summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/SystemZ/SystemZInstrVector.td
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/SystemZ/SystemZInstrVector.td')
-rw-r--r--llvm/lib/Target/SystemZ/SystemZInstrVector.td108
1 files changed, 95 insertions, 13 deletions
diff --git a/llvm/lib/Target/SystemZ/SystemZInstrVector.td b/llvm/lib/Target/SystemZ/SystemZInstrVector.td
index d94725b7913..546974aa5d8 100644
--- a/llvm/lib/Target/SystemZ/SystemZInstrVector.td
+++ b/llvm/lib/Target/SystemZ/SystemZInstrVector.td
@@ -118,18 +118,24 @@ let Predicates = [FeatureVector] in {
def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>;
def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>;
def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>;
+ def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)),
+ (VLREPG bdxaddr12only:$addr)>;
// Load logical element and zero.
def VLLEZB : UnaryVRX<"vllezb", 0xE704, z_vllezi8, v128b, 1, 0>;
def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>;
def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>;
def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>;
+ def : Pat<(v2f64 (z_vllezf64 bdxaddr12only:$addr)),
+ (VLLEZG bdxaddr12only:$addr)>;
// Load element.
def VLEB : TernaryVRX<"vleb", 0xE700, z_vlei8, v128b, v128b, 1, imm32zx4>;
def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>;
def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>;
def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>;
+ def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index),
+ (VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
// Gather element.
def VGEF : TernaryVRV<"vgef", 0xE713, 4, imm32zx2>;
@@ -152,6 +158,7 @@ defm : ReplicatePeephole<VLREPB, v16i8, anyextloadi8, i32>;
defm : ReplicatePeephole<VLREPH, v8i16, anyextloadi16, i32>;
defm : ReplicatePeephole<VLREPF, v4i32, load, i32>;
defm : ReplicatePeephole<VLREPG, v2i64, load, i64>;
+defm : ReplicatePeephole<VLREPG, v2f64, load, f64>;
//===----------------------------------------------------------------------===//
// Stores
@@ -172,6 +179,9 @@ let Predicates = [FeatureVector] in {
def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>;
def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>;
def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>;
+ def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr,
+ imm32zx1:$index),
+ (VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
// Scatter element.
def VSCEF : StoreBinaryVRV<"vscef", 0xE71B, 4, imm32zx2>;
@@ -188,12 +198,14 @@ let Predicates = [FeatureVector] in {
def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>;
def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>;
def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>;
+ def : BinaryRRWithType<VMRHG, VR128, z_merge_high, v2f64>;
// Merge low.
def VMRLB : BinaryVRRc<"vmrlb", 0xE760, z_merge_low, v128b, v128b, 0>;
def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>;
def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>;
def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>;
+ def : BinaryRRWithType<VMRLG, VR128, z_merge_low, v2f64>;
// Permute.
def VPERM : TernaryVRRe<"vperm", 0xE78C, z_permute, v128b, v128b>;
@@ -206,6 +218,8 @@ let Predicates = [FeatureVector] in {
def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>;
def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>;
def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>;
+ def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16:$index)),
+ (VREPG VR128:$vec, imm32zx16:$index)>;
// Select.
def VSEL : TernaryVRRe<"vsel", 0xE78D, null_frag, v128any, v128any>;
@@ -287,6 +301,7 @@ defm : GenericVectorOps<v16i8, v16i8>;
defm : GenericVectorOps<v8i16, v8i16>;
defm : GenericVectorOps<v4i32, v4i32>;
defm : GenericVectorOps<v2i64, v2i64>;
+defm : GenericVectorOps<v2f64, v2i64>;
//===----------------------------------------------------------------------===//
// Integer arithmetic
@@ -734,34 +749,52 @@ let Predicates = [FeatureVector] in {
// Floating-point arithmetic
//===----------------------------------------------------------------------===//
+// See comments in SystemZInstrFP.td for the suppression flags and
+// rounding modes.
+multiclass VectorRounding<Instruction insn, TypedReg tr> {
+ def : FPConversion<insn, frint, tr, tr, 0, 0>;
+ def : FPConversion<insn, fnearbyint, tr, tr, 4, 0>;
+ def : FPConversion<insn, ffloor, tr, tr, 4, 7>;
+ def : FPConversion<insn, fceil, tr, tr, 4, 6>;
+ def : FPConversion<insn, ftrunc, tr, tr, 4, 5>;
+ def : FPConversion<insn, frnd, tr, tr, 4, 1>;
+}
+
let Predicates = [FeatureVector] in {
// Add.
- def VFADB : BinaryVRRc<"vfadb", 0xE7E3, null_frag, v128db, v128db, 3, 0>;
+ def VFADB : BinaryVRRc<"vfadb", 0xE7E3, fadd, v128db, v128db, 3, 0>;
def WFADB : BinaryVRRc<"wfadb", 0xE7E3, null_frag, v64db, v64db, 3, 8>;
// Convert from fixed 64-bit.
def VCDGB : TernaryVRRa<"vcdgb", 0xE7C3, null_frag, v128db, v128g, 3, 0>;
def WCDGB : TernaryVRRa<"wcdgb", 0xE7C3, null_frag, v64db, v64g, 3, 8>;
+ def : FPConversion<VCDGB, sint_to_fp, v128db, v128g, 0, 0>;
// Convert from logical 64-bit.
def VCDLGB : TernaryVRRa<"vcdlgb", 0xE7C1, null_frag, v128db, v128g, 3, 0>;
def WCDLGB : TernaryVRRa<"wcdlgb", 0xE7C1, null_frag, v64db, v64g, 3, 8>;
+ def : FPConversion<VCDLGB, uint_to_fp, v128db, v128g, 0, 0>;
// Convert to fixed 64-bit.
def VCGDB : TernaryVRRa<"vcgdb", 0xE7C2, null_frag, v128g, v128db, 3, 0>;
def WCGDB : TernaryVRRa<"wcgdb", 0xE7C2, null_frag, v64g, v64db, 3, 8>;
+ // Rounding mode should agree with SystemZInstrFP.td.
+ def : FPConversion<VCGDB, fp_to_sint, v128g, v128db, 0, 5>;
// Convert to logical 64-bit.
def VCLGDB : TernaryVRRa<"vclgdb", 0xE7C0, null_frag, v128g, v128db, 3, 0>;
def WCLGDB : TernaryVRRa<"wclgdb", 0xE7C0, null_frag, v64g, v64db, 3, 8>;
+ // Rounding mode should agree with SystemZInstrFP.td.
+ def : FPConversion<VCLGDB, fp_to_uint, v128g, v128db, 0, 5>;
// Divide.
- def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, null_frag, v128db, v128db, 3, 0>;
+ def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, fdiv, v128db, v128db, 3, 0>;
def WFDDB : BinaryVRRc<"wfddb", 0xE7E5, null_frag, v64db, v64db, 3, 8>;
// Load FP integer.
def VFIDB : TernaryVRRa<"vfidb", 0xE7C7, null_frag, v128db, v128db, 3, 0>;
def WFIDB : TernaryVRRa<"wfidb", 0xE7C7, null_frag, v64db, v64db, 3, 8>;
+ defm : VectorRounding<VFIDB, v128db>;
// Load lengthened.
def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, null_frag, v128db, v128eb, 2, 0>;
@@ -772,35 +805,35 @@ let Predicates = [FeatureVector] in {
def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32eb, v64db, 3, 8>;
// Multiply.
- def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, null_frag, v128db, v128db, 3, 0>;
+ def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, fmul, v128db, v128db, 3, 0>;
def WFMDB : BinaryVRRc<"wfmdb", 0xE7E7, null_frag, v64db, v64db, 3, 8>;
// Multiply and add.
- def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, null_frag, v128db, v128db, 0, 3>;
+ def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, fma, v128db, v128db, 0, 3>;
def WFMADB : TernaryVRRe<"wfmadb", 0xE78F, null_frag, v64db, v64db, 8, 3>;
// Multiply and subtract.
- def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, null_frag, v128db, v128db, 0, 3>;
+ def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, fms, v128db, v128db, 0, 3>;
def WFMSDB : TernaryVRRe<"wfmsdb", 0xE78E, null_frag, v64db, v64db, 8, 3>;
// Load complement,
- def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, null_frag, v128db, v128db, 3, 0, 0>;
+ def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, fneg, v128db, v128db, 3, 0, 0>;
def WFLCDB : UnaryVRRa<"wflcdb", 0xE7CC, null_frag, v64db, v64db, 3, 8, 0>;
// Load negative.
- def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, null_frag, v128db, v128db, 3, 0, 1>;
+ def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, fnabs, v128db, v128db, 3, 0, 1>;
def WFLNDB : UnaryVRRa<"wflndb", 0xE7CC, null_frag, v64db, v64db, 3, 8, 1>;
// Load positive.
- def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, null_frag, v128db, v128db, 3, 0, 2>;
+ def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, fabs, v128db, v128db, 3, 0, 2>;
def WFLPDB : UnaryVRRa<"wflpdb", 0xE7CC, null_frag, v64db, v64db, 3, 8, 2>;
// Square root.
- def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, null_frag, v128db, v128db, 3, 0>;
+ def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, fsqrt, v128db, v128db, 3, 0>;
def WFSQDB : UnaryVRRa<"wfsqdb", 0xE7CE, null_frag, v64db, v64db, 3, 8>;
// Subtract.
- def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, null_frag, v128db, v128db, 3, 0>;
+ def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, fsub, v128db, v128db, 3, 0>;
def WFSDB : BinaryVRRc<"wfsdb", 0xE7E2, null_frag, v64db, v64db, 3, 8>;
// Test data class immediate.
@@ -824,19 +857,19 @@ let Predicates = [FeatureVector] in {
def WFKDB : CompareVRRa<"wfkdb", 0xE7CA, null_frag, v64db, 3>;
// Compare equal.
- defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, null_frag, null_frag,
+ defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, z_vfcmpe, null_frag,
v128g, v128db, 3, 0>;
defm WFCEDB : BinaryVRRcSPair<"wfcedb", 0xE7E8, null_frag, null_frag,
v64g, v64db, 3, 8>;
// Compare high.
- defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, null_frag, null_frag,
+ defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, z_vfcmph, null_frag,
v128g, v128db, 3, 0>;
defm WFCHDB : BinaryVRRcSPair<"wfchdb", 0xE7EB, null_frag, null_frag,
v64g, v64db, 3, 8>;
// Compare high or equal.
- defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, null_frag, null_frag,
+ defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, z_vfcmphe, null_frag,
v128g, v128db, 3, 0>;
defm WFCHEDB : BinaryVRRcSPair<"wfchedb", 0xE7EA, null_frag, null_frag,
v64g, v64db, 3, 8>;
@@ -849,18 +882,27 @@ let Predicates = [FeatureVector] in {
def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
+def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
+def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
+def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
+def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
+
+def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
+def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
+def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
+def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
//===----------------------------------------------------------------------===//
// Replicating scalars
@@ -881,6 +923,46 @@ def : Pat<(v2i64 (z_replicate GR64:$scalar)),
(VLVGP GR64:$scalar, GR64:$scalar)>;
//===----------------------------------------------------------------------===//
+// Floating-point insertion and extraction
+//===----------------------------------------------------------------------===//
+
+// Floating-point values are stored in element 0 of the corresponding
+// vector register. Scalar to vector conversion is just a subreg and
+// scalar replication can just replicate element 0 of the vector register.
+multiclass ScalarToVectorFP<Instruction vrep, ValueType vt, RegisterOperand cls,
+ SubRegIndex subreg> {
+ def : Pat<(vt (scalar_to_vector cls:$scalar)),
+ (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg)>;
+ def : Pat<(vt (z_replicate cls:$scalar)),
+ (vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar,
+ subreg), 0)>;
+}
+defm : ScalarToVectorFP<VREPG, v2f64, FP64, subreg_r64>;
+
+// Match v2f64 insertions. The AddedComplexity counters the 3 added by
+// TableGen for the base register operand in VLVG-based integer insertions
+// and ensures that this version is strictly better.
+let AddedComplexity = 4 in {
+ def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 0),
+ (VPDI (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
+ subreg_r64), VR128:$vec, 1)>;
+ def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 1),
+ (VPDI VR128:$vec, (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
+ subreg_r64), 0)>;
+}
+
+// We extract f64 element X by replicating (for elements other than 0)
+// and then taking a high subreg. The AddedComplexity counters the 3
+// added by TableGen for the base register operand in VLGV-based integer
+// extractions and ensures that this version is strictly better.
+let AddedComplexity = 4 in {
+ def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)),
+ (EXTRACT_SUBREG VR128:$vec, subreg_r64)>;
+ def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)),
+ (EXTRACT_SUBREG (VREPG VR128:$vec, imm32zx1:$index), subreg_r64)>;
+}
+
+//===----------------------------------------------------------------------===//
// String instructions
//===----------------------------------------------------------------------===//
OpenPOWER on IntegriCloud