summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp')
-rw-r--r--llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp1967
1 files changed, 1967 insertions, 0 deletions
diff --git a/llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp b/llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
new file mode 100644
index 00000000000..ffb3404ff8e
--- /dev/null
+++ b/llvm/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
@@ -0,0 +1,1967 @@
+//===-- ModuloScheduling.cpp - ModuloScheduling ----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This ModuloScheduling pass is based on the Swing Modulo Scheduling
+// algorithm.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "ModuloSched"
+
+#include "ModuloScheduling.h"
+#include "llvm/Instructions.h"
+#include "llvm/Function.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Target/TargetSchedInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/ADT/StringExtras.h"
+#include <cmath>
+#include <algorithm>
+#include <fstream>
+#include <sstream>
+#include <utility>
+#include <vector>
+#include "../../Target/SparcV9/MachineCodeForInstruction.h"
+#include "../../Target/SparcV9/SparcV9TmpInstr.h"
+#include "../../Target/SparcV9/SparcV9Internals.h"
+#include "../../Target/SparcV9/SparcV9RegisterInfo.h"
+using namespace llvm;
+
+/// Create ModuloSchedulingPass
+///
+FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) {
+ DEBUG(std::cerr << "Created ModuloSchedulingPass\n");
+ return new ModuloSchedulingPass(targ);
+}
+
+
+//Graph Traits for printing out the dependence graph
+template<typename GraphType>
+static void WriteGraphToFile(std::ostream &O, const std::string &GraphName,
+ const GraphType &GT) {
+ std::string Filename = GraphName + ".dot";
+ O << "Writing '" << Filename << "'...";
+ std::ofstream F(Filename.c_str());
+
+ if (F.good())
+ WriteGraph(F, GT);
+ else
+ O << " error opening file for writing!";
+ O << "\n";
+};
+
+//Graph Traits for printing out the dependence graph
+namespace llvm {
+
+ template<>
+ struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits {
+ static std::string getGraphName(MSchedGraph *F) {
+ return "Dependence Graph";
+ }
+
+ static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) {
+ if (Node->getInst()) {
+ std::stringstream ss;
+ ss << *(Node->getInst());
+ return ss.str(); //((MachineInstr*)Node->getInst());
+ }
+ else
+ return "No Inst";
+ }
+ static std::string getEdgeSourceLabel(MSchedGraphNode *Node,
+ MSchedGraphNode::succ_iterator I) {
+ //Label each edge with the type of dependence
+ std::string edgelabel = "";
+ switch (I.getEdge().getDepOrderType()) {
+
+ case MSchedGraphEdge::TrueDep:
+ edgelabel = "True";
+ break;
+
+ case MSchedGraphEdge::AntiDep:
+ edgelabel = "Anti";
+ break;
+
+ case MSchedGraphEdge::OutputDep:
+ edgelabel = "Output";
+ break;
+
+ default:
+ edgelabel = "Unknown";
+ break;
+ }
+
+ //FIXME
+ int iteDiff = I.getEdge().getIteDiff();
+ std::string intStr = "(IteDiff: ";
+ intStr += itostr(iteDiff);
+
+ intStr += ")";
+ edgelabel += intStr;
+
+ return edgelabel;
+ }
+ };
+}
+
+/// ModuloScheduling::runOnFunction - main transformation entry point
+/// The Swing Modulo Schedule algorithm has three basic steps:
+/// 1) Computation and Analysis of the dependence graph
+/// 2) Ordering of the nodes
+/// 3) Scheduling
+///
+bool ModuloSchedulingPass::runOnFunction(Function &F) {
+
+ bool Changed = false;
+
+ DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in " + F.getName() + "\n");
+
+ //Get MachineFunction
+ MachineFunction &MF = MachineFunction::get(&F);
+
+ //Worklist
+ std::vector<MachineBasicBlock*> Worklist;
+
+ //Iterate over BasicBlocks and put them into our worklist if they are valid
+ for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI)
+ if(MachineBBisValid(BI))
+ Worklist.push_back(&*BI);
+
+ DEBUG(if(Worklist.size() == 0) std::cerr << "No single basic block loops in function to ModuloSchedule\n");
+
+ //Iterate over the worklist and perform scheduling
+ for(std::vector<MachineBasicBlock*>::iterator BI = Worklist.begin(),
+ BE = Worklist.end(); BI != BE; ++BI) {
+
+ MSchedGraph *MSG = new MSchedGraph(*BI, target);
+
+ //Write Graph out to file
+ DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG));
+
+ //Print out BB for debugging
+ DEBUG(std::cerr << "ModuloScheduling BB: \n"; (*BI)->print(std::cerr));
+
+ //Calculate Resource II
+ int ResMII = calculateResMII(*BI);
+
+ //Calculate Recurrence II
+ int RecMII = calculateRecMII(MSG, ResMII);
+
+ //Our starting initiation interval is the maximum of RecMII and ResMII
+ II = std::max(RecMII, ResMII);
+
+ //Print out II, RecMII, and ResMII
+ DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << "and ResMII=" << ResMII << "\n");
+
+ //Calculate Node Properties
+ calculateNodeAttributes(MSG, ResMII);
+
+ //Dump node properties if in debug mode
+ DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
+ E = nodeToAttributesMap.end(); I !=E; ++I) {
+ std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: "
+ << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth
+ << " Height: " << I->second.height << "\n";
+ });
+
+ //Put nodes in order to schedule them
+ computePartialOrder();
+
+ //Dump out partial order
+ DEBUG(for(std::vector<std::vector<MSchedGraphNode*> >::iterator I = partialOrder.begin(),
+ E = partialOrder.end(); I !=E; ++I) {
+ std::cerr << "Start set in PO\n";
+ for(std::vector<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
+ std::cerr << "PO:" << **J << "\n";
+ });
+
+ //Place nodes in final order
+ orderNodes();
+
+ //Dump out order of nodes
+ DEBUG(for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) {
+ std::cerr << "FO:" << **I << "\n";
+ });
+
+ //Finally schedule nodes
+ computeSchedule();
+
+ //Print out final schedule
+ DEBUG(schedule.print(std::cerr));
+
+
+ //Final scheduling step is to reconstruct the loop
+ reconstructLoop(*BI);
+
+ //Print out new loop
+
+
+ //Clear out our maps for the next basic block that is processed
+ nodeToAttributesMap.clear();
+ partialOrder.clear();
+ recurrenceList.clear();
+ FinalNodeOrder.clear();
+ schedule.clear();
+
+ //Clean up. Nuke old MachineBB and llvmBB
+ //BasicBlock *llvmBB = (BasicBlock*) (*BI)->getBasicBlock();
+ //Function *parent = (Function*) llvmBB->getParent();
+ //Should't std::find work??
+ //parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB));
+ //parent->getBasicBlockList().erase(llvmBB);
+
+ //delete(llvmBB);
+ //delete(*BI);
+ }
+
+
+ return Changed;
+}
+
+
+/// This function checks if a Machine Basic Block is valid for modulo
+/// scheduling. This means that it has no control flow (if/else or
+/// calls) in the block. Currently ModuloScheduling only works on
+/// single basic block loops.
+bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
+
+ bool isLoop = false;
+
+ //Check first if its a valid loop
+ for(succ_const_iterator I = succ_begin(BI->getBasicBlock()),
+ E = succ_end(BI->getBasicBlock()); I != E; ++I) {
+ if (*I == BI->getBasicBlock()) // has single block loop
+ isLoop = true;
+ }
+
+ if(!isLoop)
+ return false;
+
+ //Get Target machine instruction info
+ const TargetInstrInfo *TMI = target.getInstrInfo();
+
+ //Check each instruction and look for calls
+ for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
+ //Get opcode to check instruction type
+ MachineOpCode OC = I->getOpcode();
+ if(TMI->isCall(OC))
+ return false;
+
+ }
+ return true;
+}
+
+//ResMII is calculated by determining the usage count for each resource
+//and using the maximum.
+//FIXME: In future there should be a way to get alternative resources
+//for each instruction
+int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
+
+ const TargetInstrInfo *mii = target.getInstrInfo();
+ const TargetSchedInfo *msi = target.getSchedInfo();
+
+ int ResMII = 0;
+
+ //Map to keep track of usage count of each resource
+ std::map<unsigned, unsigned> resourceUsageCount;
+
+ for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
+
+ //Get resource usage for this instruction
+ InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode());
+ std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
+
+ //Loop over resources in each cycle and increments their usage count
+ for(unsigned i=0; i < resources.size(); ++i)
+ for(unsigned j=0; j < resources[i].size(); ++j) {
+ if( resourceUsageCount.find(resources[i][j]) == resourceUsageCount.end()) {
+ resourceUsageCount[resources[i][j]] = 1;
+ }
+ else {
+ resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1;
+ }
+ }
+ }
+
+ //Find maximum usage count
+
+ //Get max number of instructions that can be issued at once. (FIXME)
+ int issueSlots = msi->maxNumIssueTotal;
+
+ for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) {
+
+ //Get the total number of the resources in our cpu
+ int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers;
+
+ //Get total usage count for this resources
+ unsigned usageCount = RB->second;
+
+ //Divide the usage count by either the max number we can issue or the number of
+ //resources (whichever is its upper bound)
+ double finalUsageCount;
+ if( resourceNum <= issueSlots)
+ finalUsageCount = ceil(1.0 * usageCount / resourceNum);
+ else
+ finalUsageCount = ceil(1.0 * usageCount / issueSlots);
+
+
+ //Only keep track of the max
+ ResMII = std::max( (int) finalUsageCount, ResMII);
+
+ }
+
+ return ResMII;
+
+}
+
+/// calculateRecMII - Calculates the value of the highest recurrence
+/// By value we mean the total latency
+int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) {
+ std::vector<MSchedGraphNode*> vNodes;
+ //Loop over all nodes in the graph
+ for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
+ findAllReccurrences(I->second, vNodes, MII);
+ vNodes.clear();
+ }
+
+ int RecMII = 0;
+
+ for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) {
+ DEBUG(for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
+ std::cerr << **N << "\n";
+ });
+ RecMII = std::max(RecMII, I->first);
+ }
+
+ return MII;
+}
+
+/// calculateNodeAttributes - The following properties are calculated for
+/// each node in the dependence graph: ASAP, ALAP, Depth, Height, and
+/// MOB.
+void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) {
+
+ //Loop over the nodes and add them to the map
+ for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
+ //Assert if its already in the map
+ assert(nodeToAttributesMap.find(I->second) == nodeToAttributesMap.end() && "Node attributes are already in the map");
+
+ //Put into the map with default attribute values
+ nodeToAttributesMap[I->second] = MSNodeAttributes();
+ }
+
+ //Create set to deal with reccurrences
+ std::set<MSchedGraphNode*> visitedNodes;
+
+ //Now Loop over map and calculate the node attributes
+ for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
+ calculateASAP(I->first, MII, (MSchedGraphNode*) 0);
+ visitedNodes.clear();
+ }
+
+ int maxASAP = findMaxASAP();
+ //Calculate ALAP which depends on ASAP being totally calculated
+ for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
+ calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0);
+ visitedNodes.clear();
+ }
+
+ //Calculate MOB which depends on ASAP being totally calculated, also do depth and height
+ for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
+ (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP);
+
+ DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n");
+ calculateDepth(I->first, (MSchedGraphNode*) 0);
+ calculateHeight(I->first, (MSchedGraphNode*) 0);
+ }
+
+
+}
+
+/// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not
+bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) {
+ if(destNode == 0 || srcNode ==0)
+ return false;
+
+ bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode)));
+
+ return findEdge;
+}
+
+
+/// calculateASAP - Calculates the
+int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) {
+
+ DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n");
+
+ //Get current node attributes
+ MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
+
+ if(attributes.ASAP != -1)
+ return attributes.ASAP;
+
+ int maxPredValue = 0;
+
+ //Iterate over all of the predecessors and find max
+ for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
+
+ //Only process if we are not ignoring the edge
+ if(!ignoreEdge(*P, node)) {
+ int predASAP = -1;
+ predASAP = calculateASAP(*P, MII, node);
+
+ assert(predASAP != -1 && "ASAP has not been calculated");
+ int iteDiff = node->getInEdge(*P).getIteDiff();
+
+ int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII);
+ DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n");
+ maxPredValue = std::max(maxPredValue, currentPredValue);
+ }
+ }
+
+ attributes.ASAP = maxPredValue;
+
+ DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n");
+
+ return maxPredValue;
+}
+
+
+int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII,
+ int maxASAP, MSchedGraphNode *srcNode) {
+
+ DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n");
+
+ MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
+
+ if(attributes.ALAP != -1)
+ return attributes.ALAP;
+
+ if(node->hasSuccessors()) {
+
+ //Trying to deal with the issue where the node has successors, but
+ //we are ignoring all of the edges to them. So this is my hack for
+ //now.. there is probably a more elegant way of doing this (FIXME)
+ bool processedOneEdge = false;
+
+ //FIXME, set to something high to start
+ int minSuccValue = 9999999;
+
+ //Iterate over all of the predecessors and fine max
+ for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
+ E = node->succ_end(); P != E; ++P) {
+
+ //Only process if we are not ignoring the edge
+ if(!ignoreEdge(node, *P)) {
+ processedOneEdge = true;
+ int succALAP = -1;
+ succALAP = calculateALAP(*P, MII, maxASAP, node);
+
+ assert(succALAP != -1 && "Successors ALAP should have been caclulated");
+
+ int iteDiff = P.getEdge().getIteDiff();
+
+ int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII;
+
+ DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n");
+
+ minSuccValue = std::min(minSuccValue, currentSuccValue);
+ }
+ }
+
+ if(processedOneEdge)
+ attributes.ALAP = minSuccValue;
+
+ else
+ attributes.ALAP = maxASAP;
+ }
+ else
+ attributes.ALAP = maxASAP;
+
+ DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n");
+
+ if(attributes.ALAP < 0)
+ attributes.ALAP = 0;
+
+ return attributes.ALAP;
+}
+
+int ModuloSchedulingPass::findMaxASAP() {
+ int maxASAP = 0;
+
+ for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
+ E = nodeToAttributesMap.end(); I != E; ++I)
+ maxASAP = std::max(maxASAP, I->second.ASAP);
+ return maxASAP;
+}
+
+
+int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) {
+
+ MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
+
+ if(attributes.height != -1)
+ return attributes.height;
+
+ int maxHeight = 0;
+
+ //Iterate over all of the predecessors and find max
+ for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
+ E = node->succ_end(); P != E; ++P) {
+
+
+ if(!ignoreEdge(node, *P)) {
+ int succHeight = calculateHeight(*P, node);
+
+ assert(succHeight != -1 && "Successors Height should have been caclulated");
+
+ int currentHeight = succHeight + node->getLatency();
+ maxHeight = std::max(maxHeight, currentHeight);
+ }
+ }
+ attributes.height = maxHeight;
+ DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n");
+ return maxHeight;
+}
+
+
+int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node,
+ MSchedGraphNode *destNode) {
+
+ MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
+
+ if(attributes.depth != -1)
+ return attributes.depth;
+
+ int maxDepth = 0;
+
+ //Iterate over all of the predecessors and fine max
+ for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
+
+ if(!ignoreEdge(*P, node)) {
+ int predDepth = -1;
+ predDepth = calculateDepth(*P, node);
+
+ assert(predDepth != -1 && "Predecessors ASAP should have been caclulated");
+
+ int currentDepth = predDepth + (*P)->getLatency();
+ maxDepth = std::max(maxDepth, currentDepth);
+ }
+ }
+ attributes.depth = maxDepth;
+
+ DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n");
+ return maxDepth;
+}
+
+
+
+void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) {
+ //Check to make sure that this recurrence is unique
+ bool same = false;
+
+
+ //Loop over all recurrences already in our list
+ for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) {
+
+ bool all_same = true;
+ //First compare size
+ if(R->second.size() == recurrence.size()) {
+
+ for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) {
+ if(std::find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) {
+ all_same = all_same && false;
+ break;
+ }
+ else
+ all_same = all_same && true;
+ }
+ if(all_same) {
+ same = true;
+ break;
+ }
+ }
+ }
+
+ if(!same) {
+ srcBENode = recurrence.back();
+ destBENode = recurrence.front();
+
+ //FIXME
+ if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) {
+ //DEBUG(std::cerr << "NOT A BACKEDGE\n");
+ //find actual backedge HACK HACK
+ for(unsigned i=0; i< recurrence.size()-1; ++i) {
+ if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) {
+ srcBENode = recurrence[i];
+ destBENode = recurrence[i+1];
+ break;
+ }
+
+ }
+
+ }
+ DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n");
+ edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode)));
+ recurrenceList.insert(std::make_pair(II, recurrence));
+ }
+
+}
+
+void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node,
+ std::vector<MSchedGraphNode*> &visitedNodes,
+ int II) {
+
+ if(std::find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) {
+ std::vector<MSchedGraphNode*> recurrence;
+ bool first = true;
+ int delay = 0;
+ int distance = 0;
+ int RecMII = II; //Starting value
+ MSchedGraphNode *last = node;
+ MSchedGraphNode *srcBackEdge = 0;
+ MSchedGraphNode *destBackEdge = 0;
+
+
+
+ for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end();
+ I !=E; ++I) {
+
+ if(*I == node)
+ first = false;
+ if(first)
+ continue;
+
+ delay = delay + (*I)->getLatency();
+
+ if(*I != node) {
+ int diff = (*I)->getInEdge(last).getIteDiff();
+ distance += diff;
+ if(diff > 0) {
+ srcBackEdge = last;
+ destBackEdge = *I;
+ }
+ }
+
+ recurrence.push_back(*I);
+ last = *I;
+ }
+
+
+
+ //Get final distance calc
+ distance += node->getInEdge(last).getIteDiff();
+
+
+ //Adjust II until we get close to the inequality delay - II*distance <= 0
+
+ int value = delay-(RecMII * distance);
+ int lastII = II;
+ while(value <= 0) {
+
+ lastII = RecMII;
+ RecMII--;
+ value = delay-(RecMII * distance);
+ }
+
+
+ DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n");
+ addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge);
+ assert(distance != 0 && "Recurrence distance should not be zero");
+ return;
+ }
+
+ for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) {
+ visitedNodes.push_back(node);
+ findAllReccurrences(*I, visitedNodes, II);
+ visitedNodes.pop_back();
+ }
+}
+
+
+
+
+
+void ModuloSchedulingPass::computePartialOrder() {
+
+
+ //Loop over all recurrences and add to our partial order
+ //be sure to remove nodes that are already in the partial order in
+ //a different recurrence and don't add empty recurrences.
+ for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
+
+ //Add nodes that connect this recurrence to the previous recurrence
+
+ //If this is the first recurrence in the partial order, add all predecessors
+ for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
+
+ }
+
+
+ std::vector<MSchedGraphNode*> new_recurrence;
+ //Loop through recurrence and remove any nodes already in the partial order
+ for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
+ bool found = false;
+ for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) {
+ if(std::find(PO->begin(), PO->end(), *N) != PO->end())
+ found = true;
+ }
+ if(!found) {
+ new_recurrence.push_back(*N);
+
+ if(partialOrder.size() == 0)
+ //For each predecessors, add it to this recurrence ONLY if it is not already in it
+ for(MSchedGraphNode::pred_iterator P = (*N)->pred_begin(),
+ PE = (*N)->pred_end(); P != PE; ++P) {
+
+ //Check if we are supposed to ignore this edge or not
+ if(!ignoreEdge(*P, *N))
+ //Check if already in this recurrence
+ if(std::find(I->second.begin(), I->second.end(), *P) == I->second.end()) {
+ //Also need to check if in partial order
+ bool predFound = false;
+ for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PEND = partialOrder.end(); PO != PEND; ++PO) {
+ if(std::find(PO->begin(), PO->end(), *P) != PO->end())
+ predFound = true;
+ }
+
+ if(!predFound)
+ if(std::find(new_recurrence.begin(), new_recurrence.end(), *P) == new_recurrence.end())
+ new_recurrence.push_back(*P);
+
+ }
+ }
+ }
+ }
+
+
+ if(new_recurrence.size() > 0)
+ partialOrder.push_back(new_recurrence);
+ }
+
+ //Add any nodes that are not already in the partial order
+ std::vector<MSchedGraphNode*> lastNodes;
+ for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
+ bool found = false;
+ //Check if its already in our partial order, if not add it to the final vector
+ for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) {
+ if(std::find(PO->begin(), PO->end(), I->first) != PO->end())
+ found = true;
+ }
+ if(!found)
+ lastNodes.push_back(I->first);
+ }
+
+ if(lastNodes.size() > 0)
+ partialOrder.push_back(lastNodes);
+
+}
+
+
+void ModuloSchedulingPass::predIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) {
+
+ //Sort CurrentSet so we can use lowerbound
+ std::sort(CurrentSet.begin(), CurrentSet.end());
+
+ for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
+ for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(),
+ E = FinalNodeOrder[j]->pred_end(); P != E; ++P) {
+
+ //Check if we are supposed to ignore this edge or not
+ if(ignoreEdge(*P,FinalNodeOrder[j]))
+ continue;
+
+ if(std::find(CurrentSet.begin(),
+ CurrentSet.end(), *P) != CurrentSet.end())
+ if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
+ IntersectResult.push_back(*P);
+ }
+ }
+}
+
+void ModuloSchedulingPass::succIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) {
+
+ //Sort CurrentSet so we can use lowerbound
+ std::sort(CurrentSet.begin(), CurrentSet.end());
+
+ for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
+ for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(),
+ E = FinalNodeOrder[j]->succ_end(); P != E; ++P) {
+
+ //Check if we are supposed to ignore this edge or not
+ if(ignoreEdge(FinalNodeOrder[j],*P))
+ continue;
+
+ if(std::find(CurrentSet.begin(),
+ CurrentSet.end(), *P) != CurrentSet.end())
+ if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
+ IntersectResult.push_back(*P);
+ }
+ }
+}
+
+void dumpIntersection(std::vector<MSchedGraphNode*> &IntersectCurrent) {
+ std::cerr << "Intersection (";
+ for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I)
+ std::cerr << **I << ", ";
+ std::cerr << ")\n";
+}
+
+
+
+void ModuloSchedulingPass::orderNodes() {
+
+ int BOTTOM_UP = 0;
+ int TOP_DOWN = 1;
+
+ //Set default order
+ int order = BOTTOM_UP;
+
+
+ //Loop over all the sets and place them in the final node order
+ for(std::vector<std::vector<MSchedGraphNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) {
+
+ DEBUG(std::cerr << "Processing set in S\n");
+ DEBUG(dumpIntersection(*CurrentSet));
+
+ //Result of intersection
+ std::vector<MSchedGraphNode*> IntersectCurrent;
+
+ predIntersect(*CurrentSet, IntersectCurrent);
+
+ //If the intersection of predecessor and current set is not empty
+ //sort nodes bottom up
+ if(IntersectCurrent.size() != 0) {
+ DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n");
+ order = BOTTOM_UP;
+ }
+ //If empty, use successors
+ else {
+ DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n");
+
+ succIntersect(*CurrentSet, IntersectCurrent);
+
+ //sort top-down
+ if(IntersectCurrent.size() != 0) {
+ DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n");
+ order = TOP_DOWN;
+ }
+ else {
+ DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n");
+ //Find node with max ASAP in current Set
+ MSchedGraphNode *node;
+ int maxASAP = 0;
+ DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n");
+ for(unsigned j=0; j < CurrentSet->size(); ++j) {
+ //Get node attributes
+ MSNodeAttributes nodeAttr= nodeToAttributesMap.find((*CurrentSet)[j])->second;
+ //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!");
+ DEBUG(std::cerr << "CurrentSet index " << j << "has ASAP: " << nodeAttr.ASAP << "\n");
+ if(maxASAP < nodeAttr.ASAP) {
+ maxASAP = nodeAttr.ASAP;
+ node = (*CurrentSet)[j];
+ }
+ }
+ assert(node != 0 && "In node ordering node should not be null");
+ IntersectCurrent.push_back(node);
+ order = BOTTOM_UP;
+ }
+ }
+
+ //Repeat until all nodes are put into the final order from current set
+ while(IntersectCurrent.size() > 0) {
+
+ if(order == TOP_DOWN) {
+ DEBUG(std::cerr << "Order is TOP DOWN\n");
+
+ while(IntersectCurrent.size() > 0) {
+ DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n");
+
+ int MOB = 0;
+ int height = 0;
+ MSchedGraphNode *highestHeightNode = IntersectCurrent[0];
+
+ //Find node in intersection with highest heigh and lowest MOB
+ for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(),
+ E = IntersectCurrent.end(); I != E; ++I) {
+
+ //Get current nodes properties
+ MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
+
+ if(height < nodeAttr.height) {
+ highestHeightNode = *I;
+ height = nodeAttr.height;
+ MOB = nodeAttr.MOB;
+ }
+ else if(height == nodeAttr.height) {
+ if(MOB > nodeAttr.height) {
+ highestHeightNode = *I;
+ height = nodeAttr.height;
+ MOB = nodeAttr.MOB;
+ }
+ }
+ }
+
+ //Append our node with greatest height to the NodeOrder
+ if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) {
+ DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n");
+ FinalNodeOrder.push_back(highestHeightNode);
+ }
+
+ //Remove V from IntersectOrder
+ IntersectCurrent.erase(std::find(IntersectCurrent.begin(),
+ IntersectCurrent.end(), highestHeightNode));
+
+
+ //Intersect V's successors with CurrentSet
+ for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(),
+ E = highestHeightNode->succ_end(); P != E; ++P) {
+ //if(lower_bound(CurrentSet->begin(),
+ // CurrentSet->end(), *P) != CurrentSet->end()) {
+ if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {
+ if(ignoreEdge(highestHeightNode, *P))
+ continue;
+ //If not already in Intersect, add
+ if(std::find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end())
+ IntersectCurrent.push_back(*P);
+ }
+ }
+ } //End while loop over Intersect Size
+
+ //Change direction
+ order = BOTTOM_UP;
+
+ //Reset Intersect to reflect changes in OrderNodes
+ IntersectCurrent.clear();
+ predIntersect(*CurrentSet, IntersectCurrent);
+
+ } //End If TOP_DOWN
+
+ //Begin if BOTTOM_UP
+ else {
+ DEBUG(std::cerr << "Order is BOTTOM UP\n");
+ while(IntersectCurrent.size() > 0) {
+ DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n");
+
+ //dump intersection
+ DEBUG(dumpIntersection(IntersectCurrent));
+ //Get node with highest depth, if a tie, use one with lowest
+ //MOB
+ int MOB = 0;
+ int depth = 0;
+ MSchedGraphNode *highestDepthNode = IntersectCurrent[0];
+
+ for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(),
+ E = IntersectCurrent.end(); I != E; ++I) {
+ //Find node attribute in graph
+ MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
+
+ if(depth < nodeAttr.depth) {
+ highestDepthNode = *I;
+ depth = nodeAttr.depth;
+ MOB = nodeAttr.MOB;
+ }
+ else if(depth == nodeAttr.depth) {
+ if(MOB > nodeAttr.MOB) {
+ highestDepthNode = *I;
+ depth = nodeAttr.depth;
+ MOB = nodeAttr.MOB;
+ }
+ }
+ }
+
+
+
+ //Append highest depth node to the NodeOrder
+ if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) {
+ DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n");
+ FinalNodeOrder.push_back(highestDepthNode);
+ }
+ //Remove heightestDepthNode from IntersectOrder
+ IntersectCurrent.erase(std::find(IntersectCurrent.begin(),
+ IntersectCurrent.end(),highestDepthNode));
+
+
+ //Intersect heightDepthNode's pred with CurrentSet
+ for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(),
+ E = highestDepthNode->pred_end(); P != E; ++P) {
+ //if(lower_bound(CurrentSet->begin(),
+ // CurrentSet->end(), *P) != CurrentSet->end()) {
+ if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {
+
+ if(ignoreEdge(*P, highestDepthNode))
+ continue;
+
+ //If not already in Intersect, add
+ if(std::find(IntersectCurrent.begin(),
+ IntersectCurrent.end(), *P) == IntersectCurrent.end())
+ IntersectCurrent.push_back(*P);
+ }
+ }
+
+ } //End while loop over Intersect Size
+
+ //Change order
+ order = TOP_DOWN;
+
+ //Reset IntersectCurrent to reflect changes in OrderNodes
+ IntersectCurrent.clear();
+ succIntersect(*CurrentSet, IntersectCurrent);
+ } //End if BOTTOM_DOWN
+
+ DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n");
+ }
+ //End Wrapping while loop
+ DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n");
+ }//End for over all sets of nodes
+
+ //FIXME: As the algorithm stands it will NEVER add an instruction such as ba (with no
+ //data dependencies) to the final order. We add this manually. It will always be
+ //in the last set of S since its not part of a recurrence
+ //Loop over all the sets and place them in the final node order
+ std::vector<std::vector<MSchedGraphNode*> > ::reverse_iterator LastSet = partialOrder.rbegin();
+ for(std::vector<MSchedGraphNode*>::iterator CurrentNode = LastSet->begin(), LastNode = LastSet->end();
+ CurrentNode != LastNode; ++CurrentNode) {
+ if((*CurrentNode)->getInst()->getOpcode() == V9::BA)
+ FinalNodeOrder.push_back(*CurrentNode);
+ }
+ //Return final Order
+ //return FinalNodeOrder;
+}
+
+void ModuloSchedulingPass::computeSchedule() {
+
+ bool success = false;
+
+ while(!success) {
+
+ //Loop over the final node order and process each node
+ for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(),
+ E = FinalNodeOrder.end(); I != E; ++I) {
+
+ //CalculateEarly and Late start
+ int EarlyStart = -1;
+ int LateStart = 99999; //Set to something higher then we would ever expect (FIXME)
+ bool hasSucc = false;
+ bool hasPred = false;
+
+ if(!(*I)->isBranch()) {
+ //Loop over nodes in the schedule and determine if they are predecessors
+ //or successors of the node we are trying to schedule
+ for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end();
+ nodesByCycle != nodesByCycleEnd; ++nodesByCycle) {
+
+ //For this cycle, get the vector of nodes schedule and loop over it
+ for(std::vector<MSchedGraphNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) {
+
+ if((*I)->isPredecessor(*schedNode)) {
+ if(!ignoreEdge(*schedNode, *I)) {
+ int diff = (*I)->getInEdge(*schedNode).getIteDiff();
+ int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II;
+ DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
+ DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
+ EarlyStart = std::max(EarlyStart, ES_Temp);
+ hasPred = true;
+ }
+ }
+ if((*I)->isSuccessor(*schedNode)) {
+ if(!ignoreEdge(*I,*schedNode)) {
+ int diff = (*schedNode)->getInEdge(*I).getIteDiff();
+ int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II;
+ DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
+ DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
+ LateStart = std::min(LateStart, LS_Temp);
+ hasSucc = true;
+ }
+ }
+ }
+ }
+ }
+ else {
+ //WARNING: HACK! FIXME!!!!
+ if((*I)->getInst()->getOpcode() == V9::BA) {
+ EarlyStart = II-1;
+ LateStart = II-1;
+ }
+ else {
+ EarlyStart = II-1;
+ LateStart = II-1;
+ assert( (EarlyStart >= 0) && (LateStart >=0) && "EarlyStart and LateStart must be greater then 0");
+ }
+ hasPred = 1;
+ hasSucc = 1;
+ }
+
+
+ DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n");
+ DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n");
+
+ //Check if the node has no pred or successors and set Early Start to its ASAP
+ if(!hasSucc && !hasPred)
+ EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP;
+
+ //Now, try to schedule this node depending upon its pred and successor in the schedule
+ //already
+ if(!hasSucc && hasPred)
+ success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1));
+ else if(!hasPred && hasSucc)
+ success = scheduleNode(*I, LateStart, (LateStart - II +1));
+ else if(hasPred && hasSucc)
+ success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1)));
+ else
+ success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1);
+
+ if(!success) {
+ ++II;
+ schedule.clear();
+ break;
+ }
+
+ }
+
+ DEBUG(std::cerr << "Constructing Kernel\n");
+ success = schedule.constructKernel(II);
+ if(!success) {
+ ++II;
+ schedule.clear();
+ }
+ }
+}
+
+
+bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node,
+ int start, int end) {
+ bool success = false;
+
+ DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n");
+
+ //Make sure start and end are not negative
+ if(start < 0)
+ start = 0;
+ if(end < 0)
+ end = 0;
+
+ bool forward = true;
+ if(start > end)
+ forward = false;
+
+ bool increaseSC = true;
+ int cycle = start ;
+
+
+ while(increaseSC) {
+
+ increaseSC = false;
+
+ increaseSC = schedule.insert(node, cycle);
+
+ if(!increaseSC)
+ return true;
+
+ //Increment cycle to try again
+ if(forward) {
+ ++cycle;
+ DEBUG(std::cerr << "Increase cycle: " << cycle << "\n");
+ if(cycle > end)
+ return false;
+ }
+ else {
+ --cycle;
+ DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n");
+ if(cycle < end)
+ return false;
+ }
+ }
+
+ return success;
+}
+
+void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prologues, MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) {
+
+ //Keep a map to easily know whats in the kernel
+ std::map<int, std::set<const MachineInstr*> > inKernel;
+ int maxStageCount = 0;
+
+ MSchedGraphNode *branch = 0;
+ MSchedGraphNode *BAbranch = 0;
+
+ for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
+ maxStageCount = std::max(maxStageCount, I->second);
+
+ //Ignore the branch, we will handle this separately
+ if(I->first->isBranch()) {
+ if (I->first->getInst()->getOpcode() == V9::BA)
+ BAbranch = I->first;
+ else
+ branch = I->first;
+ continue;
+ }
+
+ //Put int the map so we know what instructions in each stage are in the kernel
+ DEBUG(std::cerr << "Inserting instruction " << *(I->first->getInst()) << " into map at stage " << I->second << "\n");
+ inKernel[I->second].insert(I->first->getInst());
+ }
+
+ //Get target information to look at machine operands
+ const TargetInstrInfo *mii = target.getInstrInfo();
+
+ //Now write the prologues
+ for(int i = 0; i < maxStageCount; ++i) {
+ BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (origBB->getBasicBlock()->getParent()));
+ MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
+
+ DEBUG(std::cerr << "i=" << i << "\n");
+ for(int j = 0; j <= i; ++j) {
+ for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
+ if(inKernel[j].count(&*MI)) {
+ MachineInstr *instClone = MI->clone();
+ machineBB->push_back(instClone);
+
+ DEBUG(std::cerr << "Cloning: " << *MI << "\n");
+
+ Instruction *tmp;
+
+ //After cloning, we may need to save the value that this instruction defines
+ for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) {
+ //get machine operand
+ const MachineOperand &mOp = instClone->getOperand(opNum);
+ if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
+
+ //Check if this is a value we should save
+ if(valuesToSave.count(mOp.getVRegValue())) {
+ //Save copy in tmpInstruction
+ tmp = new TmpInstruction(mOp.getVRegValue());
+
+ DEBUG(std::cerr << "Value: " << *(mOp.getVRegValue()) << " New Value: " << *tmp << " Stage: " << i << "\n");
+
+ newValues[mOp.getVRegValue()][i]= tmp;
+ newValLocation[tmp] = machineBB;
+
+ DEBUG(std::cerr << "Machine Instr Operands: " << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n");
+
+ //Create machine instruction and put int machineBB
+ MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
+
+ DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n");
+ }
+ }
+
+ //We may also need to update the value that we use if its from an earlier prologue
+ if(j != 0) {
+ if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
+ if(newValues.count(mOp.getVRegValue()))
+ if(newValues[mOp.getVRegValue()].count(j-1)) {
+ DEBUG(std::cerr << "Replaced this value: " << mOp.getVRegValue() << " With:" << (newValues[mOp.getVRegValue()][i-1]) << "\n");
+ //Update the operand with the right value
+ instClone->getOperand(opNum).setValueReg(newValues[mOp.getVRegValue()][i-1]);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+
+ //Stick in branch at the end
+ machineBB->push_back(branch->getInst()->clone());
+
+ //Stick in BA branch at the end
+ machineBB->push_back(BAbranch->getInst()->clone());
+
+ (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);
+ prologues.push_back(machineBB);
+ llvm_prologues.push_back(llvmBB);
+ }
+}
+
+void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs ) {
+
+ std::map<int, std::set<const MachineInstr*> > inKernel;
+
+ for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
+
+ //Ignore the branch, we will handle this separately
+ if(I->first->isBranch())
+ continue;
+
+ //Put int the map so we know what instructions in each stage are in the kernel
+ inKernel[I->second].insert(I->first->getInst());
+ }
+
+ std::map<Value*, Value*> valPHIs;
+
+ //some debug stuff, will remove later
+ DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), E = newValues.end(); V !=E; ++V) {
+ std::cerr << "Old Value: " << *(V->first) << "\n";
+ for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I)
+ std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n";
+ });
+
+ //some debug stuff, will remove later
+ DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = kernelPHIs.begin(), E = kernelPHIs.end(); V !=E; ++V) {
+ std::cerr << "Old Value: " << *(V->first) << "\n";
+ for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I)
+ std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n";
+ });
+
+ //Now write the epilogues
+ for(int i = schedule.getMaxStage()-1; i >= 0; --i) {
+ BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (origBB->getBasicBlock()->getParent()));
+ MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
+
+ DEBUG(std::cerr << " Epilogue #: " << i << "\n");
+
+
+
+
+ for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
+ for(int j=schedule.getMaxStage(); j > i; --j) {
+ if(inKernel[j].count(&*MI)) {
+ DEBUG(std::cerr << "Cloning instruction " << *MI << "\n");
+ MachineInstr *clone = MI->clone();
+
+ //Update operands that need to use the result from the phi
+ for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) {
+ //get machine operand
+ const MachineOperand &mOp = clone->getOperand(opNum);
+
+ //If this is the last instructions for the max iterations ago, don't update operands
+ if(j == schedule.getMaxStage() && (i == 0))
+ continue;
+
+ if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) {
+
+ DEBUG(std::cerr << "Writing PHI for " << *(mOp.getVRegValue()) << "\n");
+
+ //Quickly write appropriate phis for this operand
+ if(newValues.count(mOp.getVRegValue())) {
+ if(newValues[mOp.getVRegValue()].count(i)) {
+ Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]);
+ MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp);
+ DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+ valPHIs[mOp.getVRegValue()] = tmp;
+ }
+ }
+
+ if(valPHIs.count(mOp.getVRegValue())) {
+ //Update the operand in the cloned instruction
+ clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]);
+ }
+ }
+ }
+ machineBB->push_back(clone);
+ }
+ }
+ }
+
+ (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);
+ epilogues.push_back(machineBB);
+ llvm_epilogues.push_back(llvmBB);
+
+ DEBUG(std::cerr << "EPILOGUE #" << i << "\n");
+ DEBUG(machineBB->print(std::cerr));
+ }
+}
+
+void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs) {
+
+ //Keep track of operands that are read and saved from a previous iteration. The new clone
+ //instruction will use the result of the phi instead.
+ std::map<Value*, Value*> finalPHIValue;
+ std::map<Value*, Value*> kernelValue;
+
+ //Create TmpInstructions for the final phis
+ for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
+
+ DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first->getInst()) << "\n";);
+
+ //Clone instruction
+ const MachineInstr *inst = I->first->getInst();
+ MachineInstr *instClone = inst->clone();
+
+ //Insert into machine basic block
+ machineBB->push_back(instClone);
+
+
+ //Loop over Machine Operands
+ for(unsigned i=0; i < inst->getNumOperands(); ++i) {
+ //get machine operand
+ const MachineOperand &mOp = inst->getOperand(i);
+
+ if(I->second != 0) {
+ if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
+
+ //Check to see where this operand is defined if this instruction is from max stage
+ if(I->second == schedule.getMaxStage()) {
+ DEBUG(std::cerr << "VREG: " << *(mOp.getVRegValue()) << "\n");
+ }
+
+ //If its in the value saved, we need to create a temp instruction and use that instead
+ if(valuesToSave.count(mOp.getVRegValue())) {
+ TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
+
+ //Update the operand in the cloned instruction
+ instClone->getOperand(i).setValueReg(tmp);
+
+ //save this as our final phi
+ finalPHIValue[mOp.getVRegValue()] = tmp;
+ newValLocation[tmp] = machineBB;
+ }
+ }
+ }
+ if(I->second != schedule.getMaxStage()) {
+ if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
+ if(valuesToSave.count(mOp.getVRegValue())) {
+
+ TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
+
+ //Create new machine instr and put in MBB
+ MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
+
+ //Save for future cleanup
+ kernelValue[mOp.getVRegValue()] = tmp;
+ newValLocation[tmp] = machineBB;
+ kernelPHIs[mOp.getVRegValue()][schedule.getMaxStage()-1] = tmp;
+ }
+ }
+ }
+ }
+
+ }
+
+ DEBUG(std::cerr << "KERNEL before PHIs\n");
+ DEBUG(machineBB->print(std::cerr));
+
+
+ //Loop over each value we need to generate phis for
+ for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(),
+ E = newValues.end(); V != E; ++V) {
+
+
+ DEBUG(std::cerr << "Writing phi for" << *(V->first));
+ DEBUG(std::cerr << "\nMap of Value* for this phi\n");
+ DEBUG(for(std::map<int, Value*>::iterator I = V->second.begin(),
+ IE = V->second.end(); I != IE; ++I) {
+ std::cerr << "Stage: " << I->first;
+ std::cerr << " Value: " << *(I->second) << "\n";
+ });
+
+ //If we only have one current iteration live, its safe to set lastPhi = to kernel value
+ if(V->second.size() == 1) {
+ assert(kernelValue[V->first] != 0 && "Kernel value* must exist to create phi");
+ MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]);
+ DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+ kernelPHIs[V->first][schedule.getMaxStage()-1] = kernelValue[V->first];
+ }
+ else {
+
+ //Keep track of last phi created.
+ Instruction *lastPhi = 0;
+
+ unsigned count = 1;
+ //Loop over the the map backwards to generate phis
+ for(std::map<int, Value*>::reverse_iterator I = V->second.rbegin(), IE = V->second.rend();
+ I != IE; ++I) {
+
+ if(count < (V->second).size()) {
+ if(lastPhi == 0) {
+ lastPhi = new TmpInstruction(I->second);
+ MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second).addRegDef(lastPhi);
+ DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+ newValLocation[lastPhi] = machineBB;
+ }
+ else {
+ Instruction *tmp = new TmpInstruction(I->second);
+ MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp);
+ DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+ lastPhi = tmp;
+ kernelPHIs[V->first][I->first] = lastPhi;
+ newValLocation[lastPhi] = machineBB;
+ }
+ }
+ //Final phi value
+ else {
+ //The resulting value must be the Value* we created earlier
+ assert(lastPhi != 0 && "Last phi is NULL!\n");
+ MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(finalPHIValue[V->first]);
+ DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+ kernelPHIs[V->first][I->first] = finalPHIValue[V->first];
+ }
+
+ ++count;
+ }
+
+ }
+ }
+
+ DEBUG(std::cerr << "KERNEL after PHIs\n");
+ DEBUG(machineBB->print(std::cerr));
+}
+
+
+void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vector<MachineBasicBlock *> &prologues, std::vector<MachineBasicBlock *> &epilogues, MachineBasicBlock *kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation) {
+
+ //Worklist to delete things
+ std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> > worklist;
+
+ const TargetInstrInfo *TMI = target.getInstrInfo();
+
+ //Start with the kernel and for each phi insert a copy for the phi def and for each arg
+ for(MachineBasicBlock::iterator I = kernelBB->begin(), E = kernelBB->end(); I != E; ++I) {
+ //Get op code and check if its a phi
+ if(I->getOpcode() == V9::PHI) {
+ Instruction *tmp = 0;
+ for(unsigned i = 0; i < I->getNumOperands(); ++i) {
+ //Get Operand
+ const MachineOperand &mOp = I->getOperand(i);
+ assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
+
+ if(!tmp) {
+ tmp = new TmpInstruction(mOp.getVRegValue());
+ }
+
+ //Now for all our arguments we read, OR to the new TmpInstruction that we created
+ if(mOp.isUse()) {
+ DEBUG(std::cerr << "Use: " << mOp << "\n");
+ //Place a copy at the end of its BB but before the branches
+ assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
+ //Reverse iterate to find the branches, we can safely assume no instructions have been
+ //put in the nop positions
+ for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
+ MachineOpCode opc = inst->getOpcode();
+ if(TMI->isBranch(opc) || TMI->isNop(opc))
+ continue;
+ else {
+ BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
+ break;
+ }
+
+ }
+
+ }
+ else {
+ //Remove the phi and replace it with an OR
+ DEBUG(std::cerr << "Def: " << mOp << "\n");
+ BuildMI(*kernelBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
+ worklist.push_back(std::make_pair(kernelBB, I));
+ }
+
+ }
+ }
+
+ }
+
+ //Remove phis from epilogue
+ for(std::vector<MachineBasicBlock*>::iterator MB = epilogues.begin(), ME = epilogues.end(); MB != ME; ++MB) {
+ for(MachineBasicBlock::iterator I = (*MB)->begin(), E = (*MB)->end(); I != E; ++I) {
+ //Get op code and check if its a phi
+ if(I->getOpcode() == V9::PHI) {
+ Instruction *tmp = 0;
+ for(unsigned i = 0; i < I->getNumOperands(); ++i) {
+ //Get Operand
+ const MachineOperand &mOp = I->getOperand(i);
+ assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
+
+ if(!tmp) {
+ tmp = new TmpInstruction(mOp.getVRegValue());
+ }
+
+ //Now for all our arguments we read, OR to the new TmpInstruction that we created
+ if(mOp.isUse()) {
+ DEBUG(std::cerr << "Use: " << mOp << "\n");
+ //Place a copy at the end of its BB but before the branches
+ assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
+ //Reverse iterate to find the branches, we can safely assume no instructions have been
+ //put in the nop positions
+ for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
+ MachineOpCode opc = inst->getOpcode();
+ if(TMI->isBranch(opc) || TMI->isNop(opc))
+ continue;
+ else {
+ BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
+ break;
+ }
+
+ }
+
+ }
+ else {
+ //Remove the phi and replace it with an OR
+ DEBUG(std::cerr << "Def: " << mOp << "\n");
+ BuildMI(**MB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
+ worklist.push_back(std::make_pair(*MB,I));
+ }
+
+ }
+ }
+ }
+ }
+
+ //Delete the phis
+ for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I = worklist.begin(), E = worklist.end(); I != E; ++I) {
+ DEBUG(std::cerr << "Deleting PHI " << I->second << "\n");
+ I->first->erase(I->second);
+
+ }
+
+}
+
+
+void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) {
+
+ DEBUG(std::cerr << "Reconstructing Loop\n");
+
+ //First find the value *'s that we need to "save"
+ std::map<const Value*, std::pair<const MSchedGraphNode*, int> > valuesToSave;
+
+ //Keep track of instructions we have already seen and their stage because
+ //we don't want to "save" values if they are used in the kernel immediately
+ std::map<const MachineInstr*, int> lastInstrs;
+
+ //Loop over kernel and only look at instructions from a stage > 0
+ //Look at its operands and save values *'s that are read
+ for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
+
+ if(I->second !=0) {
+ //For this instruction, get the Value*'s that it reads and put them into the set.
+ //Assert if there is an operand of another type that we need to save
+ const MachineInstr *inst = I->first->getInst();
+ lastInstrs[inst] = I->second;
+
+ for(unsigned i=0; i < inst->getNumOperands(); ++i) {
+ //get machine operand
+ const MachineOperand &mOp = inst->getOperand(i);
+
+ if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
+ //find the value in the map
+ if (const Value* srcI = mOp.getVRegValue()) {
+
+ //Before we declare this Value* one that we should save
+ //make sure its def is not of the same stage as this instruction
+ //because it will be consumed before its used
+ Instruction *defInst = (Instruction*) srcI;
+
+ //Should we save this value?
+ bool save = true;
+
+ //Get Machine code for this instruction, and loop backwards over the array
+ //to find the def
+ MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defInst);
+ for (int j = tempMvec.size()-1; j >= 0; j--) {
+ MachineInstr *temp = tempMvec[j];
+
+ //Loop over instructions
+ for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
+ MachineOperand &mDefOp = temp->getOperand(opNum);
+
+ if (mDefOp.getType() == MachineOperand::MO_VirtualRegister && mDefOp.isDef()) {
+ const Value* defVReg = mDefOp.getVRegValue();
+ if(defVReg == srcI) {
+ //Check if instruction has been seen already and is of same stage
+ if(lastInstrs.count(temp)) {
+ if(lastInstrs[temp] == I->second)
+ save = false;
+ }
+ }
+ }
+ }
+ }
+ if(save)
+ valuesToSave[srcI] = std::make_pair(I->first, i);
+ }
+ }
+
+ if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) {
+ assert("Our assumption is wrong. We have another type of register that needs to be saved\n");
+ }
+ }
+ }
+ }
+
+ //The new loop will consist of one or more prologues, the kernel, and one or more epilogues.
+
+ //Map to keep track of old to new values
+ std::map<Value*, std::map<int, Value*> > newValues;
+
+ //Map to keep track of old to new values in kernel
+ std::map<Value*, std::map<int, Value*> > kernelPHIs;
+
+ //Another map to keep track of what machine basic blocks these new value*s are in since
+ //they have no llvm instruction equivalent
+ std::map<Value*, MachineBasicBlock*> newValLocation;
+
+ std::vector<MachineBasicBlock*> prologues;
+ std::vector<BasicBlock*> llvm_prologues;
+
+
+ //Write prologue
+ writePrologues(prologues, BB, llvm_prologues, valuesToSave, newValues, newValLocation);
+
+ //Print out epilogues and prologue
+ DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end();
+ I != E; ++I) {
+ std::cerr << "PROLOGUE\n";
+ (*I)->print(std::cerr);
+ });
+
+ BasicBlock *llvmKernelBB = new BasicBlock("Kernel", (Function*) (BB->getBasicBlock()->getParent()));
+ MachineBasicBlock *machineKernelBB = new MachineBasicBlock(llvmKernelBB);
+ (((MachineBasicBlock*)BB)->getParent())->getBasicBlockList().push_back(machineKernelBB);
+ writeKernel(llvmKernelBB, machineKernelBB, valuesToSave, newValues, newValLocation, kernelPHIs);
+
+
+ std::vector<MachineBasicBlock*> epilogues;
+ std::vector<BasicBlock*> llvm_epilogues;
+
+ //Write epilogues
+ writeEpilogues(epilogues, BB, llvm_epilogues, valuesToSave, newValues, newValLocation, kernelPHIs);
+
+
+ const TargetInstrInfo *TMI = target.getInstrInfo();
+
+ //Fix up machineBB and llvmBB branches
+ for(unsigned I = 0; I < prologues.size(); ++I) {
+
+ MachineInstr *branch = 0;
+
+ //Find terminator since getFirstTerminator does not work!
+ for(MachineBasicBlock::reverse_iterator mInst = prologues[I]->rbegin(), mInstEnd = prologues[I]->rend(); mInst != mInstEnd; ++mInst) {
+ MachineOpCode OC = mInst->getOpcode();
+ if(TMI->isBranch(OC)) {
+ branch = &*mInst;
+ DEBUG(std::cerr << *mInst << "\n");
+ break;
+ }
+ }
+
+
+
+ //Update branch
+ for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) {
+ MachineOperand &mOp = branch->getOperand(opNum);
+ if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+ mOp.setValueReg(llvm_epilogues[(llvm_epilogues.size()-1-I)]);
+ }
+ }
+
+ //Update llvm basic block with our new branch instr
+ DEBUG(std::cerr << BB->getBasicBlock()->getTerminator() << "\n");
+ const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
+ TmpInstruction *tmp = new TmpInstruction(branchVal->getCondition());
+ if(I == prologues.size()-1) {
+ TerminatorInst *newBranch = new BranchInst(llvmKernelBB,
+ llvm_epilogues[(llvm_epilogues.size()-1-I)],
+ tmp,
+ llvm_prologues[I]);
+ }
+ else
+ TerminatorInst *newBranch = new BranchInst(llvm_prologues[I+1],
+ llvm_epilogues[(llvm_epilogues.size()-1-I)],
+ tmp,
+ llvm_prologues[I]);
+
+ assert(branch != 0 && "There must be a terminator for this machine basic block!\n");
+
+ //Push nop onto end of machine basic block
+ BuildMI(prologues[I], V9::NOP, 0);
+
+ //Add a unconditional branch to the next prologue
+ if(I != prologues.size()-1)
+ BuildMI(prologues[I], V9::BA, 1).addPCDisp(llvm_prologues[I+1]);
+ else
+ BuildMI(prologues[I], V9::BA, 1).addPCDisp(llvmKernelBB);
+
+ //Add one more nop!
+ BuildMI(prologues[I], V9::NOP, 0);
+ }
+
+ //Fix up kernel machine branches
+ MachineInstr *branch = 0;
+ for(MachineBasicBlock::reverse_iterator mInst = machineKernelBB->rbegin(), mInstEnd = machineKernelBB->rend(); mInst != mInstEnd; ++mInst) {
+ MachineOpCode OC = mInst->getOpcode();
+ if(TMI->isBranch(OC)) {
+ branch = &*mInst;
+ DEBUG(std::cerr << *mInst << "\n");
+ break;
+ }
+ }
+
+ assert(branch != 0 && "There must be a terminator for the kernel machine basic block!\n");
+
+ //Update kernel self loop branch
+ for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) {
+ MachineOperand &mOp = branch->getOperand(opNum);
+
+ if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+ mOp.setValueReg(llvmKernelBB);
+ }
+ }
+
+ //Update kernelLLVM branches
+ const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
+ TerminatorInst *newBranch = new BranchInst(llvmKernelBB,
+ llvm_epilogues[0],
+ new TmpInstruction(branchVal->getCondition()),
+ llvmKernelBB);
+
+ //Add kernel noop
+ BuildMI(machineKernelBB, V9::NOP, 0);
+
+ //Add unconditional branch to first epilogue
+ BuildMI(machineKernelBB, V9::BA, 1).addPCDisp(llvm_epilogues[0]);
+
+
+ //Add kernel noop
+ BuildMI(machineKernelBB, V9::NOP, 0);
+
+ //Lastly add unconditional branches for the epilogues
+ for(unsigned I = 0; I < epilogues.size(); ++I) {
+
+ //Now since I don't trust fall throughs, add a unconditional branch to the next prologue
+ if(I != epilogues.size()-1) {
+ BuildMI(epilogues[I], V9::BA, 1).addPCDisp(llvm_epilogues[I+1]);
+ //Add unconditional branch to end of epilogue
+ TerminatorInst *newBranch = new BranchInst(llvm_epilogues[I+1],
+ llvm_epilogues[I]);
+
+ }
+ else {
+ MachineBasicBlock *origBlock = (MachineBasicBlock*) BB;
+ for(MachineBasicBlock::reverse_iterator inst = origBlock->rbegin(), instEnd = origBlock->rend(); inst != instEnd; ++inst) {
+ MachineOpCode OC = inst->getOpcode();
+ if(TMI->isBranch(OC)) {
+ branch = &*inst;
+ DEBUG(std::cerr << "Exit branch from loop" << *inst << "\n");
+ break;
+
+ }
+
+ for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) {
+ MachineOperand &mOp = branch->getOperand(opNum);
+
+ if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+ BuildMI(epilogues[I], V9::BA, 1).addPCDisp(mOp.getVRegValue());
+ break;
+ }
+ }
+
+ }
+
+ //Update last epilogue exit branch
+ BranchInst *branchVal = (BranchInst*) dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
+ //Find where we are supposed to branch to
+ BasicBlock *nextBlock = 0;
+ for(unsigned j=0; j <branchVal->getNumSuccessors(); ++j) {
+ if(branchVal->getSuccessor(j) != BB->getBasicBlock())
+ nextBlock = branchVal->getSuccessor(j);
+ }
+ TerminatorInst *newBranch = new BranchInst(nextBlock, llvm_epilogues[I]);
+ }
+ //Add one more nop!
+ BuildMI(epilogues[I], V9::NOP, 0);
+
+ }
+
+ //FIX UP Machine BB entry!!
+ //We are looking at the predecesor of our loop basic block and we want to change its ba instruction
+
+
+ //Find all llvm basic blocks that branch to the loop entry and change to our first prologue.
+ const BasicBlock *llvmBB = BB->getBasicBlock();
+
+ for(pred_const_iterator P = pred_begin(llvmBB), PE = pred_end(llvmBB); P != PE; ++PE) {
+ if(*P == llvmBB)
+ continue;
+ else {
+ DEBUG(std::cerr << "Found our entry BB\n");
+ //Get the Terminator instruction for this basic block and print it out
+ DEBUG(std::cerr << *((*P)->getTerminator()) << "\n");
+ //Update the terminator
+ TerminatorInst *term = ((BasicBlock*)*P)->getTerminator();
+ for(unsigned i=0; i < term->getNumSuccessors(); ++i) {
+ if(term->getSuccessor(i) == llvmBB) {
+ DEBUG(std::cerr << "Replacing successor bb\n");
+ if(llvm_prologues.size() > 0) {
+ term->setSuccessor(i, llvm_prologues[0]);
+ //Also update its corresponding machine instruction
+ MachineCodeForInstruction & tempMvec =
+ MachineCodeForInstruction::get(term);
+ for (unsigned j = 0; j < tempMvec.size(); j++) {
+ MachineInstr *temp = tempMvec[j];
+ MachineOpCode opc = temp->getOpcode();
+ if(TMI->isBranch(opc)) {
+ DEBUG(std::cerr << *temp << "\n");
+ //Update branch
+ for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
+ MachineOperand &mOp = temp->getOperand(opNum);
+ if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+ mOp.setValueReg(llvm_prologues[0]);
+ }
+ }
+ }
+ }
+ }
+ else {
+ term->setSuccessor(i, llvmKernelBB);
+ //Also update its corresponding machine instruction
+ MachineCodeForInstruction & tempMvec =
+ MachineCodeForInstruction::get(term);
+ for (unsigned j = 0; j < tempMvec.size(); j++) {
+ MachineInstr *temp = tempMvec[j];
+ MachineOpCode opc = temp->getOpcode();
+ if(TMI->isBranch(opc)) {
+ DEBUG(std::cerr << *temp << "\n");
+ //Update branch
+ for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
+ MachineOperand &mOp = temp->getOperand(opNum);
+ if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+ mOp.setValueReg(llvmKernelBB);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ break;
+ }
+ }
+
+ removePHIs(BB, prologues, epilogues, machineKernelBB, newValLocation);
+
+
+
+ //Print out epilogues and prologue
+ DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end();
+ I != E; ++I) {
+ std::cerr << "PROLOGUE\n";
+ (*I)->print(std::cerr);
+ });
+
+ DEBUG(std::cerr << "KERNEL\n");
+ DEBUG(machineKernelBB->print(std::cerr));
+
+ DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = epilogues.begin(), E = epilogues.end();
+ I != E; ++I) {
+ std::cerr << "EPILOGUE\n";
+ (*I)->print(std::cerr);
+ });
+
+
+ DEBUG(std::cerr << "New Machine Function" << "\n");
+ DEBUG(std::cerr << BB->getParent() << "\n");
+
+ //BB->getParent()->getBasicBlockList().erase(BB);
+
+}
+
OpenPOWER on IntegriCloud