleV =
- SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags());
+ SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
else
- SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS);
+ SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
if (SimpleV && CountedInstructions.insert(&I).second)
NumberOfOptimizedInstructions += TTI.getUserCost(&I);
diff --git a/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp b/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
index 987dc96fb14..988d2af3ea9 100644
--- a/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
+++ b/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
@@ -42,6 +42,7 @@
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@@ -1082,6 +1083,7 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
/// pass.
///
void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
while (!Worklist.empty()) {
Instruction *I = Worklist.back();
Worklist.pop_back();
@@ -1104,7 +1106,7 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
// See if instruction simplification can hack this up. This is common for
// things like "select false, X, Y" after unswitching made the condition be
// 'false'. TODO: update the domtree properly so we can pass it here.
- if (Value *V = SimplifyInstruction(I))
+ if (Value *V = SimplifyInstruction(I, DL))
if (LI->replacementPreservesLCSSAForm(I, V)) {
ReplaceUsesOfWith(I, V, Worklist, L, LPM);
continue;
diff --git a/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp
index a4d4652e0c0..c442c02d387 100644
--- a/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp
+++ b/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp
@@ -41,7 +41,8 @@ STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
- bool &VariableIdxFound, const DataLayout &TD){
+ bool &VariableIdxFound,
+ const DataLayout &DL) {
// Skip over the first indices.
gep_type_iterator GTI = gep_type_begin(GEP);
for (unsigned i = 1; i != Idx; ++i, ++GTI)
@@ -57,13 +58,13 @@ static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
// Handle struct indices, which add their field offset to the pointer.
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
+ Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
continue;
}
// Otherwise, we have a sequential type like an array or vector. Multiply
// the index by the ElementSize.
- uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
+ uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
Offset += Size*OpC->getSExtValue();
}
@@ -74,7 +75,7 @@ static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
/// constant offset, and return that constant offset. For example, Ptr1 might
/// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
- const DataLayout &TD) {
+ const DataLayout &DL) {
Ptr1 = Ptr1->stripPointerCasts();
Ptr2 = Ptr2->stripPointerCasts();
@@ -92,12 +93,12 @@ static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
// If one pointer is a GEP and the other isn't, then see if the GEP is a
// constant offset from the base, as in "P" and "gep P, 1".
if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
- Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, TD);
+ Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
return !VariableIdxFound;
}
if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
- Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, TD);
+ Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
return !VariableIdxFound;
}
@@ -115,8 +116,8 @@ static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
break;
- int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
- int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
+ int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
+ int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
if (VariableIdxFound) return false;
Offset = Offset2-Offset1;
@@ -150,12 +151,11 @@ struct MemsetRange {
/// TheStores - The actual stores that make up this range.
SmallVector<Instruction*, 16> TheStores;
- bool isProfitableToUseMemset(const DataLayout &TD) const;
-
+ bool isProfitableToUseMemset(const DataLayout &DL) const;
};
} // end anon namespace
-bool MemsetRange::isProfitableToUseMemset(const DataLayout &TD) const {
+bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
// If we found more than 4 stores to merge or 16 bytes, use memset.
if (TheStores.size() >= 4 || End-Start >= 16) return true;
@@ -183,7 +183,7 @@ bool MemsetRange::isProfitableToUseMemset(const DataLayout &TD) const {
// size. If so, check to see whether we will end up actually reducing the
// number of stores used.
unsigned Bytes = unsigned(End-Start);
- unsigned MaxIntSize = TD.getLargestLegalIntTypeSize();
+ unsigned MaxIntSize = DL.getLargestLegalIntTypeSize();
if (MaxIntSize == 0)
MaxIntSize = 1;
unsigned NumPointerStores = Bytes / MaxIntSize;
@@ -314,14 +314,12 @@ namespace {
class MemCpyOpt : public FunctionPass {
MemoryDependenceAnalysis *MD;
TargetLibraryInfo *TLI;
- const DataLayout *DL;
public:
static char ID; // Pass identification, replacement for typeid
MemCpyOpt() : FunctionPass(ID) {
initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
MD = nullptr;
TLI = nullptr;
- DL = nullptr;
}
bool runOnFunction(Function &F) override;
@@ -377,13 +375,13 @@ INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
/// attempts to merge them together into a memcpy/memset.
Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
Value *StartPtr, Value *ByteVal) {
- if (!DL) return nullptr;
+ const DataLayout &DL = StartInst->getModule()->getDataLayout();
// Okay, so we now have a single store that can be splatable. Scan to find
// all subsequent stores of the same value to offset from the same pointer.
// Join these together into ranges, so we can decide whether contiguous blocks
// are stored.
- MemsetRanges Ranges(*DL);
+ MemsetRanges Ranges(DL);
BasicBlock::iterator BI = StartInst;
for (++BI; !isa<TerminatorInst>(BI); ++BI) {
@@ -406,8 +404,8 @@ Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
// Check to see if this store is to a constant offset from the start ptr.
int64_t Offset;
- if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(),
- Offset, *DL))
+ if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
+ DL))
break;
Ranges.addStore(Offset, NextStore);
@@ -420,7 +418,7 @@ Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
// Check to see if this store is to a constant offset from the start ptr.
int64_t Offset;
- if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *DL))
+ if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
break;
Ranges.addMemSet(Offset, MSI);
@@ -452,7 +450,7 @@ Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
if (Range.TheStores.size() == 1) continue;
// If it is profitable to lower this range to memset, do so now.
- if (!Range.isProfitableToUseMemset(*DL))
+ if (!Range.isProfitableToUseMemset(DL))
continue;
// Otherwise, we do want to transform this! Create a new memset.
@@ -464,7 +462,7 @@ Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
if (Alignment == 0) {
Type *EltType =
cast<PointerType>(StartPtr->getType())->getElementType();
- Alignment = DL->getABITypeAlignment(EltType);
+ Alignment = DL.getABITypeAlignment(EltType);
}
AMemSet =
@@ -494,8 +492,7 @@ Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
if (!SI->isSimple()) return false;
-
- if (!DL) return false;
+ const DataLayout &DL = SI->getModule()->getDataLayout();
// Detect cases where we're performing call slot forwarding, but
// happen to be using a load-store pair to implement it, rather than
@@ -525,16 +522,16 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
if (C) {
unsigned storeAlign = SI->getAlignment();
if (!storeAlign)
- storeAlign = DL->getABITypeAlignment(SI->getOperand(0)->getType());
+ storeAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
unsigned loadAlign = LI->getAlignment();
if (!loadAlign)
- loadAlign = DL->getABITypeAlignment(LI->getType());
+ loadAlign = DL.getABITypeAlignment(LI->getType());
- bool changed = performCallSlotOptzn(LI,
- SI->getPointerOperand()->stripPointerCasts(),
- LI->getPointerOperand()->stripPointerCasts(),
- DL->getTypeStoreSize(SI->getOperand(0)->getType()),
- std::min(storeAlign, loadAlign), C);
+ bool changed = performCallSlotOptzn(
+ LI, SI->getPointerOperand()->stripPointerCasts(),
+ LI->getPointerOperand()->stripPointerCasts(),
+ DL.getTypeStoreSize(SI->getOperand(0)->getType()),
+ std::min(storeAlign, loadAlign), C);
if (changed) {
MD->removeInstruction(SI);
SI->eraseFromParent();
@@ -606,15 +603,13 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
if (!srcAlloca)
return false;
- // Check that all of src is copied to dest.
- if (!DL) return false;
-
ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
if (!srcArraySize)
return false;
- uint64_t srcSize = DL->getTypeAllocSize(srcAlloca->getAllocatedType()) *
- srcArraySize->getZExtValue();
+ const DataLayout &DL = cpy->getModule()->getDataLayout();
+ uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
+ srcArraySize->getZExtValue();
if (cpyLen < srcSize)
return false;
@@ -628,8 +623,8 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
if (!destArraySize)
return false;
- uint64_t destSize = DL->getTypeAllocSize(A->getAllocatedType()) *
- destArraySize->getZExtValue();
+ uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
+ destArraySize->getZExtValue();
if (destSize < srcSize)
return false;
@@ -648,7 +643,7 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
return false;
}
- uint64_t destSize = DL->getTypeAllocSize(StructTy);
+ uint64_t destSize = DL.getTypeAllocSize(StructTy);
if (destSize < srcSize)
return false;
}
@@ -659,7 +654,7 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
// Check that dest points to memory that is at least as aligned as src.
unsigned srcAlign = srcAlloca->getAlignment();
if (!srcAlign)
- srcAlign = DL->getABITypeAlignment(srcAlloca->getAllocatedType());
+ srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
// If dest is not aligned enough and we can't increase its alignment then
// bail out.
@@ -959,12 +954,11 @@ bool MemCpyOpt::processMemMove(MemMoveInst *M) {
/// processByValArgument - This is called on every byval argument in call sites.
bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
- if (!DL) return false;
-
+ const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
// Find out what feeds this byval argument.
Value *ByValArg = CS.getArgument(ArgNo);
Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
- uint64_t ByValSize = DL->getTypeAllocSize(ByValTy);
+ uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
MemDepResult DepInfo =
MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
true, CS.getInstruction(),
@@ -997,8 +991,8 @@ bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
*CS->getParent()->getParent());
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
if (MDep->getAlignment() < ByValAlign &&
- getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &AC,
- CS.getInstruction(), &DT) < ByValAlign)
+ getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
+ CS.getInstruction(), &AC, &DT) < ByValAlign)
return false;
// Verify that the copied-from memory doesn't change in between the memcpy and
@@ -1077,7 +1071,6 @@ bool MemCpyOpt::runOnFunction(Function &F) {
bool MadeChange = false;
MD = &getAnalysis<MemoryDependenceAnalysis>();
- DL = &F.getParent()->getDataLayout();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
// If we don't have at least memset and memcpy, there is little point of doing
diff --git a/llvm/lib/Transforms/Scalar/SCCP.cpp b/llvm/lib/Transforms/Scalar/SCCP.cpp
index 91fd09d3b4e..3a0d30058f1 100644
--- a/llvm/lib/Transforms/Scalar/SCCP.cpp
+++ b/llvm/lib/Transforms/Scalar/SCCP.cpp
@@ -1070,7 +1070,7 @@ void SCCPSolver::visitLoadInst(LoadInst &I) {
}
// Transform load from a constant into a constant if possible.
- if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, &DL))
+ if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL))
return markConstant(IV, &I, C);
// Otherwise we cannot say for certain what value this load will produce.
diff --git a/llvm/lib/Transforms/Scalar/SROA.cpp b/llvm/lib/Transforms/Scalar/SROA.cpp
index 09670c63080..06b000f3a2f 100644
--- a/llvm/lib/Transforms/Scalar/SROA.cpp
+++ b/llvm/lib/Transforms/Scalar/SROA.cpp
@@ -701,6 +701,7 @@ private:
// by writing out the code here where we have tho underlying allocation
// size readily available.
APInt GEPOffset = Offset;
+ const DataLayout &DL = GEPI.getModule()->getDataLayout();
for (gep_type_iterator GTI = gep_type_begin(GEPI),
GTE = gep_type_end(GEPI);
GTI != GTE; ++GTI) {
@@ -750,6 +751,7 @@ private:
if (!IsOffsetKnown)
return PI.setAborted(&LI);
+ const DataLayout &DL = LI.getModule()->getDataLayout();
uint64_t Size = DL.getTypeStoreSize(LI.getType());
return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
}
@@ -761,6 +763,7 @@ private:
if (!IsOffsetKnown)
return PI.setAborted(&SI);
+ const DataLayout &DL = SI.getModule()->getDataLayout();
uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
// If this memory access can be shown to *statically* extend outside the
@@ -898,6 +901,7 @@ private:
SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
Visited.insert(Root);
Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
+ const DataLayout &DL = Root->getModule()->getDataLayout();
// If there are no loads or stores, the access is dead. We mark that as
// a size zero access.
Size = 0;
@@ -1194,7 +1198,6 @@ class SROA : public FunctionPass {
const bool RequiresDomTree;
LLVMContext *C;
- const DataLayout *DL;
DominatorTree *DT;
AssumptionCache *AC;
@@ -1243,7 +1246,7 @@ class SROA : public FunctionPass {
public:
SROA(bool RequiresDomTree = true)
: FunctionPass(ID), RequiresDomTree(RequiresDomTree), C(nullptr),
- DL(nullptr), DT(nullptr) {
+ DT(nullptr) {
initializeSROAPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
@@ -1349,7 +1352,7 @@ static Type *findCommonType(AllocaSlices::const_iterator B,
///
/// FIXME: This should be hoisted into a generic utility, likely in
/// Transforms/Util/Local.h
-static bool isSafePHIToSpeculate(PHINode &PN, const DataLayout *DL = nullptr) {
+static bool isSafePHIToSpeculate(PHINode &PN) {
// For now, we can only do this promotion if the load is in the same block
// as the PHI, and if there are no stores between the phi and load.
// TODO: Allow recursive phi users.
@@ -1381,6 +1384,8 @@ static bool isSafePHIToSpeculate(PHINode &PN, const DataLayout *DL = nullptr) {
if (!HaveLoad)
return false;
+ const DataLayout &DL = PN.getModule()->getDataLayout();
+
// We can only transform this if it is safe to push the loads into the
// predecessor blocks. The only thing to watch out for is that we can't put
// a possibly trapping load in the predecessor if it is a critical edge.
@@ -1403,7 +1408,7 @@ static bool isSafePHIToSpeculate(PHINode &PN, const DataLayout *DL = nullptr) {
// is already a load in the block, then we can move the load to the pred
// block.
if (InVal->isDereferenceablePointer(DL) ||
- isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL))
+ isSafeToLoadUnconditionally(InVal, TI, MaxAlign))
continue;
return false;
@@ -1468,10 +1473,10 @@ static void speculatePHINodeLoads(PHINode &PN) {
///
/// We can do this to a select if its only uses are loads and if the operand
/// to the select can be loaded unconditionally.
-static bool isSafeSelectToSpeculate(SelectInst &SI,
- const DataLayout *DL = nullptr) {
+static bool isSafeSelectToSpeculate(SelectInst &SI) {
Value *TValue = SI.getTrueValue();
Value *FValue = SI.getFalseValue();
+ const DataLayout &DL = SI.getModule()->getDataLayout();
bool TDerefable = TValue->isDereferenceablePointer(DL);
bool FDerefable = FValue->isDereferenceablePointer(DL);
@@ -1484,10 +1489,10 @@ static bool isSafeSelectToSpeculate(SelectInst &SI,
// absolutely (e.g. allocas) or at this point because we can see other
// accesses to it.
if (!TDerefable &&
- !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL))
+ !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment()))
return false;
if (!FDerefable &&
- !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL))
+ !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment()))
return false;
}
@@ -3699,6 +3704,7 @@ bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
// them to the alloca slices.
SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
std::vector<LoadInst *> SplitLoads;
+ const DataLayout &DL = AI.getModule()->getDataLayout();
for (LoadInst *LI : Loads) {
SplitLoads.clear();
@@ -3724,10 +3730,10 @@ bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
auto *PartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
LoadInst *PLoad = IRB.CreateAlignedLoad(
- getAdjustedPtr(IRB, *DL, BasePtr,
- APInt(DL->getPointerSizeInBits(), PartOffset),
+ getAdjustedPtr(IRB, DL, BasePtr,
+ APInt(DL.getPointerSizeInBits(), PartOffset),
PartPtrTy, BasePtr->getName() + "."),
- getAdjustedAlignment(LI, PartOffset, *DL), /*IsVolatile*/ false,
+ getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
LI->getName());
// Append this load onto the list of split loads so we can find it later
@@ -3777,10 +3783,10 @@ bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
StoreInst *PStore = IRB.CreateAlignedStore(
- PLoad, getAdjustedPtr(IRB, *DL, StoreBasePtr,
- APInt(DL->getPointerSizeInBits(), PartOffset),
+ PLoad, getAdjustedPtr(IRB, DL, StoreBasePtr,
+ APInt(DL.getPointerSizeInBits(), PartOffset),
PartPtrTy, StoreBasePtr->getName() + "."),
- getAdjustedAlignment(SI, PartOffset, *DL), /*IsVolatile*/ false);
+ getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
(void)PStore;
DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n");
}
@@ -3857,20 +3863,20 @@ bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
} else {
IRB.SetInsertPoint(BasicBlock::iterator(LI));
PLoad = IRB.CreateAlignedLoad(
- getAdjustedPtr(IRB, *DL, LoadBasePtr,
- APInt(DL->getPointerSizeInBits(), PartOffset),
+ getAdjustedPtr(IRB, DL, LoadBasePtr,
+ APInt(DL.getPointerSizeInBits(), PartOffset),
PartPtrTy, LoadBasePtr->getName() + "."),
- getAdjustedAlignment(LI, PartOffset, *DL), /*IsVolatile*/ false,
+ getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
LI->getName());
}
// And store this partition.
IRB.SetInsertPoint(BasicBlock::iterator(SI));
StoreInst *PStore = IRB.CreateAlignedStore(
- PLoad, getAdjustedPtr(IRB, *DL, StoreBasePtr,
- APInt(DL->getPointerSizeInBits(), PartOffset),
+ PLoad, getAdjustedPtr(IRB, DL, StoreBasePtr,
+ APInt(DL.getPointerSizeInBits(), PartOffset),
PartPtrTy, StoreBasePtr->getName() + "."),
- getAdjustedAlignment(SI, PartOffset, *DL), /*IsVolatile*/ false);
+ getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
// Now build a new slice for the alloca.
NewSlices.push_back(
@@ -3970,25 +3976,26 @@ AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
// won't always succeed, in which case we fall back to a legal integer type
// or an i8 array of an appropriate size.
Type *SliceTy = nullptr;
+ const DataLayout &DL = AI.getModule()->getDataLayout();
if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset()))
- if (DL->getTypeAllocSize(CommonUseTy) >= P.size())
+ if (DL.getTypeAllocSize(CommonUseTy) >= P.size())
SliceTy = CommonUseTy;
if (!SliceTy)
- if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(),
+ if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
P.beginOffset(), P.size()))
SliceTy = TypePartitionTy;
if ((!SliceTy || (SliceTy->isArrayTy() &&
SliceTy->getArrayElementType()->isIntegerTy())) &&
- DL->isLegalInteger(P.size() * 8))
+ DL.isLegalInteger(P.size() * 8))
SliceTy = Type::getIntNTy(*C, P.size() * 8);
if (!SliceTy)
SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
- assert(DL->getTypeAllocSize(SliceTy) >= P.size());
+ assert(DL.getTypeAllocSize(SliceTy) >= P.size());
- bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, *DL);
+ bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
VectorType *VecTy =
- IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, *DL);
+ IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
if (VecTy)
SliceTy = VecTy;
@@ -4010,12 +4017,12 @@ AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
// The minimum alignment which users can rely on when the explicit
// alignment is omitted or zero is that required by the ABI for this
// type.
- Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
+ Alignment = DL.getABITypeAlignment(AI.getAllocatedType());
}
Alignment = MinAlign(Alignment, P.beginOffset());
// If we will get at least this much alignment from the type alone, leave
// the alloca's alignment unconstrained.
- if (Alignment <= DL->getABITypeAlignment(SliceTy))
+ if (Alignment <= DL.getABITypeAlignment(SliceTy))
Alignment = 0;
NewAI = new AllocaInst(
SliceTy, nullptr, Alignment,
@@ -4035,7 +4042,7 @@ AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
SmallPtrSet<PHINode *, 8> PHIUsers;
SmallPtrSet<SelectInst *, 8> SelectUsers;
- AllocaSliceRewriter Rewriter(*DL, AS, *this, AI, *NewAI, P.beginOffset(),
+ AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
P.endOffset(), IsIntegerPromotable, VecTy,
PHIUsers, SelectUsers);
bool Promotable = true;
@@ -4057,7 +4064,7 @@ AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
for (SmallPtrSetImpl<PHINode *>::iterator I = PHIUsers.begin(),
E = PHIUsers.end();
I != E; ++I)
- if (!isSafePHIToSpeculate(**I, DL)) {
+ if (!isSafePHIToSpeculate(**I)) {
Promotable = false;
PHIUsers.clear();
SelectUsers.clear();
@@ -4066,7 +4073,7 @@ AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
for (SmallPtrSetImpl<SelectInst *>::iterator I = SelectUsers.begin(),
E = SelectUsers.end();
I != E; ++I)
- if (!isSafeSelectToSpeculate(**I, DL)) {
+ if (!isSafeSelectToSpeculate(**I)) {
Promotable = false;
PHIUsers.clear();
SelectUsers.clear();
@@ -4110,6 +4117,7 @@ bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
unsigned NumPartitions = 0;
bool Changed = false;
+ const DataLayout &DL = AI.getModule()->getDataLayout();
// First try to pre-split loads and stores.
Changed |= presplitLoadsAndStores(AI, AS);
@@ -4127,7 +4135,7 @@ bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
// confident that the above handling of splittable loads and stores is
// completely sufficient before we forcibly disable the remaining handling.
if (S.beginOffset() == 0 &&
- S.endOffset() >= DL->getTypeAllocSize(AI.getAllocatedType()))
+ S.endOffset() >= DL.getTypeAllocSize(AI.getAllocatedType()))
continue;
if (isa<LoadInst>(S.getUse()->getUser()) ||
isa<StoreInst>(S.getUse()->getUser())) {
@@ -4155,7 +4163,7 @@ bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
Changed = true;
if (NewAI != &AI) {
uint64_t SizeOfByte = 8;
- uint64_t AllocaSize = DL->getTypeSizeInBits(NewAI->getAllocatedType());
+ uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType());
// Don't include any padding.
uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
Pieces.push_back(Piece(NewAI, P.beginOffset() * SizeOfByte, Size));
@@ -4236,21 +4244,22 @@ bool SROA::runOnAlloca(AllocaInst &AI) {
AI.eraseFromParent();
return true;
}
+ const DataLayout &DL = AI.getModule()->getDataLayout();
// Skip alloca forms that this analysis can't handle.
if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
- DL->getTypeAllocSize(AI.getAllocatedType()) == 0)
+ DL.getTypeAllocSize(AI.getAllocatedType()) == 0)
return false;
bool Changed = false;
// First, split any FCA loads and stores touching this alloca to promote
// better splitting and promotion opportunities.
- AggLoadStoreRewriter AggRewriter(*DL);
+ AggLoadStoreRewriter AggRewriter(DL);
Changed |= AggRewriter.rewrite(AI);
// Build the slices using a recursive instruction-visiting builder.
- AllocaSlices AS(*DL, AI);
+ AllocaSlices AS(DL, AI);
DEBUG(AS.print(dbgs()));
if (AS.isEscaped())
return Changed;
@@ -4423,7 +4432,6 @@ bool SROA::runOnFunction(Function &F) {
DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
C = &F.getContext();
- DL = &F.getParent()->getDataLayout();
DominatorTreeWrapperPass *DTWP =
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DT = DTWP ? &DTWP->getDomTree() : nullptr;
diff --git a/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
index d89a5bcd63a..acd85858906 100644
--- a/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
+++ b/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
@@ -89,7 +89,6 @@ namespace {
private:
bool HasDomTree;
- const DataLayout *DL;
/// DeadInsts - Keep track of instructions we have made dead, so that
/// we can remove them after we are done working.
@@ -159,9 +158,10 @@ namespace {
void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
Type *MemOpType, bool isStore, AllocaInfo &Info,
Instruction *TheAccess, bool AllowWholeAccess);
- bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
- uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
- Type *&IdxTy);
+ bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size,
+ const DataLayout &DL);
+ uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset, Type *&IdxTy,
+ const DataLayout &DL);
void DoScalarReplacement(AllocaInst *AI,
std::vector<AllocaInst*> &WorkList);
@@ -699,9 +699,9 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
// If the source and destination are both to the same alloca, then this is
// a noop copy-to-self, just delete it. Otherwise, emit a load and store
// as appropriate.
- AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &DL, 0));
+ AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, DL, 0));
- if (GetUnderlyingObject(MTI->getSource(), &DL, 0) != OrigAI) {
+ if (GetUnderlyingObject(MTI->getSource(), DL, 0) != OrigAI) {
// Dest must be OrigAI, change this to be a load from the original
// pointer (bitcasted), then a store to our new alloca.
assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
@@ -717,7 +717,7 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
SrcVal->setAlignment(MTI->getAlignment());
Builder.CreateStore(SrcVal, NewAI);
- } else if (GetUnderlyingObject(MTI->getDest(), &DL, 0) != OrigAI) {
+ } else if (GetUnderlyingObject(MTI->getDest(), DL, 0) != OrigAI) {
// Src must be OrigAI, change this to be a load from NewAI then a store
// through the original dest pointer (bitcasted).
assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
@@ -1032,16 +1032,8 @@ bool SROA::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
- DL = &F.getParent()->getDataLayout();
-
bool Changed = performPromotion(F);
- // FIXME: ScalarRepl currently depends on DataLayout more than it
- // theoretically needs to. It should be refactored in order to support
- // target-independent IR. Until this is done, just skip the actual
- // scalar-replacement portion of this pass.
- if (!DL) return Changed;
-
while (1) {
bool LocalChange = performScalarRepl(F);
if (!LocalChange) break; // No need to repromote if no scalarrepl
@@ -1147,7 +1139,8 @@ public:
///
/// We can do this to a select if its only uses are loads and if the operand to
/// the select can be loaded unconditionally.
-static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *DL) {
+static bool isSafeSelectToSpeculate(SelectInst *SI) {
+ const DataLayout &DL = SI->getModule()->getDataLayout();
bool TDerefable = SI->getTrueValue()->isDereferenceablePointer(DL);
bool FDerefable = SI->getFalseValue()->isDereferenceablePointer(DL);
@@ -1157,11 +1150,13 @@ static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *DL) {
// Both operands to the select need to be dereferencable, either absolutely
// (e.g. allocas) or at this point because we can see other accesses to it.
- if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
- LI->getAlignment(), DL))
+ if (!TDerefable &&
+ !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
+ LI->getAlignment()))
return false;
- if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
- LI->getAlignment(), DL))
+ if (!FDerefable &&
+ !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
+ LI->getAlignment()))
return false;
}
@@ -1184,7 +1179,7 @@ static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *DL) {
///
/// We can do this to a select if its only uses are loads and if the operand to
/// the select can be loaded unconditionally.
-static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *DL) {
+static bool isSafePHIToSpeculate(PHINode *PN) {
// For now, we can only do this promotion if the load is in the same block as
// the PHI, and if there are no stores between the phi and load.
// TODO: Allow recursive phi users.
@@ -1208,6 +1203,8 @@ static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *DL) {
MaxAlign = std::max(MaxAlign, LI->getAlignment());
}
+ const DataLayout &DL = PN->getModule()->getDataLayout();
+
// Okay, we know that we have one or more loads in the same block as the PHI.
// We can transform this if it is safe to push the loads into the predecessor
// blocks. The only thing to watch out for is that we can't put a possibly
@@ -1233,7 +1230,7 @@ static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *DL) {
// If this pointer is always safe to load, or if we can prove that there is
// already a load in the block, then we can move the load to the pred block.
if (InVal->isDereferenceablePointer(DL) ||
- isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, DL))
+ isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign))
continue;
return false;
@@ -1247,7 +1244,7 @@ static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *DL) {
/// direct (non-volatile) loads and stores to it. If the alloca is close but
/// not quite there, this will transform the code to allow promotion. As such,
/// it is a non-pure predicate.
-static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *DL) {
+static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout &DL) {
SetVector<Instruction*, SmallVector<Instruction*, 4>,
SmallPtrSet<Instruction*, 4> > InstsToRewrite;
for (User *U : AI->users()) {
@@ -1278,7 +1275,7 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *DL) {
// If it is safe to turn "load (select c, AI, ptr)" into a select of two
// loads, then we can transform this by rewriting the select.
- if (!isSafeSelectToSpeculate(SI, DL))
+ if (!isSafeSelectToSpeculate(SI))
return false;
InstsToRewrite.insert(SI);
@@ -1293,7 +1290,7 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *DL) {
// If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
// in the pred blocks, then we can transform this by rewriting the PHI.
- if (!isSafePHIToSpeculate(PN, DL))
+ if (!isSafePHIToSpeculate(PN))
return false;
InstsToRewrite.insert(PN);
@@ -1415,6 +1412,7 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *DL) {
bool SROA::performPromotion(Function &F) {
std::vector<AllocaInst*> Allocas;
+ const DataLayout &DL = F.getParent()->getDataLayout();
DominatorTree *DT = nullptr;
if (HasDomTree)
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
@@ -1478,6 +1476,7 @@ bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) {
//
bool SROA::performScalarRepl(Function &F) {
std::vector<AllocaInst*> WorkList;
+ const DataLayout &DL = F.getParent()->getDataLayout();
// Scan the entry basic block, adding allocas to the worklist.
BasicBlock &BB = F.getEntryBlock();
@@ -1507,7 +1506,7 @@ bool SROA::performScalarRepl(Function &F) {
// transform the allocation instruction if it is an array allocation
// (allocations OF arrays are ok though), and an allocation of a scalar
// value cannot be decomposed at all.
- uint64_t AllocaSize = DL->getTypeAllocSize(AI->getAllocatedType());
+ uint64_t AllocaSize = DL.getTypeAllocSize(AI->getAllocatedType());
// Do not promote [0 x %struct].
if (AllocaSize == 0) continue;
@@ -1530,8 +1529,9 @@ bool SROA::performScalarRepl(Function &F) {
// promoted itself. If so, we don't want to transform it needlessly. Note
// that we can't just check based on the type: the alloca may be of an i32
// but that has pointer arithmetic to set byte 3 of it or something.
- if (AllocaInst *NewAI = ConvertToScalarInfo(
- (unsigned)AllocaSize, *DL, ScalarLoadThreshold).TryConvert(AI)) {
+ if (AllocaInst *NewAI =
+ ConvertToScalarInfo((unsigned)AllocaSize, DL, ScalarLoadThreshold)
+ .TryConvert(AI)) {
NewAI->takeName(AI);
AI->eraseFromParent();
++NumConverted;
@@ -1609,6 +1609,7 @@ void SROA::DeleteDeadInstructions() {
/// referenced by this instruction.
void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
AllocaInfo &Info) {
+ const DataLayout &DL = I->getModule()->getDataLayout();
for (Use &U : I->uses()) {
Instruction *User = cast<Instruction>(U.getUser());
@@ -1631,8 +1632,8 @@ void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
if (!LI->isSimple())
return MarkUnsafe(Info, User);
Type *LIType = LI->getType();
- isSafeMemAccess(Offset, DL->getTypeAllocSize(LIType),
- LIType, false, Info, LI, true /*AllowWholeAccess*/);
+ isSafeMemAccess(Offset, DL.getTypeAllocSize(LIType), LIType, false, Info,
+ LI, true /*AllowWholeAccess*/);
Info.hasALoadOrStore = true;
} else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
@@ -1641,8 +1642,8 @@ void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
return MarkUnsafe(Info, User);
Type *SIType = SI->getOperand(0)->getType();
- isSafeMemAccess(Offset, DL->getTypeAllocSize(SIType),
- SIType, true, Info, SI, true /*AllowWholeAccess*/);
+ isSafeMemAccess(Offset, DL.getTypeAllocSize(SIType), SIType, true, Info,
+ SI, true /*AllowWholeAccess*/);
Info.hasALoadOrStore = true;
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
@@ -1674,6 +1675,7 @@ void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
if (!Info.CheckedPHIs.insert(PN).second)
return;
+ const DataLayout &DL = I->getModule()->getDataLayout();
for (User *U : I->users()) {
Instruction *UI = cast<Instruction>(U);
@@ -1690,8 +1692,8 @@ void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
if (!LI->isSimple())
return MarkUnsafe(Info, UI);
Type *LIType = LI->getType();
- isSafeMemAccess(Offset, DL->getTypeAllocSize(LIType),
- LIType, false, Info, LI, false /*AllowWholeAccess*/);
+ isSafeMemAccess(Offset, DL.getTypeAllocSize(LIType), LIType, false, Info,
+ LI, false /*AllowWholeAccess*/);
Info.hasALoadOrStore = true;
} else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
@@ -1700,8 +1702,8 @@ void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
return MarkUnsafe(Info, UI);
Type *SIType = SI->getOperand(0)->getType();
- isSafeMemAccess(Offset, DL->getTypeAllocSize(SIType),
- SIType, true, Info, SI, false /*AllowWholeAccess*/);
+ isSafeMemAccess(Offset, DL.getTypeAllocSize(SIType), SIType, true, Info,
+ SI, false /*AllowWholeAccess*/);
Info.hasALoadOrStore = true;
} else if (isa<PHINode>(UI) || isa<SelectInst>(UI)) {
isSafePHISelectUseForScalarRepl(UI, Offset, Info);
@@ -1745,9 +1747,11 @@ void SROA::isSafeGEP(GetElementPtrInst *GEPI,
// constant part of the offset.
if (NonConstant)
Indices.pop_back();
- Offset += DL->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
- if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset,
- NonConstantIdxSize))
+
+ const DataLayout &DL = GEPI->getModule()->getDataLayout();
+ Offset += DL.getIndexedOffset(GEPI->getPointerOperandType(), Indices);
+ if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, NonConstantIdxSize,
+ DL))
MarkUnsafe(Info, GEPI);
}
@@ -1802,9 +1806,10 @@ void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
Type *MemOpType, bool isStore,
AllocaInfo &Info, Instruction *TheAccess,
bool AllowWholeAccess) {
+ const DataLayout &DL = TheAccess->getModule()->getDataLayout();
// Check if this is a load/store of the entire alloca.
if (Offset == 0 && AllowWholeAccess &&
- MemSize == DL->getTypeAllocSize(Info.AI->getAllocatedType())) {
+ MemSize == DL.getTypeAllocSize(Info.AI->getAllocatedType())) {
// This can be safe for MemIntrinsics (where MemOpType is 0) and integer
// loads/stores (which are essentially the same as the MemIntrinsics with
// regard to copying padding between elements). But, if an alloca is
@@ -1827,7 +1832,7 @@ void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
}
// Check if the offset/size correspond to a component within the alloca type.
Type *T = Info.AI->getAllocatedType();
- if (TypeHasComponent(T, Offset, MemSize)) {
+ if (TypeHasComponent(T, Offset, MemSize, DL)) {
Info.hasSubelementAccess = true;
return;
}
@@ -1837,24 +1842,25 @@ void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
/// TypeHasComponent - Return true if T has a component type with the
/// specified offset and size. If Size is zero, do not check the size.
-bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
+bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size,
+ const DataLayout &DL) {
Type *EltTy;
uint64_t EltSize;
if (StructType *ST = dyn_cast<StructType>(T)) {
- const StructLayout *Layout = DL->getStructLayout(ST);
+ const StructLayout *Layout = DL.getStructLayout(ST);
unsigned EltIdx = Layout->getElementContainingOffset(Offset);
EltTy = ST->getContainedType(EltIdx);
- EltSize = DL->getTypeAllocSize(EltTy);
+ EltSize = DL.getTypeAllocSize(EltTy);
Offset -= Layout->getElementOffset(EltIdx);
} else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
EltTy = AT->getElementType();
- EltSize = DL->getTypeAllocSize(EltTy);
+ EltSize = DL.getTypeAllocSize(EltTy);
if (Offset >= AT->getNumElements() * EltSize)
return false;
Offset %= EltSize;
} else if (VectorType *VT = dyn_cast<VectorType>(T)) {
EltTy = VT->getElementType();
- EltSize = DL->getTypeAllocSize(EltTy);
+ EltSize = DL.getTypeAllocSize(EltTy);
if (Offset >= VT->getNumElements() * EltSize)
return false;
Offset %= EltSize;
@@ -1866,7 +1872,7 @@ bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
// Check if the component spans multiple elements.
if (Offset + Size > EltSize)
return false;
- return TypeHasComponent(EltTy, Offset, Size);
+ return TypeHasComponent(EltTy, Offset, Size, DL);
}
/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
@@ -1875,6 +1881,7 @@ bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
/// instruction.
void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
SmallVectorImpl<AllocaInst *> &NewElts) {
+ const DataLayout &DL = I->getModule()->getDataLayout();
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
Use &TheUse = *UI++;
Instruction *User = cast<Instruction>(TheUse.getUser());
@@ -1892,8 +1899,7 @@ void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
uint64_t MemSize = Length->getZExtValue();
- if (Offset == 0 &&
- MemSize == DL->getTypeAllocSize(AI->getAllocatedType()))
+ if (Offset == 0 && MemSize == DL.getTypeAllocSize(AI->getAllocatedType()))
RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
// Otherwise the intrinsic can only touch a single element and the
// address operand will be updated, so nothing else needs to be done.
@@ -1929,8 +1935,8 @@ void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
LI->replaceAllUsesWith(Insert);
DeadInsts.push_back(LI);
} else if (LIType->isIntegerTy() &&
- DL->getTypeAllocSize(LIType) ==
- DL->getTypeAllocSize(AI->getAllocatedType())) {
+ DL.getTypeAllocSize(LIType) ==
+ DL.getTypeAllocSize(AI->getAllocatedType())) {
// If this is a load of the entire alloca to an integer, rewrite it.
RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
}
@@ -1956,8 +1962,8 @@ void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
}
DeadInsts.push_back(SI);
} else if (SIType->isIntegerTy() &&
- DL->getTypeAllocSize(SIType) ==
- DL->getTypeAllocSize(AI->getAllocatedType())) {
+ DL.getTypeAllocSize(SIType) ==
+ DL.getTypeAllocSize(AI->getAllocatedType())) {
// If this is a store of the entire alloca from an integer, rewrite it.
RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
}
@@ -2000,7 +2006,8 @@ void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
Type *T = AI->getAllocatedType();
uint64_t EltOffset = 0;
Type *IdxTy;
- uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
+ uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy,
+ BC->getModule()->getDataLayout());
Instruction *Val = NewElts[Idx];
if (Val->getType() != BC->getDestTy()) {
Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
@@ -2015,11 +2022,12 @@ void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
/// Sets T to the type of the element and Offset to the offset within that
/// element. IdxTy is set to the type of the index result to be used in a
/// GEP instruction.
-uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
- Type *&IdxTy) {
+uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset, Type *&IdxTy,
+ const DataLayout &DL) {
uint64_t Idx = 0;
+
if (StructType *ST = dyn_cast<StructType>(T)) {
- const StructLayout *Layout = DL->getStructLayout(ST);
+ const StructLayout *Layout = DL.getStructLayout(ST);
Idx = Layout->getElementContainingOffset(Offset);
T = ST->getContainedType(Idx);
Offset -= Layout->getElementOffset(Idx);
@@ -2027,7 +2035,7 @@ uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
return Idx;
} else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
T = AT->getElementType();
- uint64_t EltSize = DL->getTypeAllocSize(T);
+ uint64_t EltSize = DL.getTypeAllocSize(T);
Idx = Offset / EltSize;
Offset -= Idx * EltSize;
IdxTy = Type::getInt64Ty(T->getContext());
@@ -2035,7 +2043,7 @@ uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
}
VectorType *VT = cast<VectorType>(T);
T = VT->getElementType();
- uint64_t EltSize = DL->getTypeAllocSize(T);
+ uint64_t EltSize = DL.getTypeAllocSize(T);
Idx = Offset / EltSize;
Offset -= Idx * EltSize;
IdxTy = Type::getInt64Ty(T->getContext());
@@ -2048,6 +2056,7 @@ uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
SmallVectorImpl<AllocaInst *> &NewElts) {
uint64_t OldOffset = Offset;
+ const DataLayout &DL = GEPI->getModule()->getDataLayout();
SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
// If the GEP was dynamic then it must have been a dynamic vector lookup.
// In this case, it must be the last GEP operand which is dynamic so keep that
@@ -2056,19 +2065,19 @@ void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
Value* NonConstantIdx = nullptr;
if (!GEPI->hasAllConstantIndices())
NonConstantIdx = Indices.pop_back_val();
- Offset += DL->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
+ Offset += DL.getIndexedOffset(GEPI->getPointerOperandType(), Indices);
RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
Type *T = AI->getAllocatedType();
Type *IdxTy;
- uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
+ uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy, DL);
if (GEPI->getOperand(0) == AI)
OldIdx = ~0ULL; // Force the GEP to be rewritten.
T = AI->getAllocatedType();
uint64_t EltOffset = Offset;
- uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
+ uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy, DL);
// If this GEP does not move the pointer across elements of the alloca
// being split, then it does not needs to be rewritten.
@@ -2079,7 +2088,7 @@ void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
SmallVector<Value*, 8> NewArgs;
NewArgs.push_back(Constant::getNullValue(i32Ty));
while (EltOffset != 0) {
- uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
+ uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy, DL);
NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
}
if (NonConstantIdx) {
@@ -2113,9 +2122,10 @@ void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
// Put matching lifetime markers on everything from Offset up to
// Offset+OldSize.
Type *AIType = AI->getAllocatedType();
+ const DataLayout &DL = II->getModule()->getDataLayout();
uint64_t NewOffset = Offset;
Type *IdxTy;
- uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
+ uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy, DL);
IRBuilder<> Builder(II);
uint64_t Size = OldSize->getLimitedValue();
@@ -2128,7 +2138,7 @@ void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
IdxTy = NewElts[Idx]->getAllocatedType();
- uint64_t EltSize = DL->getTypeAllocSize(IdxTy) - NewOffset;
+ uint64_t EltSize = DL.getTypeAllocSize(IdxTy) - NewOffset;
if (EltSize > Size) {
EltSize = Size;
Size = 0;
@@ -2144,7 +2154,7 @@ void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
for (; Idx != NewElts.size() && Size; ++Idx) {
IdxTy = NewElts[Idx]->getAllocatedType();
- uint64_t EltSize = DL->getTypeAllocSize(IdxTy);
+ uint64_t EltSize = DL.getTypeAllocSize(IdxTy);
if (EltSize > Size) {
EltSize = Size;
Size = 0;
@@ -2220,6 +2230,7 @@ SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
bool SROADest = MI->getRawDest() == Inst;
Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
+ const DataLayout &DL = MI->getModule()->getDataLayout();
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
// If this is a memcpy/memmove, emit a GEP of the other element address.
@@ -2236,10 +2247,10 @@ SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
Type *OtherTy = OtherPtrTy->getElementType();
if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
- EltOffset = DL->getStructLayout(ST)->getElementOffset(i);
+ EltOffset = DL.getStructLayout(ST)->getElementOffset(i);
} else {
Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
- EltOffset = DL->getTypeAllocSize(EltTy)*i;
+ EltOffset = DL.getTypeAllocSize(EltTy) * i;
}
// The alignment of the other pointer is the guaranteed alignment of the
@@ -2280,7 +2291,7 @@ SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
Type *ValTy = EltTy->getScalarType();
// Construct an integer with the right value.
- unsigned EltSize = DL->getTypeSizeInBits(ValTy);
+ unsigned EltSize = DL.getTypeSizeInBits(ValTy);
APInt OneVal(EltSize, CI->getZExtValue());
APInt TotalVal(OneVal);
// Set each byte.
@@ -2310,7 +2321,7 @@ SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
// this element.
}
- unsigned EltSize = DL->getTypeAllocSize(EltTy);
+ unsigned EltSize = DL.getTypeAllocSize(EltTy);
if (!EltSize)
continue;
@@ -2344,12 +2355,13 @@ SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
// and store the element value to the individual alloca.
Value *SrcVal = SI->getOperand(0);
Type *AllocaEltTy = AI->getAllocatedType();
- uint64_t AllocaSizeBits = DL->getTypeAllocSizeInBits(AllocaEltTy);
+ const DataLayout &DL = SI->getModule()->getDataLayout();
+ uint64_t AllocaSizeBits = DL.getTypeAllocSizeInBits(AllocaEltTy);
IRBuilder<> Builder(SI);
// Handle tail padding by extending the operand
- if (DL->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
+ if (DL.getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
SrcVal = Builder.CreateZExt(SrcVal,
IntegerType::get(SI->getContext(), AllocaSizeBits));
@@ -2359,15 +2371,15 @@ SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
// There are two forms here: AI could be an array or struct. Both cases
// have different ways to compute the element offset.
if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
- const StructLayout *Layout = DL->getStructLayout(EltSTy);
+ const StructLayout *Layout = DL.getStructLayout(EltSTy);
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
// Get the number of bits to shift SrcVal to get the value.
Type *FieldTy = EltSTy->getElementType(i);
uint64_t Shift = Layout->getElementOffsetInBits(i);
- if (DL->isBigEndian())
- Shift = AllocaSizeBits-Shift-DL->getTypeAllocSizeInBits(FieldTy);
+ if (DL.isBigEndian())
+ Shift = AllocaSizeBits - Shift - DL.getTypeAllocSizeInBits(FieldTy);
Value *EltVal = SrcVal;
if (Shift) {
@@ -2376,7 +2388,7 @@ SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
}
// Truncate down to an integer of the right size.
- uint64_t FieldSizeBits = DL->getTypeSizeInBits(FieldTy);
+ uint64_t FieldSizeBits = DL.getTypeSizeInBits(FieldTy);
// Ignore zero sized fields like {}, they obviously contain no data.
if (FieldSizeBits == 0) continue;
@@ -2401,12 +2413,12 @@ SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
} else {
ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
Type *ArrayEltTy = ATy->getElementType();
- uint64_t ElementOffset = DL->getTypeAllocSizeInBits(ArrayEltTy);
- uint64_t ElementSizeBits = DL->getTypeSizeInBits(ArrayEltTy);
+ uint64_t ElementOffset = DL.getTypeAllocSizeInBits(ArrayEltTy);
+ uint64_t ElementSizeBits = DL.getTypeSizeInBits(ArrayEltTy);
uint64_t Shift;
- if (DL->isBigEndian())
+ if (DL.isBigEndian())
Shift = AllocaSizeBits-ElementOffset;
else
Shift = 0;
@@ -2440,7 +2452,7 @@ SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
}
new StoreInst(EltVal, DestField, SI);
- if (DL->isBigEndian())
+ if (DL.isBigEndian())
Shift -= ElementOffset;
else
Shift += ElementOffset;
@@ -2458,7 +2470,8 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
// Extract each element out of the NewElts according to its structure offset
// and form the result value.
Type *AllocaEltTy = AI->getAllocatedType();
- uint64_t AllocaSizeBits = DL->getTypeAllocSizeInBits(AllocaEltTy);
+ const DataLayout &DL = LI->getModule()->getDataLayout();
+ uint64_t AllocaSizeBits = DL.getTypeAllocSizeInBits(AllocaEltTy);
DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
<< '\n');
@@ -2468,10 +2481,10 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
const StructLayout *Layout = nullptr;
uint64_t ArrayEltBitOffset = 0;
if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
- Layout = DL->getStructLayout(EltSTy);
+ Layout = DL.getStructLayout(EltSTy);
} else {
Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
- ArrayEltBitOffset = DL->getTypeAllocSizeInBits(ArrayEltTy);
+ ArrayEltBitOffset = DL.getTypeAllocSizeInBits(ArrayEltTy);
}
Value *ResultVal =
@@ -2483,7 +2496,7 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
Value *SrcField = NewElts[i];
Type *FieldTy =
cast<PointerType>(SrcField->getType())->getElementType();
- uint64_t FieldSizeBits = DL->getTypeSizeInBits(FieldTy);
+ uint64_t FieldSizeBits = DL.getTypeSizeInBits(FieldTy);
// Ignore zero sized fields like {}, they obviously contain no data.
if (FieldSizeBits == 0) continue;
@@ -2514,7 +2527,7 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
else // Array case.
Shift = i*ArrayEltBitOffset;
- if (DL->isBigEndian())
+ if (DL.isBigEndian())
Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
if (Shift) {
@@ -2531,7 +2544,7 @@ SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
}
// Handle tail padding by truncating the result
- if (DL->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
+ if (DL.getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
LI->replaceAllUsesWith(ResultVal);
@@ -2588,13 +2601,15 @@ bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
return false;
}
+ const DataLayout &DL = AI->getModule()->getDataLayout();
+
// Okay, we know all the users are promotable. If the aggregate is a memcpy
// source and destination, we have to be careful. In particular, the memcpy
// could be moving around elements that live in structure padding of the LLVM
// types, but may actually be used. In these cases, we refuse to promote the
// struct.
if (Info.isMemCpySrc && Info.isMemCpyDst &&
- HasPadding(AI->getAllocatedType(), *DL))
+ HasPadding(AI->getAllocatedType(), DL))
return false;
// If the alloca never has an access to just *part* of it, but is accessed
diff --git a/llvm/lib/Transforms/Scalar/Scalarizer.cpp b/llvm/lib/Transforms/Scalar/Scalarizer.cpp
index 5638d20075d..f2cff4dd492 100644
--- a/llvm/lib/Transforms/Scalar/Scalarizer.cpp
+++ b/llvm/lib/Transforms/Scalar/Scalarizer.cpp
@@ -165,7 +165,7 @@ private:
void gather(Instruction *, const ValueVector &);
bool canTransferMetadata(unsigned Kind);
void transferMetadata(Instruction *, const ValueVector &);
- bool getVectorLayout(Type *, unsigned, VectorLayout &);
+ bool getVectorLayout(Type *, unsigned, VectorLayout &, const DataLayout &);
bool finish();
template<typename T> bool splitBinary(Instruction &, const T &);
@@ -173,7 +173,6 @@ private:
ScatterMap Scattered;
GatherList Gathered;
unsigned ParallelLoopAccessMDKind;
- const DataLayout *DL;
bool ScalarizeLoadStore;
};
@@ -248,7 +247,6 @@ bool Scalarizer::doInitialization(Module &M) {
}
bool Scalarizer::runOnFunction(Function &F) {
- DL = &F.getParent()->getDataLayout();
for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
BasicBlock *BB = BBI;
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
@@ -344,10 +342,7 @@ void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
// Try to fill in Layout from Ty, returning true on success. Alignment is
// the alignment of the vector, or 0 if the ABI default should be used.
bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
- VectorLayout &Layout) {
- if (!DL)
- return false;
-
+ VectorLayout &Layout, const DataLayout &DL) {
// Make sure we're dealing with a vector.
Layout.VecTy = dyn_cast<VectorType>(Ty);
if (!Layout.VecTy)
@@ -355,15 +350,15 @@ bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
// Check that we're dealing with full-byte elements.
Layout.ElemTy = Layout.VecTy->getElementType();
- if (DL->getTypeSizeInBits(Layout.ElemTy) !=
- DL->getTypeStoreSizeInBits(Layout.ElemTy))
+ if (DL.getTypeSizeInBits(Layout.ElemTy) !=
+ DL.getTypeStoreSizeInBits(Layout.ElemTy))
return false;
if (Alignment)
Layout.VecAlign = Alignment;
else
- Layout.VecAlign = DL->getABITypeAlignment(Layout.VecTy);
- Layout.ElemSize = DL->getTypeStoreSize(Layout.ElemTy);
+ Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy);
+ Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
return true;
}
@@ -594,7 +589,8 @@ bool Scalarizer::visitLoadInst(LoadInst &LI) {
return false;
VectorLayout Layout;
- if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout))
+ if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout,
+ LI.getModule()->getDataLayout()))
return false;
unsigned NumElems = Layout.VecTy->getNumElements();
@@ -618,7 +614,8 @@ bool Scalarizer::visitStoreInst(StoreInst &SI) {
VectorLayout Layout;
Value *FullValue = SI.getValueOperand();
- if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout))
+ if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout,
+ SI.getModule()->getDataLayout()))
return false;
unsigned NumElems = Layout.VecTy->getNumElements();
diff --git a/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp b/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp
index 3aa57711416..3d5f6c9c1e2 100644
--- a/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp
+++ b/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp
@@ -199,18 +199,15 @@ class ConstantOffsetExtractor {
/// new index representing the remainder (equal to the original index minus
/// the constant offset), or nullptr if we cannot extract a constant offset.
/// \p Idx The given GEP index
- /// \p DL The datalayout of the module
/// \p GEP The given GEP
- static Value *Extract(Value *Idx, const DataLayout *DL,
- GetElementPtrInst *GEP);
+ static Value *Extract(Value *Idx, GetElementPtrInst *GEP);
/// Looks for a constant offset from the given GEP index without extracting
/// it. It returns the numeric value of the extracted constant offset (0 if
/// failed). The meaning of the arguments are the same as Extract.
- static int64_t Find(Value *Idx, const DataLayout *DL, GetElementPtrInst *GEP);
+ static int64_t Find(Value *Idx, GetElementPtrInst *GEP);
private:
- ConstantOffsetExtractor(const DataLayout *Layout, Instruction *InsertionPt)
- : DL(Layout), IP(InsertionPt) {}
+ ConstantOffsetExtractor(Instruction *InsertionPt) : IP(InsertionPt) {}
/// Searches the expression that computes V for a non-zero constant C s.t.
/// V can be reassociated into the form V' + C. If the searching is
/// successful, returns C and update UserChain as a def-use chain from C to V;
@@ -294,8 +291,6 @@ class ConstantOffsetExtractor {
/// A data structure used in rebuildWithoutConstOffset. Contains all
/// sext/zext instructions along UserChain.
SmallVector<CastInst *, 16> ExtInsts;
- /// The data layout of the module. Used in ComputeKnownBits.
- const DataLayout *DL;
Instruction *IP; /// Insertion position of cloned instructions.
};
@@ -316,11 +311,6 @@ class SeparateConstOffsetFromGEP : public FunctionPass {
AU.setPreservesCFG();
}
- bool doInitialization(Module &M) override {
- DL = &M.getDataLayout();
- return false;
- }
-
bool runOnFunction(Function &F) override;
private:
@@ -368,7 +358,6 @@ class SeparateConstOffsetFromGEP : public FunctionPass {
/// Verified in @i32_add in split-gep.ll
bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
- const DataLayout *DL;
const TargetMachine *TM;
/// Whether to lower a GEP with multiple indices into arithmetic operations or
/// multiple GEPs with a single index.
@@ -642,9 +631,8 @@ Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
return BO;
}
-Value *ConstantOffsetExtractor::Extract(Value *Idx, const DataLayout *DL,
- GetElementPtrInst *GEP) {
- ConstantOffsetExtractor Extractor(DL, GEP);
+Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP) {
+ ConstantOffsetExtractor Extractor(GEP);
// Find a non-zero constant offset first.
APInt ConstantOffset =
Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
@@ -655,10 +643,9 @@ Value *ConstantOffsetExtractor::Extract(Value *Idx, const DataLayout *DL,
return Extractor.rebuildWithoutConstOffset();
}
-int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL,
- GetElementPtrInst *GEP) {
+int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP) {
// If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
- return ConstantOffsetExtractor(DL, GEP)
+ return ConstantOffsetExtractor(GEP)
.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
GEP->isInBounds())
.getSExtValue();
@@ -669,6 +656,7 @@ void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
IntegerType *IT = cast<IntegerType>(V->getType());
KnownOne = APInt(IT->getBitWidth(), 0);
KnownZero = APInt(IT->getBitWidth(), 0);
+ const DataLayout &DL = IP->getModule()->getDataLayout();
llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0);
}
@@ -684,7 +672,8 @@ bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const {
bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
GetElementPtrInst *GEP) {
bool Changed = false;
- Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
+ const DataLayout &DL = GEP->getModule()->getDataLayout();
+ Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
gep_type_iterator GTI = gep_type_begin(*GEP);
for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
I != E; ++I, ++GTI) {
@@ -705,18 +694,19 @@ SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
NeedsExtraction = false;
int64_t AccumulativeByteOffset = 0;
gep_type_iterator GTI = gep_type_begin(*GEP);
+ const DataLayout &DL = GEP->getModule()->getDataLayout();
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
if (isa<SequentialType>(*GTI)) {
// Tries to extract a constant offset from this GEP index.
int64_t ConstantOffset =
- ConstantOffsetExtractor::Find(GEP->getOperand(I), DL, GEP);
+ ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP);
if (ConstantOffset != 0) {
NeedsExtraction = true;
// A GEP may have multiple indices. We accumulate the extracted
// constant offset to a byte offset, and later offset the remainder of
// the original GEP with this byte offset.
AccumulativeByteOffset +=
- ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
+ ConstantOffset * DL.getTypeAllocSize(GTI.getIndexedType());
}
} else if (LowerGEP) {
StructType *StTy = cast<StructType>(*GTI);
@@ -725,7 +715,7 @@ SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
if (Field != 0) {
NeedsExtraction = true;
AccumulativeByteOffset +=
- DL->getStructLayout(StTy)->getElementOffset(Field);
+ DL.getStructLayout(StTy)->getElementOffset(Field);
}
}
}
@@ -735,7 +725,8 @@ SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
IRBuilder<> Builder(Variadic);
- Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
+ const DataLayout &DL = Variadic->getModule()->getDataLayout();
+ Type *IntPtrTy = DL.getIntPtrType(Variadic->getType());
Type *I8PtrTy =
Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
@@ -755,7 +746,7 @@ void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
continue;
APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
- DL->getTypeAllocSize(GTI.getIndexedType()));
+ DL.getTypeAllocSize(GTI.getIndexedType()));
// Scale the index by element size.
if (ElementSize != 1) {
if (ElementSize.isPowerOf2()) {
@@ -786,7 +777,8 @@ void
SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
int64_t AccumulativeByteOffset) {
IRBuilder<> Builder(Variadic);
- Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
+ const DataLayout &DL = Variadic->getModule()->getDataLayout();
+ Type *IntPtrTy = DL.getIntPtrType(Variadic->getType());
Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
gep_type_iterator GTI = gep_type_begin(*Variadic);
@@ -802,7 +794,7 @@ SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
continue;
APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
- DL->getTypeAllocSize(GTI.getIndexedType()));
+ DL.getTypeAllocSize(GTI.getIndexedType()));
// Scale the index by element size.
if (ElementSize != 1) {
if (ElementSize.isPowerOf2()) {
@@ -875,8 +867,7 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
if (isa<SequentialType>(*GTI)) {
// Splits this GEP index into a variadic part and a constant offset, and
// uses the variadic part as the new index.
- Value *NewIdx =
- ConstantOffsetExtractor::Extract(GEP->getOperand(I), DL, GEP);
+ Value *NewIdx = ConstantOffsetExtractor::Extract(GEP->getOperand(I), GEP);
if (NewIdx != nullptr) {
GEP->setOperand(I, NewIdx);
}
@@ -953,9 +944,10 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
// Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
// unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
// used with unsigned integers later.
+ const DataLayout &DL = GEP->getModule()->getDataLayout();
int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
- DL->getTypeAllocSize(GEP->getType()->getElementType()));
- Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
+ DL.getTypeAllocSize(GEP->getType()->getElementType()));
+ Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
// Very likely. As long as %gep is natually aligned, the byte offset we
// extracted should be a multiple of sizeof(*%gep).
diff --git a/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp b/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp
index ac932b659ab..8566cd9736d 100644
--- a/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp
+++ b/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp
@@ -127,7 +127,7 @@ static bool mergeEmptyReturnBlocks(Function &F) {
/// iterativelySimplifyCFG - Call SimplifyCFG on all the blocks in the function,
/// iterating until no more changes are made.
static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
- const DataLayout *DL, AssumptionCache *AC,
+ AssumptionCache *AC,
unsigned BonusInstThreshold) {
bool Changed = false;
bool LocalChange = true;
@@ -137,7 +137,7 @@ static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
// Loop over all of the basic blocks and remove them if they are unneeded...
//
for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
- if (SimplifyCFG(BBIt++, TTI, BonusInstThreshold, DL, AC)) {
+ if (SimplifyCFG(BBIt++, TTI, BonusInstThreshold, AC)) {
LocalChange = true;
++NumSimpl;
}
@@ -148,11 +148,10 @@ static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
}
static bool simplifyFunctionCFG(Function &F, const TargetTransformInfo &TTI,
- const DataLayout *DL, AssumptionCache *AC,
- int BonusInstThreshold) {
+ AssumptionCache *AC, int BonusInstThreshold) {
bool EverChanged = removeUnreachableBlocks(F);
EverChanged |= mergeEmptyReturnBlocks(F);
- EverChanged |= iterativelySimplifyCFG(F, TTI, DL, AC, BonusInstThreshold);
+ EverChanged |= iterativelySimplifyCFG(F, TTI, AC, BonusInstThreshold);
// If neither pass changed anything, we're done.
if (!EverChanged) return false;
@@ -166,7 +165,7 @@ static bool simplifyFunctionCFG(Function &F, const TargetTransformInfo &TTI,
return true;
do {
- EverChanged = iterativelySimplifyCFG(F, TTI, DL, AC, BonusInstThreshold);
+ EverChanged = iterativelySimplifyCFG(F, TTI, AC, BonusInstThreshold);
EverChanged |= removeUnreachableBlocks(F);
} while (EverChanged);
@@ -181,11 +180,10 @@ SimplifyCFGPass::SimplifyCFGPass(int BonusInstThreshold)
PreservedAnalyses SimplifyCFGPass::run(Function &F,
AnalysisManager<Function> *AM) {
- auto &DL = F.getParent()->getDataLayout();
auto &TTI = AM->getResult<TargetIRAnalysis>(F);
auto &AC = AM->getResult<AssumptionAnalysis>(F);
- if (!simplifyFunctionCFG(F, TTI, &DL, &AC, BonusInstThreshold))
+ if (!simplifyFunctionCFG(F, TTI, &AC, BonusInstThreshold))
return PreservedAnalyses::none();
return PreservedAnalyses::all();
@@ -207,8 +205,7 @@ struct CFGSimplifyPass : public FunctionPass {
&getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
const TargetTransformInfo &TTI =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- const DataLayout &DL = F.getParent()->getDataLayout();
- return simplifyFunctionCFG(F, TTI, &DL, AC, BonusInstThreshold);
+ return simplifyFunctionCFG(F, TTI, AC, BonusInstThreshold);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
diff --git a/llvm/lib/Transforms/Scalar/Sink.cpp b/llvm/lib/Transforms/Scalar/Sink.cpp
index 4ba3f1949db..b169d5612f0 100644
--- a/llvm/lib/Transforms/Scalar/Sink.cpp
+++ b/llvm/lib/Transforms/Scalar/Sink.cpp
@@ -36,7 +36,6 @@ namespace {
DominatorTree *DT;
LoopInfo *LI;
AliasAnalysis *AA;
- const DataLayout *DL;
public:
static char ID; // Pass identification
@@ -101,7 +100,6 @@ bool Sinking::runOnFunction(Function &F) {
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
AA = &getAnalysis<AliasAnalysis>();
- DL = &F.getParent()->getDataLayout();
bool MadeChange, EverMadeChange = false;
@@ -196,7 +194,7 @@ bool Sinking::IsAcceptableTarget(Instruction *Inst,
if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) {
// We cannot sink a load across a critical edge - there may be stores in
// other code paths.
- if (!isSafeToSpeculativelyExecute(Inst, DL))
+ if (!isSafeToSpeculativelyExecute(Inst))
return false;
// We don't want to sink across a critical edge if we don't dominate the
diff --git a/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp b/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp
index bd6d925e8d5..73ef9ea24ce 100644
--- a/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp
+++ b/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp
@@ -87,7 +87,6 @@ STATISTIC(NumAccumAdded, "Number of accumulators introduced");
namespace {
struct TailCallElim : public FunctionPass {
const TargetTransformInfo *TTI;
- const DataLayout *DL;
static char ID; // Pass identification, replacement for typeid
TailCallElim() : FunctionPass(ID) {
@@ -159,8 +158,6 @@ bool TailCallElim::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
- DL = &F.getParent()->getDataLayout();
-
bool AllCallsAreTailCalls = false;
bool Modified = markTails(F, AllCallsAreTailCalls);
if (AllCallsAreTailCalls)
@@ -425,7 +422,7 @@ bool TailCallElim::runTRE(Function &F) {
PHINode *PN = ArgumentPHIs[i];
// If the PHI Node is a dynamic constant, replace it with the value it is.
- if (Value *PNV = SimplifyInstruction(PN)) {
+ if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
PN->replaceAllUsesWith(PNV);
PN->eraseFromParent();
}
@@ -454,7 +451,7 @@ bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
// being loaded from.
if (CI->mayWriteToMemory() ||
!isSafeToLoadUnconditionally(L->getPointerOperand(), L,
- L->getAlignment(), DL))
+ L->getAlignment()))
return false;
}
}
OpenPOWER on IntegriCloud