summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/SparcV9/SparcV9CodeEmitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/SparcV9/SparcV9CodeEmitter.cpp')
-rw-r--r--llvm/lib/Target/SparcV9/SparcV9CodeEmitter.cpp823
1 files changed, 823 insertions, 0 deletions
diff --git a/llvm/lib/Target/SparcV9/SparcV9CodeEmitter.cpp b/llvm/lib/Target/SparcV9/SparcV9CodeEmitter.cpp
new file mode 100644
index 00000000000..8f8946e0c2a
--- /dev/null
+++ b/llvm/lib/Target/SparcV9/SparcV9CodeEmitter.cpp
@@ -0,0 +1,823 @@
+//===-- SparcV9CodeEmitter.cpp --------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// SPARC-specific backend for emitting machine code to memory.
+//
+// This module also contains the code for lazily resolving the targets
+// of call instructions, including the callback used to redirect calls
+// to functions for which the code has not yet been generated into the
+// JIT compiler.
+//
+// This file #includes SparcV9CodeEmitter.inc, which contains the code
+// for getBinaryCodeForInstr(), a method that converts a MachineInstr
+// into the corresponding binary machine code word.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/PassManager.h"
+#include "llvm/CodeGen/MachineCodeEmitter.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunctionInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetData.h"
+#include "Support/Debug.h"
+#include "Support/hash_set"
+#include "Support/Statistic.h"
+#include "SparcV9Internals.h"
+#include "SparcV9TargetMachine.h"
+#include "SparcV9RegInfo.h"
+#include "SparcV9CodeEmitter.h"
+#include "Config/alloca.h"
+
+namespace llvm {
+
+namespace {
+ Statistic<> OverwrittenCalls("call-ovwr", "Number of over-written calls");
+ Statistic<> UnmodifiedCalls("call-skip", "Number of unmodified calls");
+ Statistic<> CallbackCalls("callback", "Number CompilationCallback() calls");
+}
+
+bool SparcV9TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
+ MachineCodeEmitter &MCE) {
+ MachineCodeEmitter *M = &MCE;
+ DEBUG(M = MachineCodeEmitter::createFilePrinterEmitter(MCE));
+ PM.add(new SparcV9CodeEmitter(*this, *M));
+ PM.add(createSparcV9MachineCodeDestructionPass()); //Free stuff no longer needed
+ return false;
+}
+
+namespace {
+ class JITResolver {
+ SparcV9CodeEmitter &SparcV9;
+ MachineCodeEmitter &MCE;
+
+ /// LazyCodeGenMap - Keep track of call sites for functions that are to be
+ /// lazily resolved.
+ ///
+ std::map<uint64_t, Function*> LazyCodeGenMap;
+
+ /// LazyResolverMap - Keep track of the lazy resolver created for a
+ /// particular function so that we can reuse them if necessary.
+ ///
+ std::map<Function*, uint64_t> LazyResolverMap;
+
+ public:
+ enum CallType { ShortCall, FarCall };
+
+ private:
+ /// We need to keep track of whether we used a simple call or a far call
+ /// (many instructions) in sequence. This means we need to keep track of
+ /// what type of stub we generate.
+ static std::map<uint64_t, CallType> LazyCallFlavor;
+
+ public:
+ JITResolver(SparcV9CodeEmitter &V9,
+ MachineCodeEmitter &mce) : SparcV9(V9), MCE(mce) {}
+ uint64_t getLazyResolver(Function *F);
+ uint64_t addFunctionReference(uint64_t Address, Function *F);
+ void deleteFunctionReference(uint64_t Address);
+ void addCallFlavor(uint64_t Address, CallType Flavor) {
+ LazyCallFlavor[Address] = Flavor;
+ }
+
+ // Utility functions for accessing data from static callback
+ uint64_t getCurrentPCValue() {
+ return MCE.getCurrentPCValue();
+ }
+ unsigned getBinaryCodeForInstr(MachineInstr &MI) {
+ return SparcV9.getBinaryCodeForInstr(MI);
+ }
+
+ inline void insertFarJumpAtAddr(int64_t Value, uint64_t Addr);
+ void insertJumpAtAddr(int64_t Value, uint64_t &Addr);
+
+ private:
+ uint64_t emitStubForFunction(Function *F);
+ static void SaveRegisters(uint64_t DoubleFP[], uint64_t CC[],
+ uint64_t Globals[]);
+ static void RestoreRegisters(uint64_t DoubleFP[], uint64_t CC[],
+ uint64_t Globals[]);
+ static void CompilationCallback();
+ uint64_t resolveFunctionReference(uint64_t RetAddr);
+
+ };
+
+ JITResolver *TheJITResolver;
+ std::map<uint64_t, JITResolver::CallType> JITResolver::LazyCallFlavor;
+}
+
+/// addFunctionReference - This method is called when we need to emit the
+/// address of a function that has not yet been emitted, so we don't know the
+/// address. Instead, we emit a call to the CompilationCallback method, and
+/// keep track of where we are.
+///
+uint64_t JITResolver::addFunctionReference(uint64_t Address, Function *F) {
+ LazyCodeGenMap[Address] = F;
+ return (intptr_t)&JITResolver::CompilationCallback;
+}
+
+/// deleteFunctionReference - If we are emitting a far call, we already added a
+/// reference to the function, but it is now incorrect, since the address to the
+/// JIT resolver is too far away to be a simple call instruction. This is used
+/// to remove the address from the map.
+///
+void JITResolver::deleteFunctionReference(uint64_t Address) {
+ std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(Address);
+ assert(I != LazyCodeGenMap.end() && "Not in map!");
+ LazyCodeGenMap.erase(I);
+}
+
+uint64_t JITResolver::resolveFunctionReference(uint64_t RetAddr) {
+ std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
+ assert(I != LazyCodeGenMap.end() && "Not in map!");
+ Function *F = I->second;
+ LazyCodeGenMap.erase(I);
+ return MCE.forceCompilationOf(F);
+}
+
+uint64_t JITResolver::getLazyResolver(Function *F) {
+ std::map<Function*, uint64_t>::iterator I = LazyResolverMap.lower_bound(F);
+ if (I != LazyResolverMap.end() && I->first == F) return I->second;
+
+ uint64_t Stub = emitStubForFunction(F);
+ LazyResolverMap.insert(I, std::make_pair(F, Stub));
+ return Stub;
+}
+
+void JITResolver::insertJumpAtAddr(int64_t JumpTarget, uint64_t &Addr) {
+ DEBUG(std::cerr << "Emitting a jump to 0x" << std::hex << JumpTarget << "\n");
+
+ // If the target function is close enough to fit into the 19bit disp of
+ // BA, we should use this version, as it's much cheaper to generate.
+ int64_t BranchTarget = (JumpTarget-Addr) >> 2;
+ if (BranchTarget >= (1 << 19) || BranchTarget <= -(1 << 19)) {
+ TheJITResolver->insertFarJumpAtAddr(JumpTarget, Addr);
+ } else {
+ // ba <target>
+ MachineInstr *I = BuildMI(V9::BA, 1).addSImm(BranchTarget);
+ *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*I);
+ Addr += 4;
+ delete I;
+
+ // nop
+ I = BuildMI(V9::NOP, 0);
+ *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*I);
+ delete I;
+ }
+}
+
+void JITResolver::insertFarJumpAtAddr(int64_t Target, uint64_t Addr) {
+ static const unsigned
+ o6 = SparcV9IntRegClass::o6, g0 = SparcV9IntRegClass::g0,
+ g1 = SparcV9IntRegClass::g1, g5 = SparcV9IntRegClass::g5;
+
+ MachineInstr* BinaryCode[] = {
+ //
+ // Get address to branch into %g1, using %g5 as a temporary
+ //
+ // sethi %uhi(Target), %g5 ;; get upper 22 bits of Target into %g5
+ BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(g5),
+ // or %g5, %ulo(Target), %g5 ;; get 10 lower bits of upper word into %g5
+ BuildMI(V9::ORi, 3).addReg(g5).addSImm((Target >> 32) & 0x03ff).addReg(g5),
+ // sllx %g5, 32, %g5 ;; shift those 10 bits to the upper word
+ BuildMI(V9::SLLXi6, 3).addReg(g5).addSImm(32).addReg(g5),
+ // sethi %hi(Target), %g1 ;; extract bits 10-31 into the dest reg
+ BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(g1),
+ // or %g5, %g1, %g1 ;; get upper word (in %g5) into %g1
+ BuildMI(V9::ORr, 3).addReg(g5).addReg(g1).addReg(g1),
+ // or %g1, %lo(Target), %g1 ;; get lowest 10 bits of Target into %g1
+ BuildMI(V9::ORi, 3).addReg(g1).addSImm(Target & 0x03ff).addReg(g1),
+ // jmpl %g1, %g0, %g0 ;; indirect branch on %g1
+ BuildMI(V9::JMPLRETr, 3).addReg(g1).addReg(g0).addReg(g0),
+ // nop ;; delay slot
+ BuildMI(V9::NOP, 0)
+ };
+
+ for (unsigned i=0, e=sizeof(BinaryCode)/sizeof(BinaryCode[0]); i!=e; ++i) {
+ *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*BinaryCode[i]);
+ delete BinaryCode[i];
+ Addr += 4;
+ }
+}
+
+void JITResolver::SaveRegisters(uint64_t DoubleFP[], uint64_t CC[],
+ uint64_t Globals[]) {
+#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
+
+ __asm__ __volatile__ (// Save condition-code registers
+ "stx %%fsr, %0;\n\t"
+ "rd %%fprs, %1;\n\t"
+ "rd %%ccr, %2;\n\t"
+ : "=m"(CC[0]), "=r"(CC[1]), "=r"(CC[2]));
+
+ __asm__ __volatile__ (// Save globals g1 and g5
+ "stx %%g1, %0;\n\t"
+ "stx %%g5, %0;\n\t"
+ : "=m"(Globals[0]), "=m"(Globals[1]));
+
+ // GCC says: `asm' only allows up to thirty parameters!
+ __asm__ __volatile__ (// Save Single/Double FP registers, part 1
+ "std %%f0, %0;\n\t" "std %%f2, %1;\n\t"
+ "std %%f4, %2;\n\t" "std %%f6, %3;\n\t"
+ "std %%f8, %4;\n\t" "std %%f10, %5;\n\t"
+ "std %%f12, %6;\n\t" "std %%f14, %7;\n\t"
+ "std %%f16, %8;\n\t" "std %%f18, %9;\n\t"
+ "std %%f20, %10;\n\t" "std %%f22, %11;\n\t"
+ "std %%f24, %12;\n\t" "std %%f26, %13;\n\t"
+ "std %%f28, %14;\n\t" "std %%f30, %15;\n\t"
+ : "=m"(DoubleFP[ 0]), "=m"(DoubleFP[ 1]),
+ "=m"(DoubleFP[ 2]), "=m"(DoubleFP[ 3]),
+ "=m"(DoubleFP[ 4]), "=m"(DoubleFP[ 5]),
+ "=m"(DoubleFP[ 6]), "=m"(DoubleFP[ 7]),
+ "=m"(DoubleFP[ 8]), "=m"(DoubleFP[ 9]),
+ "=m"(DoubleFP[10]), "=m"(DoubleFP[11]),
+ "=m"(DoubleFP[12]), "=m"(DoubleFP[13]),
+ "=m"(DoubleFP[14]), "=m"(DoubleFP[15]));
+
+ __asm__ __volatile__ (// Save Double FP registers, part 2
+ "std %%f32, %0;\n\t" "std %%f34, %1;\n\t"
+ "std %%f36, %2;\n\t" "std %%f38, %3;\n\t"
+ "std %%f40, %4;\n\t" "std %%f42, %5;\n\t"
+ "std %%f44, %6;\n\t" "std %%f46, %7;\n\t"
+ "std %%f48, %8;\n\t" "std %%f50, %9;\n\t"
+ "std %%f52, %10;\n\t" "std %%f54, %11;\n\t"
+ "std %%f56, %12;\n\t" "std %%f58, %13;\n\t"
+ "std %%f60, %14;\n\t" "std %%f62, %15;\n\t"
+ : "=m"(DoubleFP[16]), "=m"(DoubleFP[17]),
+ "=m"(DoubleFP[18]), "=m"(DoubleFP[19]),
+ "=m"(DoubleFP[20]), "=m"(DoubleFP[21]),
+ "=m"(DoubleFP[22]), "=m"(DoubleFP[23]),
+ "=m"(DoubleFP[24]), "=m"(DoubleFP[25]),
+ "=m"(DoubleFP[26]), "=m"(DoubleFP[27]),
+ "=m"(DoubleFP[28]), "=m"(DoubleFP[29]),
+ "=m"(DoubleFP[30]), "=m"(DoubleFP[31]));
+#endif
+}
+
+
+void JITResolver::RestoreRegisters(uint64_t DoubleFP[], uint64_t CC[],
+ uint64_t Globals[])
+{
+#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
+
+ __asm__ __volatile__ (// Restore condition-code registers
+ "ldx %0, %%fsr;\n\t"
+ "wr %1, 0, %%fprs;\n\t"
+ "wr %2, 0, %%ccr;\n\t"
+ :: "m"(CC[0]), "r"(CC[1]), "r"(CC[2]));
+
+ __asm__ __volatile__ (// Restore globals g1 and g5
+ "ldx %0, %%g1;\n\t"
+ "ldx %0, %%g5;\n\t"
+ :: "m"(Globals[0]), "m"(Globals[1]));
+
+ // GCC says: `asm' only allows up to thirty parameters!
+ __asm__ __volatile__ (// Restore Single/Double FP registers, part 1
+ "ldd %0, %%f0;\n\t" "ldd %1, %%f2;\n\t"
+ "ldd %2, %%f4;\n\t" "ldd %3, %%f6;\n\t"
+ "ldd %4, %%f8;\n\t" "ldd %5, %%f10;\n\t"
+ "ldd %6, %%f12;\n\t" "ldd %7, %%f14;\n\t"
+ "ldd %8, %%f16;\n\t" "ldd %9, %%f18;\n\t"
+ "ldd %10, %%f20;\n\t" "ldd %11, %%f22;\n\t"
+ "ldd %12, %%f24;\n\t" "ldd %13, %%f26;\n\t"
+ "ldd %14, %%f28;\n\t" "ldd %15, %%f30;\n\t"
+ :: "m"(DoubleFP[0]), "m"(DoubleFP[1]),
+ "m"(DoubleFP[2]), "m"(DoubleFP[3]),
+ "m"(DoubleFP[4]), "m"(DoubleFP[5]),
+ "m"(DoubleFP[6]), "m"(DoubleFP[7]),
+ "m"(DoubleFP[8]), "m"(DoubleFP[9]),
+ "m"(DoubleFP[10]), "m"(DoubleFP[11]),
+ "m"(DoubleFP[12]), "m"(DoubleFP[13]),
+ "m"(DoubleFP[14]), "m"(DoubleFP[15]));
+
+ __asm__ __volatile__ (// Restore Double FP registers, part 2
+ "ldd %0, %%f32;\n\t" "ldd %1, %%f34;\n\t"
+ "ldd %2, %%f36;\n\t" "ldd %3, %%f38;\n\t"
+ "ldd %4, %%f40;\n\t" "ldd %5, %%f42;\n\t"
+ "ldd %6, %%f44;\n\t" "ldd %7, %%f46;\n\t"
+ "ldd %8, %%f48;\n\t" "ldd %9, %%f50;\n\t"
+ "ldd %10, %%f52;\n\t" "ldd %11, %%f54;\n\t"
+ "ldd %12, %%f56;\n\t" "ldd %13, %%f58;\n\t"
+ "ldd %14, %%f60;\n\t" "ldd %15, %%f62;\n\t"
+ :: "m"(DoubleFP[16]), "m"(DoubleFP[17]),
+ "m"(DoubleFP[18]), "m"(DoubleFP[19]),
+ "m"(DoubleFP[20]), "m"(DoubleFP[21]),
+ "m"(DoubleFP[22]), "m"(DoubleFP[23]),
+ "m"(DoubleFP[24]), "m"(DoubleFP[25]),
+ "m"(DoubleFP[26]), "m"(DoubleFP[27]),
+ "m"(DoubleFP[28]), "m"(DoubleFP[29]),
+ "m"(DoubleFP[30]), "m"(DoubleFP[31]));
+#endif
+}
+
+void JITResolver::CompilationCallback() {
+ // Local space to save the registers
+ uint64_t DoubleFP[32];
+ uint64_t CC[3];
+ uint64_t Globals[2];
+
+ SaveRegisters(DoubleFP, CC, Globals);
+ ++CallbackCalls;
+
+ uint64_t CameFrom = (uint64_t)(intptr_t)__builtin_return_address(0);
+ uint64_t CameFrom1 = (uint64_t)(intptr_t)__builtin_return_address(1);
+ int64_t Target = (int64_t)TheJITResolver->resolveFunctionReference(CameFrom);
+ DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << CameFrom << "\n");
+ register int64_t returnAddr = 0;
+#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
+ __asm__ __volatile__ ("add %%i7, %%g0, %0" : "=r" (returnAddr) : );
+ DEBUG(std::cerr << "Read i7 (return addr) = "
+ << std::hex << returnAddr << ", value: "
+ << std::hex << *(unsigned*)returnAddr << "\n");
+#endif
+
+ // If we can rewrite the ORIGINAL caller, we eliminate the whole need for a
+ // trampoline function stub!!
+ unsigned OrigCallInst = *((unsigned*)(intptr_t)CameFrom1);
+ int64_t OrigTarget = (Target-CameFrom1) >> 2;
+ if ((OrigCallInst & (1 << 30)) &&
+ (OrigTarget <= (1 << 30) && OrigTarget >= -(1 << 30)))
+ {
+ // The original call instruction was CALL <immed>, which means we can
+ // overwrite it directly, since the offset will fit into 30 bits
+ MachineInstr *C = BuildMI(V9::CALL, 1).addSImm(OrigTarget);
+ *((unsigned*)(intptr_t)CameFrom1)=TheJITResolver->getBinaryCodeForInstr(*C);
+ delete C;
+ ++OverwrittenCalls;
+ } else {
+ ++UnmodifiedCalls;
+ }
+
+ // Rewrite the call target so that we don't fault every time we execute it.
+ //
+
+ static const unsigned o6 = SparcV9IntRegClass::o6;
+
+ // Subtract enough to overwrite up to the 'save' instruction
+ // This depends on whether we made a short call (1 instruction) or the
+ // farCall (7 instructions)
+ uint64_t Offset = (LazyCallFlavor[CameFrom] == ShortCall) ? 4 : 28;
+ uint64_t CodeBegin = CameFrom - Offset;
+
+ // FIXME FIXME FIXME FIXME: __builtin_frame_address doesn't work if frame
+ // pointer elimination has been performed. Having a variable sized alloca
+ // disables frame pointer elimination currently, even if it's dead. This is
+ // a gross hack.
+ alloca(42+Offset);
+ // FIXME FIXME FIXME FIXME
+
+ // Make sure that what we're about to overwrite is indeed "save"
+ MachineInstr *SV =BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6);
+ unsigned SaveInst = TheJITResolver->getBinaryCodeForInstr(*SV);
+ delete SV;
+ unsigned CodeInMem = *(unsigned*)(intptr_t)CodeBegin;
+ if (CodeInMem != SaveInst) {
+ std::cerr << "About to overwrite smthg not a save instr!";
+ abort();
+ }
+ // Overwrite it
+ TheJITResolver->insertJumpAtAddr(Target, CodeBegin);
+
+ // Flush the I-Cache: FLUSH clears out a doubleword at a given address
+ // Self-modifying code MUST clear out the I-Cache to be portable
+#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
+ for (int i = -Offset, e = 32-((int64_t)Offset); i < e; i += 8)
+ __asm__ __volatile__ ("flush %%i7 + %0" : : "r" (i));
+#endif
+
+ // Change the return address to re-execute the restore, then the jump.
+ DEBUG(std::cerr << "Callback returning to: 0x"
+ << std::hex << (CameFrom-Offset-12) << "\n");
+#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
+ __asm__ __volatile__ ("sub %%i7, %0, %%i7" : : "r" (Offset+12));
+#endif
+
+ RestoreRegisters(DoubleFP, CC, Globals);
+}
+
+/// emitStubForFunction - This method is used by the JIT when it needs to emit
+/// the address of a function for a function whose code has not yet been
+/// generated. In order to do this, it generates a stub which jumps to the lazy
+/// function compiler, which will eventually get fixed to call the function
+/// directly.
+///
+uint64_t JITResolver::emitStubForFunction(Function *F) {
+ MCE.startFunctionStub(*F, 44);
+
+ DEBUG(std::cerr << "Emitting stub at addr: 0x"
+ << std::hex << MCE.getCurrentPCValue() << "\n");
+
+ unsigned o6 = SparcV9IntRegClass::o6, g0 = SparcV9IntRegClass::g0;
+
+ // restore %g0, 0, %g0
+ MachineInstr *R = BuildMI(V9::RESTOREi, 3).addMReg(g0).addSImm(0)
+ .addMReg(g0, MachineOperand::Def);
+ SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*R));
+ delete R;
+
+ // save %sp, -192, %sp
+ MachineInstr *SV = BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6);
+ SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*SV));
+ delete SV;
+
+ int64_t CurrPC = MCE.getCurrentPCValue();
+ int64_t Addr = (int64_t)addFunctionReference(CurrPC, F);
+ int64_t CallTarget = (Addr-CurrPC) >> 2;
+ if (CallTarget >= (1 << 29) || CallTarget <= -(1 << 29)) {
+ // Since this is a far call, the actual address of the call is shifted
+ // by the number of instructions it takes to calculate the exact address
+ deleteFunctionReference(CurrPC);
+ SparcV9.emitFarCall(Addr, F);
+ } else {
+ // call CallTarget ;; invoke the callback
+ MachineInstr *Call = BuildMI(V9::CALL, 1).addSImm(CallTarget);
+ SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Call));
+ delete Call;
+
+ // nop ;; call delay slot
+ MachineInstr *Nop = BuildMI(V9::NOP, 0);
+ SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Nop));
+ delete Nop;
+
+ addCallFlavor(CurrPC, ShortCall);
+ }
+
+ SparcV9.emitWord(0xDEADBEEF); // marker so that we know it's really a stub
+ return (intptr_t)MCE.finishFunctionStub(*F)+4; /* 1 instr past the restore */
+}
+
+SparcV9CodeEmitter::SparcV9CodeEmitter(TargetMachine &tm,
+ MachineCodeEmitter &M): TM(tm), MCE(M)
+{
+ TheJITResolver = new JITResolver(*this, M);
+}
+
+SparcV9CodeEmitter::~SparcV9CodeEmitter() {
+ delete TheJITResolver;
+}
+
+void SparcV9CodeEmitter::emitWord(unsigned Val) {
+ // Output the constant in big endian byte order...
+ unsigned byteVal;
+ for (int i = 3; i >= 0; --i) {
+ byteVal = Val >> 8*i;
+ MCE.emitByte(byteVal & 255);
+ }
+}
+
+unsigned
+SparcV9CodeEmitter::getRealRegNum(unsigned fakeReg,
+ MachineInstr &MI) {
+ const TargetRegInfo &RI = TM.getRegInfo();
+ unsigned regClass, regType = RI.getRegType(fakeReg);
+ // At least map fakeReg into its class
+ fakeReg = RI.getClassRegNum(fakeReg, regClass);
+
+ switch (regClass) {
+ case SparcV9RegInfo::IntRegClassID: {
+ // SparcV9 manual, p31
+ static const unsigned IntRegMap[] = {
+ // "o0", "o1", "o2", "o3", "o4", "o5", "o7",
+ 8, 9, 10, 11, 12, 13, 15,
+ // "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
+ 16, 17, 18, 19, 20, 21, 22, 23,
+ // "i0", "i1", "i2", "i3", "i4", "i5", "i6", "i7",
+ 24, 25, 26, 27, 28, 29, 30, 31,
+ // "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
+ 0, 1, 2, 3, 4, 5, 6, 7,
+ // "o6"
+ 14
+ };
+
+ return IntRegMap[fakeReg];
+ break;
+ }
+ case SparcV9RegInfo::FloatRegClassID: {
+ DEBUG(std::cerr << "FP reg: " << fakeReg << "\n");
+ if (regType == SparcV9RegInfo::FPSingleRegType) {
+ // only numbered 0-31, hence can already fit into 5 bits (and 6)
+ DEBUG(std::cerr << "FP single reg, returning: " << fakeReg << "\n");
+ } else if (regType == SparcV9RegInfo::FPDoubleRegType) {
+ // FIXME: This assumes that we only have 5-bit register fields!
+ // From SparcV9 Manual, page 40.
+ // The bit layout becomes: b[4], b[3], b[2], b[1], b[5]
+ fakeReg |= (fakeReg >> 5) & 1;
+ fakeReg &= 0x1f;
+ DEBUG(std::cerr << "FP double reg, returning: " << fakeReg << "\n");
+ }
+ return fakeReg;
+ }
+ case SparcV9RegInfo::IntCCRegClassID: {
+ /* xcc, icc, ccr */
+ static const unsigned IntCCReg[] = { 6, 4, 2 };
+
+ assert(fakeReg < sizeof(IntCCReg)/sizeof(IntCCReg[0])
+ && "CC register out of bounds for IntCCReg map");
+ DEBUG(std::cerr << "IntCC reg: " << IntCCReg[fakeReg] << "\n");
+ return IntCCReg[fakeReg];
+ }
+ case SparcV9RegInfo::FloatCCRegClassID: {
+ /* These are laid out %fcc0 - %fcc3 => 0 - 3, so are correct */
+ DEBUG(std::cerr << "FP CC reg: " << fakeReg << "\n");
+ return fakeReg;
+ }
+ default:
+ assert(0 && "Invalid unified register number in getRegType");
+ return fakeReg;
+ }
+}
+
+
+// WARNING: if the call used the delay slot to do meaningful work, that's not
+// being accounted for, and the behavior will be incorrect!!
+inline void SparcV9CodeEmitter::emitFarCall(uint64_t Target, Function *F) {
+ static const unsigned o6 = SparcV9IntRegClass::o6,
+ o7 = SparcV9IntRegClass::o7, g0 = SparcV9IntRegClass::g0,
+ g1 = SparcV9IntRegClass::g1, g5 = SparcV9IntRegClass::g5;
+
+ MachineInstr* BinaryCode[] = {
+ //
+ // Get address to branch into %g1, using %g5 as a temporary
+ //
+ // sethi %uhi(Target), %g5 ;; get upper 22 bits of Target into %g5
+ BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(g5),
+ // or %g5, %ulo(Target), %g5 ;; get 10 lower bits of upper word into %1
+ BuildMI(V9::ORi, 3).addReg(g5).addSImm((Target >> 32) & 0x03ff).addReg(g5),
+ // sllx %g5, 32, %g5 ;; shift those 10 bits to the upper word
+ BuildMI(V9::SLLXi6, 3).addReg(g5).addSImm(32).addReg(g5),
+ // sethi %hi(Target), %g1 ;; extract bits 10-31 into the dest reg
+ BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(g1),
+ // or %g5, %g1, %g1 ;; get upper word (in %g5) into %g1
+ BuildMI(V9::ORr, 3).addReg(g5).addReg(g1).addReg(g1),
+ // or %g1, %lo(Target), %g1 ;; get lowest 10 bits of Target into %g1
+ BuildMI(V9::ORi, 3).addReg(g1).addSImm(Target & 0x03ff).addReg(g1),
+ // jmpl %g1, %g0, %o7 ;; indirect call on %g1
+ BuildMI(V9::JMPLRETr, 3).addReg(g1).addReg(g0).addReg(o7),
+ // nop ;; delay slot
+ BuildMI(V9::NOP, 0)
+ };
+
+ for (unsigned i=0, e=sizeof(BinaryCode)/sizeof(BinaryCode[0]); i!=e; ++i) {
+ // This is where we save the return address in the LazyResolverMap!!
+ if (i == 6 && F != 0) { // Do this right before the JMPL
+ uint64_t CurrPC = MCE.getCurrentPCValue();
+ TheJITResolver->addFunctionReference(CurrPC, F);
+ // Remember that this is a far call, to subtract appropriate offset later
+ TheJITResolver->addCallFlavor(CurrPC, JITResolver::FarCall);
+ }
+
+ emitWord(getBinaryCodeForInstr(*BinaryCode[i]));
+ delete BinaryCode[i];
+ }
+}
+
+void SparcV9JITInfo::replaceMachineCodeForFunction (void *Old, void *New) {
+ assert (TheJITResolver &&
+ "Can only call replaceMachineCodeForFunction from within JIT");
+ uint64_t Target = (uint64_t)(intptr_t)New;
+ uint64_t CodeBegin = (uint64_t)(intptr_t)Old;
+ TheJITResolver->insertJumpAtAddr(Target, CodeBegin);
+}
+
+int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI,
+ MachineOperand &MO) {
+ int64_t rv = 0; // Return value; defaults to 0 for unhandled cases
+ // or things that get fixed up later by the JIT.
+ if (MO.isPCRelativeDisp()) {
+ DEBUG(std::cerr << "PCRelativeDisp: ");
+ Value *V = MO.getVRegValue();
+ if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
+ DEBUG(std::cerr << "Saving reference to BB (VReg)\n");
+ unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
+ BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
+ } else if (const Constant *C = dyn_cast<Constant>(V)) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
+ rv = CI->getRawValue() - MCE.getCurrentPCValue();
+ } else {
+ std::cerr << "Cannot have non-integral const in instruction: "
+ << *C;
+ abort();
+ }
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ // same as MO.isGlobalAddress()
+ DEBUG(std::cerr << "GlobalValue: ");
+ // external function calls, etc.?
+ if (Function *F = dyn_cast<Function>(GV)) {
+ DEBUG(std::cerr << "Function: ");
+ // NOTE: This results in stubs being generated even for
+ // external, native functions, which is not optimal. See PR103.
+ rv = (int64_t)MCE.getGlobalValueAddress(F);
+ if (rv == 0) {
+ DEBUG(std::cerr << "not yet generated\n");
+ // Function has not yet been code generated!
+ TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), F);
+ // Delayed resolution...
+ rv = TheJITResolver->getLazyResolver(F);
+ } else {
+ DEBUG(std::cerr << "already generated: 0x" << std::hex << rv << "\n");
+ }
+ } else {
+ rv = (int64_t)MCE.getGlobalValueAddress(GV);
+ DEBUG(std::cerr << "Global addr: 0x" << std::hex << rv << "\n");
+ }
+ // The real target of the call is Addr = PC + (rv * 4)
+ // So undo that: give the instruction (Addr - PC) / 4
+ if (MI.getOpcode() == V9::CALL) {
+ int64_t CurrPC = MCE.getCurrentPCValue();
+ DEBUG(std::cerr << "rv addr: 0x" << std::hex << rv << "\n"
+ << "curr PC: 0x" << std::hex << CurrPC << "\n");
+ int64_t CallInstTarget = (rv - CurrPC) >> 2;
+ if (CallInstTarget >= (1<<29) || CallInstTarget <= -(1<<29)) {
+ DEBUG(std::cerr << "Making far call!\n");
+ // address is out of bounds for the 30-bit call,
+ // make an indirect jump-and-link
+ emitFarCall(rv);
+ // this invalidates the instruction so that the call with an incorrect
+ // address will not be emitted
+ rv = 0;
+ } else {
+ // The call fits into 30 bits, so just return the corrected address
+ rv = CallInstTarget;
+ }
+ DEBUG(std::cerr << "returning addr: 0x" << rv << "\n");
+ }
+ } else {
+ std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n";
+ abort();
+ }
+ } else if (MO.isRegister() || MO.getType() == MachineOperand::MO_CCRegister)
+ {
+ // This is necessary because the SparcV9 backend doesn't actually lay out
+ // registers in the real fashion -- it skips those that it chooses not to
+ // allocate, i.e. those that are the FP, SP, etc.
+ unsigned fakeReg = MO.getReg();
+ unsigned realRegByClass = getRealRegNum(fakeReg, MI);
+ DEBUG(std::cerr << MO << ": Reg[" << std::dec << fakeReg << "] => "
+ << realRegByClass << " (LLC: "
+ << TM.getRegInfo().getUnifiedRegName(fakeReg) << ")\n");
+ rv = realRegByClass;
+ } else if (MO.isImmediate()) {
+ rv = MO.getImmedValue();
+ DEBUG(std::cerr << "immed: " << rv << "\n");
+ } else if (MO.isGlobalAddress()) {
+ DEBUG(std::cerr << "GlobalAddress: not PC-relative\n");
+ rv = (int64_t)
+ (intptr_t)getGlobalAddress(cast<GlobalValue>(MO.getVRegValue()),
+ MI, MO.isPCRelative());
+ } else if (MO.isMachineBasicBlock()) {
+ // Duplicate code of the above case for VirtualRegister, BasicBlock...
+ // It should really hit this case, but SparcV9 backend uses VRegs instead
+ DEBUG(std::cerr << "Saving reference to MBB\n");
+ const BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock();
+ unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
+ BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
+ } else if (MO.isExternalSymbol()) {
+ // SparcV9 backend doesn't generate this (yet...)
+ std::cerr << "ERROR: External symbol unhandled: " << MO << "\n";
+ abort();
+ } else if (MO.isFrameIndex()) {
+ // SparcV9 backend doesn't generate this (yet...)
+ int FrameIndex = MO.getFrameIndex();
+ std::cerr << "ERROR: Frame index unhandled.\n";
+ abort();
+ } else if (MO.isConstantPoolIndex()) {
+ unsigned Index = MO.getConstantPoolIndex();
+ rv = MCE.getConstantPoolEntryAddress(Index);
+ } else {
+ std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
+ abort();
+ }
+
+ // Finally, deal with the various bitfield-extracting functions that
+ // are used in SPARC assembly. (Some of these make no sense in combination
+ // with some of the above; we'll trust that the instruction selector
+ // will not produce nonsense, and not check for valid combinations here.)
+ if (MO.isLoBits32()) { // %lo(val) == %lo() in SparcV9 ABI doc
+ return rv & 0x03ff;
+ } else if (MO.isHiBits32()) { // %lm(val) == %hi() in SparcV9 ABI doc
+ return (rv >> 10) & 0x03fffff;
+ } else if (MO.isLoBits64()) { // %hm(val) == %ulo() in SparcV9 ABI doc
+ return (rv >> 32) & 0x03ff;
+ } else if (MO.isHiBits64()) { // %hh(val) == %uhi() in SparcV9 ABI doc
+ return rv >> 42;
+ } else { // (unadorned) val
+ return rv;
+ }
+}
+
+unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) {
+ Val >>= bit;
+ return (Val & 1);
+}
+
+bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) {
+ MCE.startFunction(MF);
+ DEBUG(std::cerr << "Starting function " << MF.getFunction()->getName()
+ << ", address: " << "0x" << std::hex
+ << (long)MCE.getCurrentPCValue() << "\n");
+
+ MCE.emitConstantPool(MF.getConstantPool());
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
+ emitBasicBlock(*I);
+ MCE.finishFunction(MF);
+
+ DEBUG(std::cerr << "Finishing fn " << MF.getFunction()->getName() << "\n");
+
+ // Resolve branches to BasicBlocks for the entire function
+ for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
+ long Location = BBLocations[BBRefs[i].first];
+ unsigned *Ref = BBRefs[i].second.first;
+ MachineInstr *MI = BBRefs[i].second.second;
+ DEBUG(std::cerr << "Fixup @ " << std::hex << Ref << " to 0x" << Location
+ << " in instr: " << std::dec << *MI);
+ for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) {
+ MachineOperand &op = MI->getOperand(ii);
+ if (op.isPCRelativeDisp()) {
+ // the instruction's branch target is made such that it branches to
+ // PC + (branchTarget * 4), so undo that arithmetic here:
+ // Location is the target of the branch
+ // Ref is the location of the instruction, and hence the PC
+ int64_t branchTarget = (Location - (long)Ref) >> 2;
+ // Save the flags.
+ bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false;
+ if (op.isLoBits32()) { loBits32=true; }
+ if (op.isHiBits32()) { hiBits32=true; }
+ if (op.isLoBits64()) { loBits64=true; }
+ if (op.isHiBits64()) { hiBits64=true; }
+ MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed,
+ branchTarget);
+ if (loBits32) { MI->setOperandLo32(ii); }
+ else if (hiBits32) { MI->setOperandHi32(ii); }
+ else if (loBits64) { MI->setOperandLo64(ii); }
+ else if (hiBits64) { MI->setOperandHi64(ii); }
+ DEBUG(std::cerr << "Rewrote BB ref: ");
+ unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI);
+ *Ref = fixedInstr;
+ break;
+ }
+ }
+ }
+ BBRefs.clear();
+ BBLocations.clear();
+
+ return false;
+}
+
+void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
+ currBB = MBB.getBasicBlock();
+ BBLocations[currBB] = MCE.getCurrentPCValue();
+ for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){
+ unsigned binCode = getBinaryCodeForInstr(*I);
+ if (binCode == (1 << 30)) {
+ // this is an invalid call: the addr is out of bounds. that means a code
+ // sequence has already been emitted, and this is a no-op
+ DEBUG(std::cerr << "Call supressed: already emitted far call.\n");
+ } else {
+ emitWord(binCode);
+ }
+ }
+}
+
+void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI,
+ bool isPCRelative)
+{
+ if (isPCRelative) { // must be a call, this is a major hack!
+ // Try looking up the function to see if it is already compiled!
+ if (void *Addr = (void*)(intptr_t)MCE.getGlobalValueAddress(V)) {
+ intptr_t CurByte = MCE.getCurrentPCValue();
+ // The real target of the call is Addr = PC + (target * 4)
+ // CurByte is the PC, Addr we just received
+ return (void*) (((long)Addr - (long)CurByte) >> 2);
+ } else {
+ if (Function *F = dyn_cast<Function>(V)) {
+ // Function has not yet been code generated!
+ TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(),
+ cast<Function>(V));
+ // Delayed resolution...
+ return
+ (void*)(intptr_t)TheJITResolver->getLazyResolver(cast<Function>(V));
+ } else {
+ std::cerr << "Unhandled global: " << *V << "\n";
+ abort();
+ }
+ }
+ } else {
+ return (void*)(intptr_t)MCE.getGlobalValueAddress(V);
+ }
+}
+
+#include "SparcV9CodeEmitter.inc"
+
+} // End llvm namespace
+
OpenPOWER on IntegriCloud