diff options
Diffstat (limited to 'llvm/lib/Target/SparcV9/SparcV9CodeEmitter.cpp')
| -rw-r--r-- | llvm/lib/Target/SparcV9/SparcV9CodeEmitter.cpp | 823 |
1 files changed, 823 insertions, 0 deletions
diff --git a/llvm/lib/Target/SparcV9/SparcV9CodeEmitter.cpp b/llvm/lib/Target/SparcV9/SparcV9CodeEmitter.cpp new file mode 100644 index 00000000000..8f8946e0c2a --- /dev/null +++ b/llvm/lib/Target/SparcV9/SparcV9CodeEmitter.cpp @@ -0,0 +1,823 @@ +//===-- SparcV9CodeEmitter.cpp --------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// SPARC-specific backend for emitting machine code to memory. +// +// This module also contains the code for lazily resolving the targets +// of call instructions, including the callback used to redirect calls +// to functions for which the code has not yet been generated into the +// JIT compiler. +// +// This file #includes SparcV9CodeEmitter.inc, which contains the code +// for getBinaryCodeForInstr(), a method that converts a MachineInstr +// into the corresponding binary machine code word. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Constants.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/PassManager.h" +#include "llvm/CodeGen/MachineCodeEmitter.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFunctionInfo.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetData.h" +#include "Support/Debug.h" +#include "Support/hash_set" +#include "Support/Statistic.h" +#include "SparcV9Internals.h" +#include "SparcV9TargetMachine.h" +#include "SparcV9RegInfo.h" +#include "SparcV9CodeEmitter.h" +#include "Config/alloca.h" + +namespace llvm { + +namespace { + Statistic<> OverwrittenCalls("call-ovwr", "Number of over-written calls"); + Statistic<> UnmodifiedCalls("call-skip", "Number of unmodified calls"); + Statistic<> CallbackCalls("callback", "Number CompilationCallback() calls"); +} + +bool SparcV9TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM, + MachineCodeEmitter &MCE) { + MachineCodeEmitter *M = &MCE; + DEBUG(M = MachineCodeEmitter::createFilePrinterEmitter(MCE)); + PM.add(new SparcV9CodeEmitter(*this, *M)); + PM.add(createSparcV9MachineCodeDestructionPass()); //Free stuff no longer needed + return false; +} + +namespace { + class JITResolver { + SparcV9CodeEmitter &SparcV9; + MachineCodeEmitter &MCE; + + /// LazyCodeGenMap - Keep track of call sites for functions that are to be + /// lazily resolved. + /// + std::map<uint64_t, Function*> LazyCodeGenMap; + + /// LazyResolverMap - Keep track of the lazy resolver created for a + /// particular function so that we can reuse them if necessary. + /// + std::map<Function*, uint64_t> LazyResolverMap; + + public: + enum CallType { ShortCall, FarCall }; + + private: + /// We need to keep track of whether we used a simple call or a far call + /// (many instructions) in sequence. This means we need to keep track of + /// what type of stub we generate. + static std::map<uint64_t, CallType> LazyCallFlavor; + + public: + JITResolver(SparcV9CodeEmitter &V9, + MachineCodeEmitter &mce) : SparcV9(V9), MCE(mce) {} + uint64_t getLazyResolver(Function *F); + uint64_t addFunctionReference(uint64_t Address, Function *F); + void deleteFunctionReference(uint64_t Address); + void addCallFlavor(uint64_t Address, CallType Flavor) { + LazyCallFlavor[Address] = Flavor; + } + + // Utility functions for accessing data from static callback + uint64_t getCurrentPCValue() { + return MCE.getCurrentPCValue(); + } + unsigned getBinaryCodeForInstr(MachineInstr &MI) { + return SparcV9.getBinaryCodeForInstr(MI); + } + + inline void insertFarJumpAtAddr(int64_t Value, uint64_t Addr); + void insertJumpAtAddr(int64_t Value, uint64_t &Addr); + + private: + uint64_t emitStubForFunction(Function *F); + static void SaveRegisters(uint64_t DoubleFP[], uint64_t CC[], + uint64_t Globals[]); + static void RestoreRegisters(uint64_t DoubleFP[], uint64_t CC[], + uint64_t Globals[]); + static void CompilationCallback(); + uint64_t resolveFunctionReference(uint64_t RetAddr); + + }; + + JITResolver *TheJITResolver; + std::map<uint64_t, JITResolver::CallType> JITResolver::LazyCallFlavor; +} + +/// addFunctionReference - This method is called when we need to emit the +/// address of a function that has not yet been emitted, so we don't know the +/// address. Instead, we emit a call to the CompilationCallback method, and +/// keep track of where we are. +/// +uint64_t JITResolver::addFunctionReference(uint64_t Address, Function *F) { + LazyCodeGenMap[Address] = F; + return (intptr_t)&JITResolver::CompilationCallback; +} + +/// deleteFunctionReference - If we are emitting a far call, we already added a +/// reference to the function, but it is now incorrect, since the address to the +/// JIT resolver is too far away to be a simple call instruction. This is used +/// to remove the address from the map. +/// +void JITResolver::deleteFunctionReference(uint64_t Address) { + std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(Address); + assert(I != LazyCodeGenMap.end() && "Not in map!"); + LazyCodeGenMap.erase(I); +} + +uint64_t JITResolver::resolveFunctionReference(uint64_t RetAddr) { + std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(RetAddr); + assert(I != LazyCodeGenMap.end() && "Not in map!"); + Function *F = I->second; + LazyCodeGenMap.erase(I); + return MCE.forceCompilationOf(F); +} + +uint64_t JITResolver::getLazyResolver(Function *F) { + std::map<Function*, uint64_t>::iterator I = LazyResolverMap.lower_bound(F); + if (I != LazyResolverMap.end() && I->first == F) return I->second; + + uint64_t Stub = emitStubForFunction(F); + LazyResolverMap.insert(I, std::make_pair(F, Stub)); + return Stub; +} + +void JITResolver::insertJumpAtAddr(int64_t JumpTarget, uint64_t &Addr) { + DEBUG(std::cerr << "Emitting a jump to 0x" << std::hex << JumpTarget << "\n"); + + // If the target function is close enough to fit into the 19bit disp of + // BA, we should use this version, as it's much cheaper to generate. + int64_t BranchTarget = (JumpTarget-Addr) >> 2; + if (BranchTarget >= (1 << 19) || BranchTarget <= -(1 << 19)) { + TheJITResolver->insertFarJumpAtAddr(JumpTarget, Addr); + } else { + // ba <target> + MachineInstr *I = BuildMI(V9::BA, 1).addSImm(BranchTarget); + *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*I); + Addr += 4; + delete I; + + // nop + I = BuildMI(V9::NOP, 0); + *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*I); + delete I; + } +} + +void JITResolver::insertFarJumpAtAddr(int64_t Target, uint64_t Addr) { + static const unsigned + o6 = SparcV9IntRegClass::o6, g0 = SparcV9IntRegClass::g0, + g1 = SparcV9IntRegClass::g1, g5 = SparcV9IntRegClass::g5; + + MachineInstr* BinaryCode[] = { + // + // Get address to branch into %g1, using %g5 as a temporary + // + // sethi %uhi(Target), %g5 ;; get upper 22 bits of Target into %g5 + BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(g5), + // or %g5, %ulo(Target), %g5 ;; get 10 lower bits of upper word into %g5 + BuildMI(V9::ORi, 3).addReg(g5).addSImm((Target >> 32) & 0x03ff).addReg(g5), + // sllx %g5, 32, %g5 ;; shift those 10 bits to the upper word + BuildMI(V9::SLLXi6, 3).addReg(g5).addSImm(32).addReg(g5), + // sethi %hi(Target), %g1 ;; extract bits 10-31 into the dest reg + BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(g1), + // or %g5, %g1, %g1 ;; get upper word (in %g5) into %g1 + BuildMI(V9::ORr, 3).addReg(g5).addReg(g1).addReg(g1), + // or %g1, %lo(Target), %g1 ;; get lowest 10 bits of Target into %g1 + BuildMI(V9::ORi, 3).addReg(g1).addSImm(Target & 0x03ff).addReg(g1), + // jmpl %g1, %g0, %g0 ;; indirect branch on %g1 + BuildMI(V9::JMPLRETr, 3).addReg(g1).addReg(g0).addReg(g0), + // nop ;; delay slot + BuildMI(V9::NOP, 0) + }; + + for (unsigned i=0, e=sizeof(BinaryCode)/sizeof(BinaryCode[0]); i!=e; ++i) { + *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*BinaryCode[i]); + delete BinaryCode[i]; + Addr += 4; + } +} + +void JITResolver::SaveRegisters(uint64_t DoubleFP[], uint64_t CC[], + uint64_t Globals[]) { +#if defined(sparc) || defined(__sparc__) || defined(__sparcv9) + + __asm__ __volatile__ (// Save condition-code registers + "stx %%fsr, %0;\n\t" + "rd %%fprs, %1;\n\t" + "rd %%ccr, %2;\n\t" + : "=m"(CC[0]), "=r"(CC[1]), "=r"(CC[2])); + + __asm__ __volatile__ (// Save globals g1 and g5 + "stx %%g1, %0;\n\t" + "stx %%g5, %0;\n\t" + : "=m"(Globals[0]), "=m"(Globals[1])); + + // GCC says: `asm' only allows up to thirty parameters! + __asm__ __volatile__ (// Save Single/Double FP registers, part 1 + "std %%f0, %0;\n\t" "std %%f2, %1;\n\t" + "std %%f4, %2;\n\t" "std %%f6, %3;\n\t" + "std %%f8, %4;\n\t" "std %%f10, %5;\n\t" + "std %%f12, %6;\n\t" "std %%f14, %7;\n\t" + "std %%f16, %8;\n\t" "std %%f18, %9;\n\t" + "std %%f20, %10;\n\t" "std %%f22, %11;\n\t" + "std %%f24, %12;\n\t" "std %%f26, %13;\n\t" + "std %%f28, %14;\n\t" "std %%f30, %15;\n\t" + : "=m"(DoubleFP[ 0]), "=m"(DoubleFP[ 1]), + "=m"(DoubleFP[ 2]), "=m"(DoubleFP[ 3]), + "=m"(DoubleFP[ 4]), "=m"(DoubleFP[ 5]), + "=m"(DoubleFP[ 6]), "=m"(DoubleFP[ 7]), + "=m"(DoubleFP[ 8]), "=m"(DoubleFP[ 9]), + "=m"(DoubleFP[10]), "=m"(DoubleFP[11]), + "=m"(DoubleFP[12]), "=m"(DoubleFP[13]), + "=m"(DoubleFP[14]), "=m"(DoubleFP[15])); + + __asm__ __volatile__ (// Save Double FP registers, part 2 + "std %%f32, %0;\n\t" "std %%f34, %1;\n\t" + "std %%f36, %2;\n\t" "std %%f38, %3;\n\t" + "std %%f40, %4;\n\t" "std %%f42, %5;\n\t" + "std %%f44, %6;\n\t" "std %%f46, %7;\n\t" + "std %%f48, %8;\n\t" "std %%f50, %9;\n\t" + "std %%f52, %10;\n\t" "std %%f54, %11;\n\t" + "std %%f56, %12;\n\t" "std %%f58, %13;\n\t" + "std %%f60, %14;\n\t" "std %%f62, %15;\n\t" + : "=m"(DoubleFP[16]), "=m"(DoubleFP[17]), + "=m"(DoubleFP[18]), "=m"(DoubleFP[19]), + "=m"(DoubleFP[20]), "=m"(DoubleFP[21]), + "=m"(DoubleFP[22]), "=m"(DoubleFP[23]), + "=m"(DoubleFP[24]), "=m"(DoubleFP[25]), + "=m"(DoubleFP[26]), "=m"(DoubleFP[27]), + "=m"(DoubleFP[28]), "=m"(DoubleFP[29]), + "=m"(DoubleFP[30]), "=m"(DoubleFP[31])); +#endif +} + + +void JITResolver::RestoreRegisters(uint64_t DoubleFP[], uint64_t CC[], + uint64_t Globals[]) +{ +#if defined(sparc) || defined(__sparc__) || defined(__sparcv9) + + __asm__ __volatile__ (// Restore condition-code registers + "ldx %0, %%fsr;\n\t" + "wr %1, 0, %%fprs;\n\t" + "wr %2, 0, %%ccr;\n\t" + :: "m"(CC[0]), "r"(CC[1]), "r"(CC[2])); + + __asm__ __volatile__ (// Restore globals g1 and g5 + "ldx %0, %%g1;\n\t" + "ldx %0, %%g5;\n\t" + :: "m"(Globals[0]), "m"(Globals[1])); + + // GCC says: `asm' only allows up to thirty parameters! + __asm__ __volatile__ (// Restore Single/Double FP registers, part 1 + "ldd %0, %%f0;\n\t" "ldd %1, %%f2;\n\t" + "ldd %2, %%f4;\n\t" "ldd %3, %%f6;\n\t" + "ldd %4, %%f8;\n\t" "ldd %5, %%f10;\n\t" + "ldd %6, %%f12;\n\t" "ldd %7, %%f14;\n\t" + "ldd %8, %%f16;\n\t" "ldd %9, %%f18;\n\t" + "ldd %10, %%f20;\n\t" "ldd %11, %%f22;\n\t" + "ldd %12, %%f24;\n\t" "ldd %13, %%f26;\n\t" + "ldd %14, %%f28;\n\t" "ldd %15, %%f30;\n\t" + :: "m"(DoubleFP[0]), "m"(DoubleFP[1]), + "m"(DoubleFP[2]), "m"(DoubleFP[3]), + "m"(DoubleFP[4]), "m"(DoubleFP[5]), + "m"(DoubleFP[6]), "m"(DoubleFP[7]), + "m"(DoubleFP[8]), "m"(DoubleFP[9]), + "m"(DoubleFP[10]), "m"(DoubleFP[11]), + "m"(DoubleFP[12]), "m"(DoubleFP[13]), + "m"(DoubleFP[14]), "m"(DoubleFP[15])); + + __asm__ __volatile__ (// Restore Double FP registers, part 2 + "ldd %0, %%f32;\n\t" "ldd %1, %%f34;\n\t" + "ldd %2, %%f36;\n\t" "ldd %3, %%f38;\n\t" + "ldd %4, %%f40;\n\t" "ldd %5, %%f42;\n\t" + "ldd %6, %%f44;\n\t" "ldd %7, %%f46;\n\t" + "ldd %8, %%f48;\n\t" "ldd %9, %%f50;\n\t" + "ldd %10, %%f52;\n\t" "ldd %11, %%f54;\n\t" + "ldd %12, %%f56;\n\t" "ldd %13, %%f58;\n\t" + "ldd %14, %%f60;\n\t" "ldd %15, %%f62;\n\t" + :: "m"(DoubleFP[16]), "m"(DoubleFP[17]), + "m"(DoubleFP[18]), "m"(DoubleFP[19]), + "m"(DoubleFP[20]), "m"(DoubleFP[21]), + "m"(DoubleFP[22]), "m"(DoubleFP[23]), + "m"(DoubleFP[24]), "m"(DoubleFP[25]), + "m"(DoubleFP[26]), "m"(DoubleFP[27]), + "m"(DoubleFP[28]), "m"(DoubleFP[29]), + "m"(DoubleFP[30]), "m"(DoubleFP[31])); +#endif +} + +void JITResolver::CompilationCallback() { + // Local space to save the registers + uint64_t DoubleFP[32]; + uint64_t CC[3]; + uint64_t Globals[2]; + + SaveRegisters(DoubleFP, CC, Globals); + ++CallbackCalls; + + uint64_t CameFrom = (uint64_t)(intptr_t)__builtin_return_address(0); + uint64_t CameFrom1 = (uint64_t)(intptr_t)__builtin_return_address(1); + int64_t Target = (int64_t)TheJITResolver->resolveFunctionReference(CameFrom); + DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << CameFrom << "\n"); + register int64_t returnAddr = 0; +#if defined(sparc) || defined(__sparc__) || defined(__sparcv9) + __asm__ __volatile__ ("add %%i7, %%g0, %0" : "=r" (returnAddr) : ); + DEBUG(std::cerr << "Read i7 (return addr) = " + << std::hex << returnAddr << ", value: " + << std::hex << *(unsigned*)returnAddr << "\n"); +#endif + + // If we can rewrite the ORIGINAL caller, we eliminate the whole need for a + // trampoline function stub!! + unsigned OrigCallInst = *((unsigned*)(intptr_t)CameFrom1); + int64_t OrigTarget = (Target-CameFrom1) >> 2; + if ((OrigCallInst & (1 << 30)) && + (OrigTarget <= (1 << 30) && OrigTarget >= -(1 << 30))) + { + // The original call instruction was CALL <immed>, which means we can + // overwrite it directly, since the offset will fit into 30 bits + MachineInstr *C = BuildMI(V9::CALL, 1).addSImm(OrigTarget); + *((unsigned*)(intptr_t)CameFrom1)=TheJITResolver->getBinaryCodeForInstr(*C); + delete C; + ++OverwrittenCalls; + } else { + ++UnmodifiedCalls; + } + + // Rewrite the call target so that we don't fault every time we execute it. + // + + static const unsigned o6 = SparcV9IntRegClass::o6; + + // Subtract enough to overwrite up to the 'save' instruction + // This depends on whether we made a short call (1 instruction) or the + // farCall (7 instructions) + uint64_t Offset = (LazyCallFlavor[CameFrom] == ShortCall) ? 4 : 28; + uint64_t CodeBegin = CameFrom - Offset; + + // FIXME FIXME FIXME FIXME: __builtin_frame_address doesn't work if frame + // pointer elimination has been performed. Having a variable sized alloca + // disables frame pointer elimination currently, even if it's dead. This is + // a gross hack. + alloca(42+Offset); + // FIXME FIXME FIXME FIXME + + // Make sure that what we're about to overwrite is indeed "save" + MachineInstr *SV =BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6); + unsigned SaveInst = TheJITResolver->getBinaryCodeForInstr(*SV); + delete SV; + unsigned CodeInMem = *(unsigned*)(intptr_t)CodeBegin; + if (CodeInMem != SaveInst) { + std::cerr << "About to overwrite smthg not a save instr!"; + abort(); + } + // Overwrite it + TheJITResolver->insertJumpAtAddr(Target, CodeBegin); + + // Flush the I-Cache: FLUSH clears out a doubleword at a given address + // Self-modifying code MUST clear out the I-Cache to be portable +#if defined(sparc) || defined(__sparc__) || defined(__sparcv9) + for (int i = -Offset, e = 32-((int64_t)Offset); i < e; i += 8) + __asm__ __volatile__ ("flush %%i7 + %0" : : "r" (i)); +#endif + + // Change the return address to re-execute the restore, then the jump. + DEBUG(std::cerr << "Callback returning to: 0x" + << std::hex << (CameFrom-Offset-12) << "\n"); +#if defined(sparc) || defined(__sparc__) || defined(__sparcv9) + __asm__ __volatile__ ("sub %%i7, %0, %%i7" : : "r" (Offset+12)); +#endif + + RestoreRegisters(DoubleFP, CC, Globals); +} + +/// emitStubForFunction - This method is used by the JIT when it needs to emit +/// the address of a function for a function whose code has not yet been +/// generated. In order to do this, it generates a stub which jumps to the lazy +/// function compiler, which will eventually get fixed to call the function +/// directly. +/// +uint64_t JITResolver::emitStubForFunction(Function *F) { + MCE.startFunctionStub(*F, 44); + + DEBUG(std::cerr << "Emitting stub at addr: 0x" + << std::hex << MCE.getCurrentPCValue() << "\n"); + + unsigned o6 = SparcV9IntRegClass::o6, g0 = SparcV9IntRegClass::g0; + + // restore %g0, 0, %g0 + MachineInstr *R = BuildMI(V9::RESTOREi, 3).addMReg(g0).addSImm(0) + .addMReg(g0, MachineOperand::Def); + SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*R)); + delete R; + + // save %sp, -192, %sp + MachineInstr *SV = BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6); + SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*SV)); + delete SV; + + int64_t CurrPC = MCE.getCurrentPCValue(); + int64_t Addr = (int64_t)addFunctionReference(CurrPC, F); + int64_t CallTarget = (Addr-CurrPC) >> 2; + if (CallTarget >= (1 << 29) || CallTarget <= -(1 << 29)) { + // Since this is a far call, the actual address of the call is shifted + // by the number of instructions it takes to calculate the exact address + deleteFunctionReference(CurrPC); + SparcV9.emitFarCall(Addr, F); + } else { + // call CallTarget ;; invoke the callback + MachineInstr *Call = BuildMI(V9::CALL, 1).addSImm(CallTarget); + SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Call)); + delete Call; + + // nop ;; call delay slot + MachineInstr *Nop = BuildMI(V9::NOP, 0); + SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Nop)); + delete Nop; + + addCallFlavor(CurrPC, ShortCall); + } + + SparcV9.emitWord(0xDEADBEEF); // marker so that we know it's really a stub + return (intptr_t)MCE.finishFunctionStub(*F)+4; /* 1 instr past the restore */ +} + +SparcV9CodeEmitter::SparcV9CodeEmitter(TargetMachine &tm, + MachineCodeEmitter &M): TM(tm), MCE(M) +{ + TheJITResolver = new JITResolver(*this, M); +} + +SparcV9CodeEmitter::~SparcV9CodeEmitter() { + delete TheJITResolver; +} + +void SparcV9CodeEmitter::emitWord(unsigned Val) { + // Output the constant in big endian byte order... + unsigned byteVal; + for (int i = 3; i >= 0; --i) { + byteVal = Val >> 8*i; + MCE.emitByte(byteVal & 255); + } +} + +unsigned +SparcV9CodeEmitter::getRealRegNum(unsigned fakeReg, + MachineInstr &MI) { + const TargetRegInfo &RI = TM.getRegInfo(); + unsigned regClass, regType = RI.getRegType(fakeReg); + // At least map fakeReg into its class + fakeReg = RI.getClassRegNum(fakeReg, regClass); + + switch (regClass) { + case SparcV9RegInfo::IntRegClassID: { + // SparcV9 manual, p31 + static const unsigned IntRegMap[] = { + // "o0", "o1", "o2", "o3", "o4", "o5", "o7", + 8, 9, 10, 11, 12, 13, 15, + // "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", + 16, 17, 18, 19, 20, 21, 22, 23, + // "i0", "i1", "i2", "i3", "i4", "i5", "i6", "i7", + 24, 25, 26, 27, 28, 29, 30, 31, + // "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", + 0, 1, 2, 3, 4, 5, 6, 7, + // "o6" + 14 + }; + + return IntRegMap[fakeReg]; + break; + } + case SparcV9RegInfo::FloatRegClassID: { + DEBUG(std::cerr << "FP reg: " << fakeReg << "\n"); + if (regType == SparcV9RegInfo::FPSingleRegType) { + // only numbered 0-31, hence can already fit into 5 bits (and 6) + DEBUG(std::cerr << "FP single reg, returning: " << fakeReg << "\n"); + } else if (regType == SparcV9RegInfo::FPDoubleRegType) { + // FIXME: This assumes that we only have 5-bit register fields! + // From SparcV9 Manual, page 40. + // The bit layout becomes: b[4], b[3], b[2], b[1], b[5] + fakeReg |= (fakeReg >> 5) & 1; + fakeReg &= 0x1f; + DEBUG(std::cerr << "FP double reg, returning: " << fakeReg << "\n"); + } + return fakeReg; + } + case SparcV9RegInfo::IntCCRegClassID: { + /* xcc, icc, ccr */ + static const unsigned IntCCReg[] = { 6, 4, 2 }; + + assert(fakeReg < sizeof(IntCCReg)/sizeof(IntCCReg[0]) + && "CC register out of bounds for IntCCReg map"); + DEBUG(std::cerr << "IntCC reg: " << IntCCReg[fakeReg] << "\n"); + return IntCCReg[fakeReg]; + } + case SparcV9RegInfo::FloatCCRegClassID: { + /* These are laid out %fcc0 - %fcc3 => 0 - 3, so are correct */ + DEBUG(std::cerr << "FP CC reg: " << fakeReg << "\n"); + return fakeReg; + } + default: + assert(0 && "Invalid unified register number in getRegType"); + return fakeReg; + } +} + + +// WARNING: if the call used the delay slot to do meaningful work, that's not +// being accounted for, and the behavior will be incorrect!! +inline void SparcV9CodeEmitter::emitFarCall(uint64_t Target, Function *F) { + static const unsigned o6 = SparcV9IntRegClass::o6, + o7 = SparcV9IntRegClass::o7, g0 = SparcV9IntRegClass::g0, + g1 = SparcV9IntRegClass::g1, g5 = SparcV9IntRegClass::g5; + + MachineInstr* BinaryCode[] = { + // + // Get address to branch into %g1, using %g5 as a temporary + // + // sethi %uhi(Target), %g5 ;; get upper 22 bits of Target into %g5 + BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(g5), + // or %g5, %ulo(Target), %g5 ;; get 10 lower bits of upper word into %1 + BuildMI(V9::ORi, 3).addReg(g5).addSImm((Target >> 32) & 0x03ff).addReg(g5), + // sllx %g5, 32, %g5 ;; shift those 10 bits to the upper word + BuildMI(V9::SLLXi6, 3).addReg(g5).addSImm(32).addReg(g5), + // sethi %hi(Target), %g1 ;; extract bits 10-31 into the dest reg + BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(g1), + // or %g5, %g1, %g1 ;; get upper word (in %g5) into %g1 + BuildMI(V9::ORr, 3).addReg(g5).addReg(g1).addReg(g1), + // or %g1, %lo(Target), %g1 ;; get lowest 10 bits of Target into %g1 + BuildMI(V9::ORi, 3).addReg(g1).addSImm(Target & 0x03ff).addReg(g1), + // jmpl %g1, %g0, %o7 ;; indirect call on %g1 + BuildMI(V9::JMPLRETr, 3).addReg(g1).addReg(g0).addReg(o7), + // nop ;; delay slot + BuildMI(V9::NOP, 0) + }; + + for (unsigned i=0, e=sizeof(BinaryCode)/sizeof(BinaryCode[0]); i!=e; ++i) { + // This is where we save the return address in the LazyResolverMap!! + if (i == 6 && F != 0) { // Do this right before the JMPL + uint64_t CurrPC = MCE.getCurrentPCValue(); + TheJITResolver->addFunctionReference(CurrPC, F); + // Remember that this is a far call, to subtract appropriate offset later + TheJITResolver->addCallFlavor(CurrPC, JITResolver::FarCall); + } + + emitWord(getBinaryCodeForInstr(*BinaryCode[i])); + delete BinaryCode[i]; + } +} + +void SparcV9JITInfo::replaceMachineCodeForFunction (void *Old, void *New) { + assert (TheJITResolver && + "Can only call replaceMachineCodeForFunction from within JIT"); + uint64_t Target = (uint64_t)(intptr_t)New; + uint64_t CodeBegin = (uint64_t)(intptr_t)Old; + TheJITResolver->insertJumpAtAddr(Target, CodeBegin); +} + +int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI, + MachineOperand &MO) { + int64_t rv = 0; // Return value; defaults to 0 for unhandled cases + // or things that get fixed up later by the JIT. + if (MO.isPCRelativeDisp()) { + DEBUG(std::cerr << "PCRelativeDisp: "); + Value *V = MO.getVRegValue(); + if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { + DEBUG(std::cerr << "Saving reference to BB (VReg)\n"); + unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue(); + BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); + } else if (const Constant *C = dyn_cast<Constant>(V)) { + if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) { + rv = CI->getRawValue() - MCE.getCurrentPCValue(); + } else { + std::cerr << "Cannot have non-integral const in instruction: " + << *C; + abort(); + } + } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + // same as MO.isGlobalAddress() + DEBUG(std::cerr << "GlobalValue: "); + // external function calls, etc.? + if (Function *F = dyn_cast<Function>(GV)) { + DEBUG(std::cerr << "Function: "); + // NOTE: This results in stubs being generated even for + // external, native functions, which is not optimal. See PR103. + rv = (int64_t)MCE.getGlobalValueAddress(F); + if (rv == 0) { + DEBUG(std::cerr << "not yet generated\n"); + // Function has not yet been code generated! + TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), F); + // Delayed resolution... + rv = TheJITResolver->getLazyResolver(F); + } else { + DEBUG(std::cerr << "already generated: 0x" << std::hex << rv << "\n"); + } + } else { + rv = (int64_t)MCE.getGlobalValueAddress(GV); + DEBUG(std::cerr << "Global addr: 0x" << std::hex << rv << "\n"); + } + // The real target of the call is Addr = PC + (rv * 4) + // So undo that: give the instruction (Addr - PC) / 4 + if (MI.getOpcode() == V9::CALL) { + int64_t CurrPC = MCE.getCurrentPCValue(); + DEBUG(std::cerr << "rv addr: 0x" << std::hex << rv << "\n" + << "curr PC: 0x" << std::hex << CurrPC << "\n"); + int64_t CallInstTarget = (rv - CurrPC) >> 2; + if (CallInstTarget >= (1<<29) || CallInstTarget <= -(1<<29)) { + DEBUG(std::cerr << "Making far call!\n"); + // address is out of bounds for the 30-bit call, + // make an indirect jump-and-link + emitFarCall(rv); + // this invalidates the instruction so that the call with an incorrect + // address will not be emitted + rv = 0; + } else { + // The call fits into 30 bits, so just return the corrected address + rv = CallInstTarget; + } + DEBUG(std::cerr << "returning addr: 0x" << rv << "\n"); + } + } else { + std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n"; + abort(); + } + } else if (MO.isRegister() || MO.getType() == MachineOperand::MO_CCRegister) + { + // This is necessary because the SparcV9 backend doesn't actually lay out + // registers in the real fashion -- it skips those that it chooses not to + // allocate, i.e. those that are the FP, SP, etc. + unsigned fakeReg = MO.getReg(); + unsigned realRegByClass = getRealRegNum(fakeReg, MI); + DEBUG(std::cerr << MO << ": Reg[" << std::dec << fakeReg << "] => " + << realRegByClass << " (LLC: " + << TM.getRegInfo().getUnifiedRegName(fakeReg) << ")\n"); + rv = realRegByClass; + } else if (MO.isImmediate()) { + rv = MO.getImmedValue(); + DEBUG(std::cerr << "immed: " << rv << "\n"); + } else if (MO.isGlobalAddress()) { + DEBUG(std::cerr << "GlobalAddress: not PC-relative\n"); + rv = (int64_t) + (intptr_t)getGlobalAddress(cast<GlobalValue>(MO.getVRegValue()), + MI, MO.isPCRelative()); + } else if (MO.isMachineBasicBlock()) { + // Duplicate code of the above case for VirtualRegister, BasicBlock... + // It should really hit this case, but SparcV9 backend uses VRegs instead + DEBUG(std::cerr << "Saving reference to MBB\n"); + const BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock(); + unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue(); + BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); + } else if (MO.isExternalSymbol()) { + // SparcV9 backend doesn't generate this (yet...) + std::cerr << "ERROR: External symbol unhandled: " << MO << "\n"; + abort(); + } else if (MO.isFrameIndex()) { + // SparcV9 backend doesn't generate this (yet...) + int FrameIndex = MO.getFrameIndex(); + std::cerr << "ERROR: Frame index unhandled.\n"; + abort(); + } else if (MO.isConstantPoolIndex()) { + unsigned Index = MO.getConstantPoolIndex(); + rv = MCE.getConstantPoolEntryAddress(Index); + } else { + std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n"; + abort(); + } + + // Finally, deal with the various bitfield-extracting functions that + // are used in SPARC assembly. (Some of these make no sense in combination + // with some of the above; we'll trust that the instruction selector + // will not produce nonsense, and not check for valid combinations here.) + if (MO.isLoBits32()) { // %lo(val) == %lo() in SparcV9 ABI doc + return rv & 0x03ff; + } else if (MO.isHiBits32()) { // %lm(val) == %hi() in SparcV9 ABI doc + return (rv >> 10) & 0x03fffff; + } else if (MO.isLoBits64()) { // %hm(val) == %ulo() in SparcV9 ABI doc + return (rv >> 32) & 0x03ff; + } else if (MO.isHiBits64()) { // %hh(val) == %uhi() in SparcV9 ABI doc + return rv >> 42; + } else { // (unadorned) val + return rv; + } +} + +unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) { + Val >>= bit; + return (Val & 1); +} + +bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) { + MCE.startFunction(MF); + DEBUG(std::cerr << "Starting function " << MF.getFunction()->getName() + << ", address: " << "0x" << std::hex + << (long)MCE.getCurrentPCValue() << "\n"); + + MCE.emitConstantPool(MF.getConstantPool()); + for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) + emitBasicBlock(*I); + MCE.finishFunction(MF); + + DEBUG(std::cerr << "Finishing fn " << MF.getFunction()->getName() << "\n"); + + // Resolve branches to BasicBlocks for the entire function + for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { + long Location = BBLocations[BBRefs[i].first]; + unsigned *Ref = BBRefs[i].second.first; + MachineInstr *MI = BBRefs[i].second.second; + DEBUG(std::cerr << "Fixup @ " << std::hex << Ref << " to 0x" << Location + << " in instr: " << std::dec << *MI); + for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) { + MachineOperand &op = MI->getOperand(ii); + if (op.isPCRelativeDisp()) { + // the instruction's branch target is made such that it branches to + // PC + (branchTarget * 4), so undo that arithmetic here: + // Location is the target of the branch + // Ref is the location of the instruction, and hence the PC + int64_t branchTarget = (Location - (long)Ref) >> 2; + // Save the flags. + bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false; + if (op.isLoBits32()) { loBits32=true; } + if (op.isHiBits32()) { hiBits32=true; } + if (op.isLoBits64()) { loBits64=true; } + if (op.isHiBits64()) { hiBits64=true; } + MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed, + branchTarget); + if (loBits32) { MI->setOperandLo32(ii); } + else if (hiBits32) { MI->setOperandHi32(ii); } + else if (loBits64) { MI->setOperandLo64(ii); } + else if (hiBits64) { MI->setOperandHi64(ii); } + DEBUG(std::cerr << "Rewrote BB ref: "); + unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI); + *Ref = fixedInstr; + break; + } + } + } + BBRefs.clear(); + BBLocations.clear(); + + return false; +} + +void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) { + currBB = MBB.getBasicBlock(); + BBLocations[currBB] = MCE.getCurrentPCValue(); + for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){ + unsigned binCode = getBinaryCodeForInstr(*I); + if (binCode == (1 << 30)) { + // this is an invalid call: the addr is out of bounds. that means a code + // sequence has already been emitted, and this is a no-op + DEBUG(std::cerr << "Call supressed: already emitted far call.\n"); + } else { + emitWord(binCode); + } + } +} + +void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI, + bool isPCRelative) +{ + if (isPCRelative) { // must be a call, this is a major hack! + // Try looking up the function to see if it is already compiled! + if (void *Addr = (void*)(intptr_t)MCE.getGlobalValueAddress(V)) { + intptr_t CurByte = MCE.getCurrentPCValue(); + // The real target of the call is Addr = PC + (target * 4) + // CurByte is the PC, Addr we just received + return (void*) (((long)Addr - (long)CurByte) >> 2); + } else { + if (Function *F = dyn_cast<Function>(V)) { + // Function has not yet been code generated! + TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), + cast<Function>(V)); + // Delayed resolution... + return + (void*)(intptr_t)TheJITResolver->getLazyResolver(cast<Function>(V)); + } else { + std::cerr << "Unhandled global: " << *V << "\n"; + abort(); + } + } + } else { + return (void*)(intptr_t)MCE.getGlobalValueAddress(V); + } +} + +#include "SparcV9CodeEmitter.inc" + +} // End llvm namespace + |

